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ABSTRAC’f 

This paper presents a compact representation of all possible as- 
sembly plans of a given product using AND/OR graphs. Such a 
representation forms the basis for efficient planning algorithms which 
enable an increase in assembly system flexibility by allowing an intcl- 
ligcnt robot to pick a course of action according to instantaneous 
conditions, Two applications are discussed: the selection of the best 
assembly plan (off-line planning), and opportunistic scheduling (on- 
line planning). An example of an assembly with four parts illustrates 
the use of the AND/OR graph representation to find the best assembly 
plan based on weighing of operations according to complexity of 
manipulation and stability of subassemblies. In practice, a generic 
search algorithm, such as the AO* may be used to find this plan. The 
scheduling efficiency using this representation is compared to fixed 
sequence and precedence graph reprcscntations. The AND/OR graph 
consistently reduces the average number of operations. 

I IN’l’liOl )l.Jc”l’lON 

Robotic as3crnbly often rcquircs reprogramming or reconfiguration 
in order to handle a variety of designs in the s;nnc system. ‘I’hc design 
and implcmcntation of such flcxiblc systems is diflicult, and 
automated planning tcchniqucs may provide major advantages. Such 
task pkmning for robotic assembly is critically dcpcndcnt on the task 
rcprescntation; a new approach to task rcprcscntation using AND/OR 

graphs is dcscribcd in this paper. 
Flexibility in robotic workcells provides a number of advantages, 

Flcxiblc robotic workcclls may bc rcconfigurcd to hnndlc a wide 
range of styles and products. Further flexibility can bc achieved if 
those workcclls arc able to asscmblc the same product in diffcrcnt 
ways. In order to accomodatc the assembling of scvcral diffcrcnt 
products in the same shop, it is ncccssary to schcdulc the available 
machines to each job. Since diffcrcnt machines may have diffcrcnt 
capabilities, the assembly procedure may vary depending on what 
machine is schcdulcd to do the job, Another advantage is an im- 
provement in the ability to recover from errors and other unexpected 
effects that cause the cxccution of a task to deviate from the 
prcplanncd course of actions. When deviations occur, it is preferred 
that the task cxccution continue, as effrcicntly aS possible, from the 
unpredicted state towards the goal. Deviations of the desired course 
of actions arc not necessarily error conditions, but may be due to 
random factors that affect the manufacturing process, and flexible 
shops should be able to cope with those factors autonomously. 

*This research is supported in part by Conselho National de Descn- 
volvimcnto Cientifico e ‘I’ccnolbgico (Brazil) and by the Robotics In- 
stitute of Carnegie-Mellon University. 

Even with flexibility of the mechanical hardware, current robotic 
assembly systems are not able to follow many different courses of 
actions within a given task. A principal reason for this limitation is 
the inadequate data structure for the representation of task plans. 
Ordered lists of actions, that have been used in early robot systems, 
which wcrc dcvcloped outside the manufacturing context, do not per- 
mit flexibility in task execution. Triangle tables [Fikes 721 have been 
used for the representation of plans, and they improve the capability 
to recover from errors, but only within one fixed sequence. A more 
significant improvement was the use of precedence diagrams [Fox.B. 
851 for the representation of plans, but that technique has limitations 
also, and in most cases allows only a small amount of flexibility. 

This paper presents a compact representation for the set of all pos- 
sible assembly plans of a given product. Such a representation en- 
ables an increase in assembly flexibility .by allowing an intelligent 
robot to pick the more convenient course of actions, according to the 
instantaneous conditions at the shop. In sections II and III, the neces- 
sary background is established. Section IV shows the representation, 
andsection V presents its use for the assembly of a simple product, 
Two applications are discussed: section VI shows how the selection of 
the best assembly plan can be implemented as a graph search, and 
section VII shows the use of the representation in opportunistic 
scheduling. Section VIII summarizes the contribution of the paper 
and points to further research. 

II SCIIl~I>I.II.lNG ANI) I’lANNING 

hsscnibly of one prodrlcl rcquircs sclcction of a scqucncc of opcra- 
lions and assignment of times and resources for each operation. The 
problcnt is usucrlly divided into two Ixtrts: planning, or process rout- 
ing. which is the sclcction of a scqucncc of operations, and schcdul- 
ing. which is the assignment of times and rcsourecs. 

