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ABSTRACT 

A hybrid (signal-symbol) approach for 
detecting significant changes in imagery uses a 
signal-based change detection algorithm followed by 
a symbol-based change interpreter. The change 
detection algorithm is based on a linear prediction 
model which uses small patches from a reference 
image to locally model the corresponding areas in a 
newly acquired image, and vice versa. Areas that 
cannot be accurately modelled because some form of 
change (signal significant) has occurred are passed 
on to the change interpreter. The change interpreter 
contains a set of “physical cause frames” which 
attempt to determine if the change is physically 
nonsignificant (e.g., due to clouds, shadowing, 
parallax effects, or partial occlusion). Changes due 
to nonsignificant changes are eliminated from 
further consideration. If the physical cause of the 
change cannot be determined, it is passed on to an 
image analyst for manual inspection. Preliminary 
results of work in progress are presented. These 
results indicate that the methodology is extremely 
effective in screening out large portions of imagery 
that do not contain significant change as well as 
cueing areas which are potentially significant. 
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1. INTRODUCTION 

The ability to detect changes between two or more 
images of the same scene is important in fields such as aerial 
reconnaissance, remote sensing, and cartography. The image 
analyst, in looking for changes between images, is confronted 
with substantial variation in image quality, perspective and 
illumination differences, and image formats covering large 
geographic expanses. The time-consuming and tedious nature 
of this process is compounded by the low rate of occurrence of 
significant changes. As a result of these factors, the change 
detection problem has received considerable attention in the 
literature. 

Previous efforts to automate change detection have 
focussed on implementations in either the signal or the 
symbolic domain. Signal change detection techniques produce 
a measure of dissimilarity between images by correlation 
techniques or image subtraction. In an early treatise, Rosenfeld 
(1961) outlined the principle steps involved in change detection 
and reviewed several measures of statistical correlation. NASA 
(1978) demonstrated the effectiveness of digital subtraction of 
Landsat multispectral imagery for monitoring land cover 
changes. Global subtraction highlights areas of change but also 

produces a large number of false alarms due to variations in 
image registration, sensor calibration, illumination and 
atmospheric conditions. In developing a pattern recognition 
system for city planners, Kawamura (197 1) computed 
statistical difference features such as correlation coefficients, 
average entropy change, and the change in probability of bright 
areas over subareas in aerial imagery. Subareas were then 
classified as either a “change of interest” or “no change of 
interest” based on these features. 

Additional studies have investigated the efficacy of 
performing change detection in the symbol domain. Price 
(1977) segmented two images into regions with similar 
characteristics (e.g., based on radiance and texture) and 
represented these regions by feature-based descriptions 
including information such as size, location, and geometric 
measures. Change detection is accomplished during a matching 
process which computes the similarity between regions of the 
two images and pairs regions which are most similar. Regions 
which do not match represent the appearance or disappearance 
of a feature. While successful, the resolution of feature-based 
symbolic matching is limited by the granularity of the 
segmentation of the images into regions. Since many spurious 
regions are generated during image segmentation, the matching 
process can be computationally expensive. As a result, 
additional criterion such as size and average radiance should be 
used to organize the regions and guide the matching process 
(Price, 1982). 

This paper outlines a hybrid change detection strategy 
which uses signal processing techniques to detect changes 
between registered images and symbolic reasoning methods to 
eliminate changes that are not physically significant. Our goal is 
to detect all local changes in the scene at the signal level and to 
filter out only those changes whose physical cause can be 
determined based on features of the changed areas. The 
proposed approach thus does not attempt to recognize and 
match objects in the two images. The advantage of this 
approach is that by using signal processing at $e initial stage, 
when there is no evidence of a change at the signal level, 
symbolic processing is not invoked. When there are few 
changes, the computational efficiency of the technique is 
similar to pure signal-based techniques; when there are many 
changes, the computational efficiency of the technique is 
similar to pure symbol-based techniques. 

The organization of the paper is as follows: Section 2 
provides a framework for formulating the change detection 
problem. A signal-symbol architecture for change detection is 
outlined in Section 3. The signal change detection algorithm is 
detailed in Section 4 and a preliminary design for the 
knowledge-based change interpreter is discussed in Section 5. 
Initial results are presented in Section 6. 
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2. BASIS FOR CHANGE DETECTION 

Ideally, an automatic change detection system should 
extract only significant changes between images. Exactly what 
is significant is often defined by the application. In the present 
application, localized man-made activities such as building 
construction and vehicle displacement, or large scale 
non-seasonal changes in surface material characteristics (e.g., 
forest-fire damage and changes in flood zone areas) are 
considered to be significant changes. Nonsignificant changes 
include atmospheric effects such as the presence of clouds or 
haze, and seasonal changes which affect vegetation and surface 
characteristics. In addition, nonsignificant changes may be 
induced by comparing images acquired at different times and 
perspective, and images which differ in contrast, resolution and 
noise level. 

