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ABSTRACT 

This paper describes a real-time road following and 
road junction detection vision system for autonomous vehicles. 
Vision-guided road following requires extracting road 
boundaries from images in real-time to guide the navigation 
of autonomous vehicles on the roadway. We use a 
histogram-based pixel classification algorithm to classify road 
and non-road regions in the image. The most likely road 
region is selected and a polygonal representation of the 
detected road region boundary is used as the input to a 
geometric reasoning module that performs model-based 
reasoning to accurately identify consistent road segments and 
road junctions. In this module, local geometric supports for 
each road edge segment are collected and recorded and a 
global consistency checking is performed to obtain a 
consistent interpretation of the raw data. Limited cases of 
incorrect image segmentation due to shadows or unusual road 
conditions can be detected and corrected based on the road 
model. Similarly, road junctions can be detected using the 
same principle. The real-time road following vision system 
has been implemented on a high-speed image processor 
connected to a host computer. We have tested our road 
following vision system and vehicle control system on a 
gravel road. The vehicle can travel up to 8 kilometers per 
hour speed on the road. 

I INTRODUCTION 

There are increasing interests on intelligent navigation 
of autonomous vehicles in a complex environment as a 
technology development test bed to integrate artificial 
intelligence research on planning, reasoning, perception, 
mobility control, and learning. An autonomous vehicle needs 
to plan its action, perceive its surroundings, execute its plan, 
and adapt itself to the environment for survival. Given a 
high level mission goal, the planning system needs to 
generate a plan to achieve the goal. Based on this plan, the 
autonomous vehicle starts to execute the plan in the real 
world. It collects information from sensors to perceive its 
environment, to follow a road, to navigate through obstacles, 
to identify terrain types, to recognize objects and landmarks, 
and to understand scenes. If some unexpected events happen 
that interfere with the current plan, the autonomous vehicle 
needs to replan in order to adjust itself to the current 
situations. 

There are several efforts on autonomous vehicle 
development at CMU, University of Maryland, Martin 
Marietta, and FMC. Under the Autonomous Vehicle Test Bed 
Program, we at FMC have developed a mission planning 
system [3] and a path planning system [ll on Symbolics Lisp 
Machines, a reflexive pilot system on SUN workstations [2], a 
high speed sonic imaging sensor, and a computer-controlled 
Ml13 armored personnel vehicle. The vehicle can perform 
real-time obstacle avoidance using the sonic imaging sensor at 
8 kilomete’m per hour vehicle speed. In this paper, we 
describe our implementation of a real-time road following 
vision system that can follow a gravel road at 8 kilometers 
per hour vehcile speed. 

Visual navigation of autonomous vehicles on road 
networks is an important problem. Results on vision-guided 
road following have been reported in [5] 161. These 
approaches use a predictive edge tracking technique to follow 
paved roads. In the so called “feed-forward” mode [6], a 
prior detected road boundary taken together with the current 
vehicle motion, is used to predict the approximate location of 
important road features and place a window in a subsequent 
image. Only those pixels in the prediction window are 
processed. The detected edge location and orientation in the 
window combined with the road continuity constraint are 
sufficient to determine the next window location in the 
same image for road boundary tracking. Because only a 
small portion of the whole image needs to be processed, this 
approach significantly speeds up the computation. However, 
due to the sequential nature of the road boundary tracking 

operation and its heavy reliance on prediction, the road 
boundary tracker may be confused by shadows, vehicle 
tracks and tire marks, and fuzzy road boundaries to lock on 
the wrong edge features. 

Our autonomous vehicle is a tracked vehicle (Ml13 
armored personnel carrier) that usually travels on dirt or 
gravel roads with fuzzy road boundaries and many vehicle 
tracks. These conditions make the use of prediction difficult. 
Consequently, we take a consistency checking approach that 
aggregates all the consistent evidence to reach a final 
interpretation. No attempt is made to optimize the image 
segmentation algorithm. Instead, we put our emphasis on 
developing a geometric reasoning module that can accurately 
identify road segments and road junctions based on imperfect 
image segmentation results. 
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The vision system operates in a loop (see Figure 1). It 
first acquires a color image from a camera and the current 
vehicle location from an inertial navigation system. The 
image segmentation module uses a pixel classification 
algorithm to segment the image into road and non-road 
regions. The road boundary tracking module finds the most 
likely road region and traces the contour of the region. The 
contour is then represented as a sequence of line segments 
using a line fitting algorithm. These line segments are then 
transformed from the image coordinate system to the local 
vehicle coordinate system and sent to the geometric reasoning 
module. The geometric reasoning module aggregates local 
geometric supports and assigns a consistent interpretation to 
these line segments. The resulting road interpretation is then 
fused with other sensor interpretation results (e.g., obstacle 
map from range sensor) and sent to the pilot system to 
generate a local path and perform the actual vehicle 
navigation. 