Schcdtiling problems, including job-shop scheduling, projcet 
scheduling, and assembly-line balancing, have been intcnsivcly inves- 
tigatcd in Management Scicnccs and Operations Rcscarch [Bellman 
821. Mathematical programming tcchniqucs have most often been 
used to solve those problems. Mord rcccntly, the scheduling problem 
has been studied using constraint-dircctcd reasoning [t:ox,M. 831. 

Planning has been an important research issue in artificial intcl- 
ligc~xc. BUILD [Fahlman 741 and STRIPS [Fikcs 711 arc two early cx- 
amplcs. Both systems aim to gcncrate plans that cnablc robots to 
perform certain tasks. Typically, the tasks consist of achieving a state 
that satisfies some goal condition from a current state of the world 
(i.e., the robot cnvironmcnt), and the plans consist of order-cd se- 
qucnccs of actions that will transform the initial state into a goal state. 

The representation of plans arc commonly based on ordered lists of 
preprogrammed primitive actions. Thcrcare some extensions to that 
reprcscntation scheme that cnablc the robot to take advantage of the 
work already done in planning, in cast unexpected events happen 
during the execution of a plan. STRIPS, for example, uses a tabular 
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form, called a triangle Iable, to store a plan. BUILD associates to each 
primitive action a REASON list (subgoals) as well as a description of the 
states of the world bcforc and after the action is executed. More 
recent systems, ‘such as NOAH [Sacerdoti 771, represent plans as par- 
tially ordered sequences of actions with respect to time. 

A major emphasis of research on planning has been on the search 
aspect of the problem, especially control schemes for the search. 
Priority has been given to develop efficient, powerful and general 
purpose procedures that can find at lcast one plan in a wide variety of 
situations rather than procedures that eventually find the most ef- 
ficient plan in a more restricted type of situation. In applications 
where plans are executed one time only, inefficiencies in the plan do 
not cause any major harm. Also, if plans are generated on line, high 
speed in plan generationis often preferable to optimal plans. 

Search for the most efficient plan requires a criterion to decide 
whether one plan is better than another. This decision, however, 
usually requires information available at execution time only, and 
producing the plan in real time may degrade the robot operation, or 
even be unfeasible, due to the long computing time it usually takes to 
generate a plan. The choice between planning ahead of time (off line) 
and planning in real time (on line) is difficult; the former may lead to 
inefficient plans, whereas the latter may cause a degradation in the 
robot operation. 

111 PLANNING FOR ROBOTIC ASSEMBLY 

To achieve the desired high levels of productivity, the assembly 
plans must be efficient and keep wasted time and resources to a min- 
imum. Should inefflciencics in the assembly plan of one product be 
multiplied by the size of the lot, which in common robotic assembly 
applications ranges from 1,000 to 100,000 units, the resulting total 
waste may reduce drastically the productivity and may jeopardize the 
whole process. Conditions at the shop, however, change with time 
(for example, parts may come in random order), and-usually, there is 
no single plan that is efficient in every possible situation. 

Fox and Kempf [Fox,B. 851 address the need to act opportunis- 
tically, as opposed to always follow a preprogrammed fixed order of 
operations. They suggest that plans gencratcd off-line to be given to 
the robot be a set of operations with minimal ordering constraints. 
Such a plan was represented by a precedence diagram and would 
actually encompass several possible sequences of operations that 
would peiform the task of assembling a given product. In real time, 
depending on the conditions at the shop, the intelligent robot would 
pick the most appropriate sequence. Using Fox and Kempf notation, 
the selection of one sequence, and the assignment of operations to 
specific machines is what is commonly referred to as the scheduling 
process. Since that selection process involves much less computing 
time than the planning process, no degradation in the efficiency of the 
robot operation should occur. 

Planning, in this sense, should yield all possible sequences of opera- 
tions that can be used to assemble a product. That information is the 
input to the scheduling process, which in real time selects one of those 
sequences and assigns the machines that will do each operation. 