In order to develop a consistent framework for change 
detection, changes are modelled at three distinct levels: signal, 
physical, and semantic. In previous work in multi-band image 
processing (Tom, 1985), it was observed that images of the 
same scene acquired at different wavelengths (possibly by 
different sensors) at the same time tend to be locally correlated 
at the signal level. That is, even though images sensed at 
different wavelengths may be globally uncorrelated, local 
structure (e.g., due to changes in albedo) tends to be highly 
correlated across wavelength, In previous applications this 
local correlation property has been exploited to use higher 
resolution/lower noise imagery to spatially enhance lower 
resolution/higher noise imagery. In applying the above 
technique to change detection, wavelength is replaced by time. 
The basic assumption then is that small patches in registered 
images acquired at different times tend to be locally correlated if 
the underlying scene has not changed. 

The detection of changes in imagery at the signal level 
is the first step in the change detection process. The second 
step is determining whether the changes detected at the signal 
level are physically significant (i.e., determining their physical 
cause). Changes attributed to nonsignificant physical effects 
such as differences in atmospheric conditions, perspective and 
illumination differences, and seasonal changes are eliminated. 
The third step is determining whether the remaining changes 
are significant in a semantic sense given a context for 

n 

interpretation. For example, if the goal is to detect large areas 
of change due to forest fire damage, small isolated areas may 
be ignored. The overall process generates hypotheses that areas 
have changed using signal-based models in a bottom-up 
fashion, and tests the hypotheses top-down based on heuristic 
models of physical cause and semantic relevance. 

3. CHANGE DETECTION SYSTEM 
ARCHITECTURE 

A hybrid (signal-symbol) architecture for automatic 
image change detection is shown below in Fig. 1. Its primary 
function is to screen out imagery which does not contain 
significant change. The architecture is structured as a cascade 
of a signal-based change detector and a symbol-based change 
interpreter. At each level of processing, the amount of image 
data that needs to be processed is reduced. 

The change detector uses a locally adaptive image 
subtraction technique to detect and localize areas of change in 
an input image relative to one or more (spatially preregistered) 
reference images. Following adaptive subtraction, prediction 
error images are filtcrcd and combined to produce change cues. 
The output of the signal change detector is a map of cues 
indicating signal significant changes. For each change cue, 
descriptive processes build a symbolic representation of the 
changed area in terms of features derived from the original 
imagery. The change interpreter applies rules in a 
hypothesis-driven fashion to the change-tokens, determining 
the physical cause and semantic relevance of the change. 
Nonsignificant changes are eliminated, and the remainder are 
displayed to the image analyst. Currently, the change detection 
software is implemented on a VAX 780/FPS array processor 
system, and the change interpreter is implemented in Zetalisp 
on a Symbolics Lisp machine. Future versions of the system 
may factor collateral data (terrain data and maps) into the 
change detection process. 

4. SIGNAL-BASED CHANGE DETECTION 
ALGORITHM 

The change detection process is an outgrowth of a 
detection technique based on two-dimensional (2-D) linear 
prediction by Quatieri (1983). His technique demonstrated that 
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image backgrounds of grass, fields, or trees (natural textures) 
in aerial photographs could be viewed as sample functions of a 
2-D nonstationary random field and could be modeled by 2-D 
linear models. Manmade objects, whose statistics are generally 
unknown (since it is desired to detect a broad class of objects), 
are not modeled well by the linear approach and exhibit large 
modeling errors. Quatieri’s major contribution was the notion 
of using these linear prediction error residuals to derive a 
significance test for detection exhibiting a constant false alarm 
rate (CFAR detector). In addition to the detection of manmade 
objects, however, detection of natural boundaries also 
occurred. The approach in this paper overcomes that problem 
by using a multi-band approach, i.e., one in which a reference 
image is used to locally model a newly acquired image. 

The 2-D linear prediction approach involves solving 
for the optimal set of prediction coefficients that model a patch 
of a new image from a patch of a reference image using a 
noncausal mask. This procedure is recomputed for all patches 
of imagery (i.e. for a patch centered on each pixel location). In 
order to simplify computations, an approximation to the 2-D 
linear prediction method was implemented. The simplified 
method is appropriately termed the adaptive subtraction 
method. For a local patch of imagery, scale and offset 
coefficients are computed to optimally predict (in the minimum 
squared error sense) the new image from the reference and vice 
versa. The new image is predicted from the reference image 
(forward prediction), and the reference image is predicted from 
the new image (backward prediction). 

The prediction error is the difference between the 
estimate and the image patch that is being estimated at the center 
of the prediction mask 

~fowu&m) = inew - inew 

= inew(n,m> - 1 a(n,m> &ef(n,m> + Wv-4 1 

!Gbackw~d(n,m) = iref(nP> - &-ef(n,m> 

= iref(n,m) - [ c(n,m> inew(n,m> + Wm) 1 

where the scale and offset coefficients a,b,c and d are 
continually computed by solving sets of overdetermined 
equations (Tom, 1985). 