We have implemented this vision system on a high- 
speed image processor connected to a host computer. All the 
image segmentation functions are implemented on the image 
processor that operates at 30 frames per second. All the road 
boundary tracking, line fitting, and geometric reasoning 
functions are implemented on the host computer. The vision 
system currently takes approximately three seconds to process 
each road image. The pilot system takes the road description 
and generate a local path within 200 ms. We have 
successfully integrated the vision, planning, and pilot systems 
with the vehicle control system and the vehicle can travel 
at 8 kilometers per hour vehicle speed on a gravel road. 

II ROAD IMAGE SEGMENTATION -- 

The vision system first acquires the blue image from a 
color camera. The reason for selecting the blue band is 
because it gives the best result for distinguishing the road 
from the background. We use a pixel classification 
technique to segment the image into road and non-road 
regions. There are four possible classifications for each pixel: 

1. an actual road pixel is classified as road 

2. an actual non-road pixel is classified as non-road 

3. an actual road pixel is classified as non-road 

4. an actual non-road pixel is classified as road. 

The first two cases are correct classifications and the last 
two correspond to miss and false alarm respectively [4]. Cost 
factors are defined for each case and the classifier is 
designed to minimize the total cost. The resulting classifier 
is the ratio of two conditional probability density functions 
of pixel intensity distribution - one is conditional on the 
hypothesis that all the pixels are from the road class and 
the other is conditional on that all the pixels are from the 
non-road class. A pixel is classified as road if the conditional 
probability ratio of its intensity value is greater than a 
threshold that is determined by the cost factors and the a 
priori probabilities of the road and non-road classes. 
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Figure 1: road following vision system architecture 

For each new image, a properly selected reference 
window, usually positioned at the center bottom of the 
image, is used to lock on a portion of the road. The 
normalized histogram of the pixels inside the reference 
window is calculated and used to approximate the conditional 
probability density function of the road pixel class. The 
normalized histogram of the whole image is then used to 
approximate the probability density function of pixel 
intensity for road plus non-road background. The conditional 
probability density function of the non-road class can be 
obtained as a weighted linear combination of the two 
histograms according to the assumed a priori i probabilities of 
the road and background. These conditional probability 
density functions are then substituted into the classifier to 
set up a lookup table for pixel classification in the current 
image. The segmented image is then smoothed to remove 
noise pixels and fill gaps. 

III ROAD BOUNDARY TRACKING 

The function of the road boundary tracking module is 
to find the most likely road region based on segmentation 
results and track its boundary. 
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The image segmentation module returns a segmented 
binary image that contains several classified road regions. It 
takes a lot of time to track the boundary of each region in 
the image. Because the real road region is usually large 
compared to misclassified noise regions and spreads across the 
image near the bottom of the image, it is most likely to 
intersect with a vertical scan line starting at the center 
bottom of the image. The road boundary tracking module 
uses this heuristic and scans along the center column from 
the bottom of the image. If there is a road class region, the 
road boundary tracking module starts to follow the region 
contour until it returns to the same starting point. If the 
region contour length is greater than a threshold, then it is 
assumed to be the actual road region. Otherwise, the road 
boundary tracker continues to scan and track the next road 
class region. 

The road region contour is then represented in terms of 
a sequence of line segments by using a line fitting routine. 
These line segments are then sent to the geometric reasoning 
module for detailed shape analysis. 

Figure 2: typical road image. 

Figure 2 shows a typical road image obtained from 
camera. Figure 3 shows all the detected road class regions in 
the region of interest using the pixel classification algorithm. 
The large region with linear border is selected by the road 
boundary tracker as the road region. The vectors in the 
center of the picture show the projected road boundaries on 
the ground plane. The quadrangle that bounds the projected 
road boundaries delimits the visibility limit and the camera’s 
field of view. 