The problem with the precedence diagram formalism, as Fox and 
Kempf themselves point out, is that for most products no single par- 
tial order can encompass every possible assembly sequence. The as- 
sembly of the simple product shown in exploded view in figure 1, for 
example, may be completed by following one of the ten different 
sequences of operations that are represented graphically in figure 2. It 
is possible to combine some sequences into one partial order using 
precedence diagrams. Figure 3 shows three possible ways to combine 
two of the first four sequences in figure 2; the only restriction is that 
the insertion of the stick cannot be the last operation. It is possible to 
combine three of those four sequences into one partial order by using 
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a dummy operation, but it is not possible to combine the four se- 
quences into one partial order, nor it is possible to combine any of 
those sequences with the other six sequences in figure 2. 

A closer look at the partial ordering representation of plans, in the 
light of the above assembly example, shows another deficiency of that 
solution. Two distinct feasible sequences, A-B-C and B-A-C, for ex- 
ample, do not differ simply by the sequence of the operations. Insert- 
ing the stick first is not the same operation as inserting it after the 
receptacle and the cap have been screwed together. The latter opera- 
tion is probably easier to execute. Similarly, screwing the receptacle 
and the handle with the stick inside is probably easier to do if the 
receptacle and the cap are screwed, than otherwise. The partial order- 
ing approach, howcvcr, does not capture this subtle difference. The 
next section will describe another approach to the representation of 
plans that captures this difference, and that can combine all possible 
assembly sequences. 

IV ANlWOR GRAtW I~l’i’lillSf~N’I’/\‘I’IC)N 01: ASSI’M 131 ,Y 
PI ANS 

Planning the assembly of one product made up of scvcral com- 
poncnt parts can be seen as path search in the state space of all pos- 
sible configurations of that set of parts. The initial state is that con- 
figuration in which all parts arc disconncctcd from each other. and the 
goal state is that in which the part! arc properly joined to form the 
desired product l’hc moves that change one sratc into another cor- 
respond to the assembly operations since they change the relative 
position of at Icast one part. ‘I’hcre may bc many din’crcnt paths from 
the initial state to the goal state. Krogh and Sandcrson [Krogh 851 
present an ovcrvicw of task decomposition and operations. 

In this context, any set of parts that arc joined to form a stable unit 
is called an assembly. A component part is also an assembly, with a 
special property. The word subassembly rcfcrs to an assembly that is 
part ofi another, more complex assembly, and it always carries the 
subs&./set connotation. 

Because there are many configurations that can bc made from the 
same parts, the branching factor from the initial state to the goal state 
is greater than the branching factor from the goal state to the initial 
state. A backward search, thcrcfore, will be more efficient than a 
forward search for the assembly planning problem. The problem of 
finding how to assemble a given product can bc converted to an 
equivalent problem of finding how the same product can be 
disassembled. Since assembly operations are not ncccssarily revcrs- 
iblc, the equivalence of the two problems will hold only if each opera- 
tion used in disassembly is the reverse of a feasible assembly opera- 
tion, regardless of whether these reverse operations themselves are 
feasible or not. The expression disassembly operation, therefore, refers 
to the reverse of a feasible assembly operation. 

The backward search suggests a decomposable production system in 
which the problem of disassembling one product is decomposed into 
distinct subproblems, each one being to disassemble one subassembly. 
Each decomposition must correspond to a disassembly operafion. If 
solutions for both subproblems that result from the decomposition are 
found, then a solution for the original problem can be obtained by 
combining the solutions to the subproblems and the operation used in 
the decomposition. For subassemblies that contain one part only, a 
trivial solution containing no operation always exists. Usually there 
will not be a unique way to decompose the problem, or to cuf the 
assembly, because there may be several different ways to assemble the 
same product, 
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Figure 1: A simple product 
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Figure 3: Precedence diagrams: (I) combines A-B-C and B-A-C; 