IV GEOMETRIC REASONING 

The image segmentation module extracts road regions 
only based on local intensity variation without reasoning 
about the global geometric properties of the road boundary. 
There are many situations where the image segmentation 
module does not work properly. For example, different 
lighting conditions, seasonal changes, puddles on the road, 
shadows on the road, just to name a few. The development 
of more sophisticated image segmentation techniques is 
certainly important. However, in some situations, geometric 
reasoning can eliminate erroneous data based on road model 

Figure 3: segmented road image and the projection of 

the road boundaries on the ground plane. 

and shape analysis. The image segmentation results are what 
the vision system “sees.” The geometric reasoning results are 
what the vision system “perceives.” 

The road model we use for geometric reasoning can be 
described in terms of three constraints: 

3. continuity constraint - a road spans continuously 
on the ground plane, therefore, continuity between 
road boundaries exists in two images taken in 
sequence. 

1. road sides consistency constraint - each road edge 
on the left side has at least one right side road 
edge that is parallel to and overlaps (along its 

The geometric reasoning module needs to use this road 
model to 

orientation) the given edge. 

2. smoothness constraint - both the left and right 
sides of a road change direction smoothly even 
for curved road. 

l find the road left and right boundaries 

l check the road sides consistency constraint 

l check the smoothness constraint on each side of 
the road 
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l check the road continuity constraint between 
image frames 

0 return a road interpretation and its goodness 
factor. 

A. Find Road Sides --- 

Given a polygonal description of a road region contour, 
we first transform these line segments from the image 
coordinate system to the local vehicle coordinate system since 
the road model constraints are defined on the ground plane. 
This transformation is obtained by first calibrating the 
camera and assuming the road is on the’ ground plane, then 
projecting image points to the ground plane. 

To determine the left and right sides of a road, we 
first find the closest and farthest points of the road 

boundary on the ground plane. These two points divide the 
road boundary into two parts - the left and right road 
boundaries. 

B. Road Sides Consistency Constraint -- 

The corresponding edge segments on two sides of a 
road are locally parallel. This property is used to remove 
erroneous road regions included due to imperfect image 
segmentation. For each edge segment on the left side, we 
check to see if there is any right side edge segment that 
supports the road model. That is, the two segments are 
locally parallel and have the correct distance interval 
between them. If there is one, then the amount of overlap 
along their orientation and other geometric information are 
recorded in the segment support structure. This is done for 
each edge segment on the left and right sides. If an edge 
segment has sufficient support from the other side to cover 
its extent, then it is labeled as consistent. 

If both sides of the road are smooth and every edge 
segment has support from the other side, then they are used 
as the final road interpretation. However, If some edge 
segments do not have geometric support from the other side, 
then we start to trace each side of the road to find 
consecutive consistent edge segments. If there is a break 
between two sequences of consistent edge segments, a 
“perceived” edge segment is created to link the two sequences 
and the original edge segments in between are removed. The 
road sides consistency constraint is then slightly relaxed and 
applied to the newly created “perceived” edge segments to 
make sure that they agree with the road model. This 
approach has the ability of data selection before model 
fitting. Locally consistent data are selected to reach a global 
interpretation, while inconsistent data are thrown away 
before interpretation. 

This step of geometric reasoning makes the road 
following vision system capable of working with imperfect 
segmentation results. Typical cases it can handle includes 
shadows casted on the road and fuzzy road boundary. Figure 
4 shows a puddle on the right side of the road. Figure 5(a) 
shows the road boundary on the ground plane. Figure 5(b) 
shows the final road interpretation after geometric reasoning 
with the newly created “perceived” edges drawn in dashed 
lines. 
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Figure 4: segmented road image with a puddle on the right side. 

Figure 5: (a) road boundaries 

/ 
I 

(b) final road interpretation. 

before geometric reasoning, 

C. Smoothness Constraint 

Typical road boundary changes direction very smoothly. 
The geometric reasoning module checks the left and right 
road boundaries and returns a smoothness factor for each 
side. To check the smoothness constraint, the angle between 
two adjacent edge segments is calculated. If the angle is 
greater than a threshold that is a function of edge segment 
length, then the edge segments are labeled as not smooth. 
The reason to make the angle threshold vary according to 
edge segment length is to allow more tolerance for short 
edge segments. The smoothness factors of road sides are then 
calculated as a normalized measure of the smoothness factors 
of its component edge segments. 