(2) combines C-B-A and B-A-C; (‘3) combines B-A-C and R-C-A 

Structures called AND/OR graphs [Nilsson 801, or Izypergraphs, are 
uscfi~l in representing dccomposablc problems and they have been 
used to represent the disassembly problem. The nodes in such a hy- 
pergraph correspond to assemblies; nodes corresponding to as- 
semblies that contain only one part are the terminal nodes. The hy- 
perarcs (or k-connectors, k being any integer greater than zero) cor- 
respond to the disassembly operalions. Each hyperarc that leaves one 
node corresponds to a disassembly operarion applicable to the as- 
sembly of that node, and the successor nodes to which the hyperarc 
points correspond to the resulting subassemblies produced by the 
disassembly operation. Because for most products the assembly 
operations usually mate two subassemblies, the hyperarcs in the cor- 
responding AND/OR graph are usually 2-connectors. There are cases, 
however, of operations that mate more than two subassemblies (e.g., 
assembling a hinge with two wings and one pin), as well as operations 
that involve only one subassembly (e.g., drilling a hole in a part). 
Hyperarcs in AND/OR graphs can represent all those possibilities. 

A solurion tree from a node N in an AND/OR graph is a subgraph 
that may be defined recursively as either N itself if N is a terminal 
node, or N plus one of its outgoing hyperarcs plus the set of solution 
trees from each of N’s successors through that hyperarc. This defini- 
tion assumes that the graph contains no cycle 4s is true in the 
disassembly problem. There may be none, one, or several solution 
trees from a node in an AND/OR graph. 

The useful feature of the AND/OR graph representation for the as- 
scmbly problem is that it encompasses all possible partial orderings of 
assembly operations. Moreover, each partial order corresponds to a 
solution tree from the node corresponding to the final (assembled) 
product. This feature is demonstrated through the example in the 
next section. 

Figure 2: Possible scqucnccs of operations to asscmblc the product 
shown in figure 1 

ROBOTICS / 1115 



Figure 4: AND/OR graph for the product shown in figure 1 

v A SIMPLE EXAMPLE 

Figure 4 shows the AND/OR graph for the product in figure 1. Each 
node in that graph is labeled by a database that correponds to an 
assembly. In flgurc 4, the databases are represcntcd by exploded view 
drawings, whereas in a computational implementation, the databases 
are relational data structures. To facilitate the exposition, both the 
nodes and the hyperarcs in figure 4 have idcntiflcation numbers. 

The root node in figure 4 (node 1) is labclcd by a database that 
describes the assembled product. There are four hyperarcs leaving 
that node. Each of those four hyperarcs corresponds to one way the 
whole assembly can be disassembled and each one points to two nodes 
that are labeled by databases that describe the resulting sub- 
assemblies. Similarly, the other nodes in the graph have a leaving 
hyperarc for each possible way in which their corresponding sub- 
assembly can be disassembled. 
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Figure 5: Solution tree corresponding to sequence 4 in fig 2 

Figure 6: Solution tree corresponding to sequences 6 and 7 in fig 2 

Figure 7: Solution tree corresponding to sequence 1 in fig 2 

Any subassembly that can be made up of the component parts may 
appear only once in the graph, even when it may be the result of 
different disassembly operations. The subassembly of node 4, in 
figure 4, for example, may result From two different operations, which 
correspond to hyperarcs 5 and 10. Moreover, those two hyperarcs 
come from two distinct nodes. Nodes corresponding to component 
parts (nodes 9,10,11 and 12) are the terminal or goal nodes since they 
correspond to disassembling problems for which a (trivial) solution is 
known. 

There are eight solution trees from the root node (node 1) and three 
of them are shown in figures 5 to 7. One important feature of the 
solution tree representation is that the distinction between operations 
becomes apparent because distinct operations correspond to distinct 
hyperarcs. In other words, two distinct assembly sequences include 
the same operation only if the two corresponding solution trees in- 
clude the hyperarc corresponding to that operation. The sequence 
diagrams in figure 2 and the prccedcnce diagrams in figure 3 fail to 
make this distinction. The solution tree shown in figure 6 corresponds 
to two sequences, but unlike the precedence diagrams of figure 3, the 
operations are exactly the same, regardless of the order in which they 
are executed. 

To solve problems that require optimization, such as the sclcction of 
the best assembly plan, one must bc able to travcrsc the space of all 
candidate solutions, rcgardlcss of the method used to solve the 
problem. The choice of the rcprcscntation is critical since it is or\en 
difficult it) delimit the set of potential solutions in a form which 
cnumcratcs all the clcmcnts. 
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The AND/OR graph rcprcscntation encompasses all possible ways to 
assemble one product, and thcrcfore allows one to cxplorc the space 
of all possible plans. Since plans correspond to solution trees in the 
AND/OR graph, the sclcction of the best plan can be seen as a search 
problem. Any such search problem rcquircs a criterion to compare 
plans. One possibility is to assign to the hyperarcs weights propor- 
tional to the difficulty of their corresponding operations, and then 
compute the cost of a solution tree from a node, recursively, as: 

l zero, if the node has no leaving hypcrarc; or 
l the sum of the weight of the hypcrarc leaving the node 

and the costs of the solution trees from the successor 
nodes. 

The best plan corresponds to the solution tree that has the minimum 
cost. The search for the best plan can be conducted using generic 
algorithms such as the AO* [Nilsson 801. 

A variety of factors might be considered in assigning weights to 
hypcrarcs, including time duration of their corresponding operations, 
requirements for reorientation of fixturing, cost of resources needed, 
reliability, as well as production priorities and constraints. 

For the product in figure 1, the AND/OR graph (figure 4) has 15 
hyperarcs, which correspond to 15 different assembly operations. 
Table 1 shows one possible assignment of weights to hyperarcs. 
Those weights have been computed by adding two factors. The first 
factor is the type of assembly operation, with screw operation weigh- 
ing 4, insertion 2 and placement 1, in accord with typical time, fixtur- 
ing and manipulation requirements. The second factor taken into 
account is the difficulty of handling the participating subassemblies, 
and is proportional to their number of degrees of freedom; sub- 
assemblies with more degrees of freedom are more unstable, and 
therefore more difficult TV handle. Using that assignment of weights 
to hyperarcs, the total cost for the solution trees can be computed. 
The solution trees in figures 5 and 7 have the minimum cost of 11. 

For. more complex assemblies, instead of a complete enumeration as 
suggested above, search algorithms can be used to reduce computa- 
tion. For the product in figure 1, a search using AO* will yield one of 
the solution trees shown in figures 5 or 7, depending on how the 
partial solutions and tip nodes are ordered for expansion. 

Table 1: Assignment of weights to hypcrarcs 

hypcrarc 
operation 

type 
subassemblies 

degrees of 
freedom 

total 
weight 

1 4 1 5 

2 4 4 8 
3 4 4 8 
4 4 1 5 
5 4 2 6 
6 4 4 8 
7 2 0 2 
8 2 0 2 
9 4 4 8 

10 4 2 6 
11 2 0 2 
12 1 0 1 
13 4 0 4 
14 4 0 4 
15 1 0 1 
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To evaluate how the USC of AND/OR graph reprcscntation for as- 
sembly plans afl’ccts assembly cflicicncy. a comparntivc analysis 
among the three rcprcscntation schcmcs discussed in this paper has 
been conducted. 

The product in flgurc 1, and the robot workstation of figure 8 have 
been used as cxamplcs. The workstation is cquippcd with two 
manipulators and the parts arc prcscnted in random order. It is as- 
sumcd that a cap, a stick, a rcceptaclc, and a handle always come 
together, varying only in their order. It is also assumed that both 
manipulators arc controlled by the same central unit and they both 
arc able to execute the following actions: 

l acouire: fetching, by one of the manipulators, of one part 
from the part feeder 

l buffer: temporarily storing one part into a fixed location 
within the workstation 

l w: joining two subassemblies which are currently held 
by the manipulators 

l rctrievc: fetching, by one of the manipulators, one part 
known to be in the parts buffer 

The efficiency of this assembly station depends on the capacity to 
handle parts in random order. This requires on-lint scheduling of 
system resources dcpcnding on the order of parts arrival. The relative 
impact of plan representation schemes on assembly efficiency can be 
compared by the average number of operations needed: a smaller 
average number of operations corresponds to more efficiency. 