D. Continuity Constraint 

The two constraints we discussed are applied in a 
single image frame. The continuity constraint is applied 
between adjacent image frames to enforce consistency in the 
time axis. This is useful in several ways. First, if the 
adjacent frame road boundaries are not consistent (e.g., there 
is no smooth transition between road segments), a warning is 
signaled to the road following system to slow down the 
vehicle. In this case, if both image frames have consistent 
road interpretation, the new frame road boundary is used 
because the current information is more accurate than the 
old road information. Second, continuity between frames is 
also used to evaluate the goodness of each road side in the 
current image. This makes the road following system work 
even if only one side of the road is visible. 



V ROAD JUNCTION DETECTION 

Visual navigation of autonomous vehicles on a road 
network not only needs to follow a single road, but also 
detect road junctions and turn to one of the intersecting 
roads. Recent results on road junction detection are reported 
in [51. In this approach, road junction appearance is first 
predicted based on the vehicle location and a road network 
map. Prominent road junction features are then used to guide 
the match of image features detected. In here, we only use 
a general road junction model without map prediction. 

If there is a road junction on the map and we want 
to turn to another road, the planning system will issue a 
road junction detection task to the vision system when the 
vehicle is near that region. This task command will trigger 
the road junction detection module in the vision system to 
perform additional road junction consistency constraint 

checking. On the other hand, if the vehicle wants to stay 
on the same road, the road following vision system will 
automatically treat the road junction region as erroneous data 
and try to ignore it. 

The road junction detection algorithm is very similar to 
the road sides consistency constraint technique we discussed 
in the last section. If the road junction detection module is 
not triggered, the road following system will treat junctions 
as imperfect road regions and the smoothness and road sides 
consistency constraints will remove them to form a final 
road interpretation. However, if the road junction detection 
module is triggered, instead of removing edge segments that 
do not have support from the other side, it tries to find 
support from edge segments on the same side. If it 
successfully finds supports for these edge segments, then they 
are the boundaries of the other road. In principle, this will 
work; however, in our case, road junctions usually have 
round corners and grass and trees may break the other road 
at the junction. We currently use more relaxed constraint 
that only checks if the perceived edges on both sides of the 
road support each other. Figure 6 shows a road junction 
scene. Figure 7(a) shows the road region and junction 
boundary. Figure 7(b) shows the final road interpretation and 
the perceived edges in dashed lines. In this case, edges on 
the same side of the road do not provide enough supports 
for junction detection. However, the perceived edges on two 
sides of the road support each other and is a weak evidence 
of the existence of a road junction. The road junction 
detection module and part of the geometric reasoning module 
are still in the experimental stage and is currently in the 
process of being optimized for real-time operation. 

VI PILOT SYSTEM -- 

Given a road scene description from the vision system, 
the pilot system is responsible for guiding the vehicle to 
follow the road and avoid obstacles. The pilot system used 
is a real-time reflexive pilot described in [2]. The road scene 
model contains left and right road boundaries and an 
artificial visibility limit placed at the end of the road. 
Candidate subgoals are positioned on the visibility limit line 
segment. A subgoal is found to be reachable by the vehicle 
without getting off the road if its left and right limiting 

rays bound a non-empty free-space cone. For each subgoal, a 
local path from the vehicle to the subgoal is generated in 
terms of executable vehicle commands and the subgoal that 
maximizes a predefined objective function is selected for 
execution. The pilot system currently takes approximately 
200 ms to process one road scene. Figure 8, 9, and 10 show 

a time sequence of autonomous road following action. 

VII CONCLUSIONS 

In this paper, we described the implementation of a 
real-time road following vision system for autonomous 
vehicles. We have integrated the vision, planning, and pilot 
systems with the vehicle control system and the vehicle can 
travel at 8 kilometers per hour vehicle speed on a gravel 
road. We are currently working on obstacle avoidance on 
the roadway by fusing information obtained from a color 
camera and a sonic imaging sensor. We are also 
reimplementing our road following vision system on a more 
powerful pipeline image processor to achive 20 km/hr road 

llowing. 

Figure 6: segmented road image with road junction. 

Figure 7: (a> road and junction boundaries before 

geometric reasoning (b) final road interpretation. 
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Figure 8: road-following sequence (first image). 
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