The first sequence of figure 2 (A-B-C) has been used as an example 
of fixed sequence reprcscntation and the first prcccdcncc diagram of 
figure 3 (combines A-B-C and B-A-C) as an example of precedence 
graph representation. Similar results will be produced using the other 
fixed sequences or precedence graphs. The number of operations that 
would be performed for each of the 24 possible orderings in which the 
four parts of the simple product can be acquired is shown in Table 2. 
At least 7 operations are necessary: four acquisitions and three 
matings; depending on the order in which the parts are presented, 
buffering, and therefore retrieving may also be necessary. 

When using the fixed sequence representation of plans, extensive 
buffering is necessary. For example, if the order the parts come is R H 

s c (receptacle, handle, stick, and cap) both the handle and the stick 
must be buffered since they are not used in the first operation; adding 
two bufferings and two retrievings to the four acquisitions and three 
matings that are always necessary yields 11 operations. The average 
number of operations for all 24 possible orders is 9.8. 

Using precedence diagrams for the representation of plans avoids 
some of the buffering and reduces the average number of operations 
to 9.2. For the sequence R H s c, for example, only the handle must be 
buffered since the insertion of the stick into the receptacle may be the 
first operation. 

Using the AND-OR graph representation of plans, however, avoids 
most of the buffering, and yields the average of 8 operations. For the 
same R H s c sequence, for example, no buffering is necdcd because 
the robot can follow the sequence of operations corresponding to the 
solution tree shown in figure 5. 

VIII CONCLUSION 

A compact representation for the set of all possible assembly plans 
of a product has been presented, along with its applications in me 
selection of the best assembly plan and in opportunistic scheduling. 
One important feature of that representation is that it allows one to 



Table 2: Number of operations needed to assemble the product of 
fig 1 for all the sequences in which the parts may be acquired, 

and for the three schemes of plan representation 
C = cap S = stick R = receptacle H = handle 

first sequence first precedence AND/OR graph 
sequence in fig2 diagram in fig 3 fig4 

CSRH 9 9 7 

CSHR 11 11 9 
CRSH 7 7 7 

CRHS 9 9 9 

CHSR 11 11 9 
CHRS 9 9 9 
SCRH 9 9 7 

SCHR 11 11 9 
SRCH 9 7 7 

SRHC 11 9 7 

SHCR 11 11 9 
SHRC 11 9 7 

RCSH 7 7 7 

RCHS 9 9 9 
RSCH 9 7 7 

RSHC 11 9 7 

RHCS 9 9 9 
RHSC 11 9 7 

HCSR 11 11 9 
HCRS 9 9 9 
HSCR 11 11 9 
HSRC 11 9 7 

HRCS 9 9 9 
HRSC 11 9 7 

average 9.8 9.2 8 

traverse the space of all possible assembly plans, and theretore 
provides an opportunity to select an optimal schedule and dynami- 
cally adapt scheduling to changing conditions. Both the fixed se- 
quence representation and the precedence diagram representation are 
very limited in this aspect. 

A number of issues related to this representation are under inves- 
tigation. One important issue is the development of algorithms for 
opportunistic scheduling suitable for real time operation. As pointed 
out in section VII, some buffering could not be avoided, even with the 
use of AND/OR graph representation of plans. For complex products, 
the choice of which part or subassembly to buffer may affect the 
overall assembly efficiency and criteria for that decision will be neces- 
sary. These criteria will certainly depend on evaluation fimctions, also 
under investigation, used to select a plan, especially functions that do 
not possess the recursive property like the one used in section VI. 

An additional important ongoing research issue is the development 
of a representation of assemblies suitable for the automatic generation 
of plans. Such automation can be helpfil in design of both new 
products and assembly systems. In designing new products, the desig 
ner can quickly assess the difficulty of assembling and eventually 

I I MANlPULAToRS 

I BUFFER 1 

Figure 8: Robotic workstation 

modify the design to facilitate the assembly. In designing new as- 
sembly systems, the designer can evaluate the performance of a 
proposed design for a given set of products. 
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