Objects which appear or disappear in the imagery are 
evidenced by corresponding signatures in the forward or 
backward error images respectively. Objects which appear in 
the newly acquired image cannot be modeled by the reference 
and thus give rise to a large forward prediction error. (The 
backward prediction error is small since the absence of the 
object in the reference can be modeled in the newly acquired 
image by lowering the gain c and adjusting the offset d.) Where 
objects disappear in the newly acquired image, the situation is 
reversed. Objects that are spatially displaced are characterized 
by comparable signatures in both error images. 

In the process flow of the the signal-based change 
detection module (Fig. l), the new image is first registered to 
the reference image by an automatic registration technique. The 
images are first coarsely registered given the camera position, 
and then locked together using a statistically based technique 
for generating control points automatically. Next, the adaptive 
subtraction module generates the forward and backward 
prediction error images. These error images are thresholded for 
significant detections at a given CFAR level, combined to 
cancel complementary errors due to minor displacements, and 
then filtered to remove isolated noise peaks. The output from 
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the signal change detector is a bit map which delimits the extent 
of areas which have undergone some form of signal level 
change (significant or not) as well as the corresponding 
registered imagery patches. 

5. CHANGE INTERPRETATION 

The output from the signal-based change detector is a 
map of change cues where each cue represents an assertion that 
something has changed over the corresponding area in the 
image pair. The goal of change interpretation is to reduce the 
number of detected changes that must be ultimately examined 
by the image analysis. Our approach is to eliminate those 
changes that are not significant based on physical causes or 
semantic relevance. The preliminary implementation of the 
change interpreter focusses on identifying three types of 
nonsignificant changes common to many aerial scenes: 
shadows, clouds, and partial occlusion of existing objects. 
Experience with different geographic scenarios indicates that a 
large majority of nonsignificant changes result from these 
phenomena. 

Before the change cues can be interpreted, they must 
be converted into symbolic form. The first step in generating 
the symbolic description is to label connected areas in the map 
of change cues provided by the signal change detector. For 
each connected area, a change-token is created. Change-tokens 
contain slots for descriptive information (i.e., for features of 
the changed area) such as the size, shape, location, orientation 
and spatial context of the changed area, as well as information 
derived from the input and reference image (e.g., image 
radiance statistics and local correlation structure). 

The change interpreter (Fig. 2) contains a set of 
“physical cause frames” for clouds, shadows, and partially 
occluded objects. Descriptive information is computed on an 
“as needed basis” as individual physical cause frames are 
triggered during the interpretation process. Each physical cause 
(cloud, shadow, partial or total occlusion) activates descriptors 
which extract features from the imagery in and around the 
corresponding change cue. Descriptors are applied in a 
hierarchical fashion based on the cost of computation and the 
degree of evidence they provide in determining a physical 
cause. The control strategy is designed to minimize the amount 
computation needed to prove that a change is not significant. 
Coarse level information is initially computed for all 
change-tokens. Change-tokens generate physical cause 
hypotheses which then attempt to verify that they are the cause 
of the change. If there is insufficient evidence to conclude the 
cause of a detected change, finer level descriptive processes are 
dispatched. If the cause of the change cannot be determined, it 
is brought to the attention of the image analyst. 

As an example, the interpretation process begins by 
computing simple feature descriptions of the change-token 
(area and radiance statistics) and generating hypotheses that the 
change is due to shadow or cloud. If collateral information is 
available, the possibility of a shadow is eliminated entirely if 
the sun-angle is the same in both images, Otherwise, the 
shadow hypothesis records a high confidence level if the 
change-token has a low average radiance measurement over a 
small area, with little variation in the spectral variance. The 
cloud hypothesis is eliminated if available collateral data 
indicates that the image conditions were cloud-free; otherwise, 
the cloud ruleset operates on the radiance statistics. The cloud 
hypothesis is verified by a relatively high radiance measure 
covering a substantial area. If there is high confidence that the 
change is cloud or shadow, the change-token is eliminated 
from further consideration. 



The cloud hypothesis should be either proved or 
eliminated within the first cycle of description/verification. If 
weak evidence exists for shadow, secondary features are 
derived to verify that the change is the result of shadow or 
partial occlusion. The majority of change cues resulting from 
shadows mirrored about an object or minor shadow variation 
and parallax differences are eliminated by locally averaging the 
difference of the prediction error residuals as described in the 
next section. The remaining shadow changes occur in only one 
image. Shadow confirmation may be obtained by using 
measurements such as correlations between areas on opposite 
sides of the shadow edge (Witkin, 1982), or by examining the 
shadow-making regions which have long boundaries in 
common with the shadow and are oriented at the appropriate 
sun angle (Nagao, 1980). 

Because of differences in the look-angle of sensors, 
roads or buildings which are visible in one image may be 
occluded in the other image. The possibility of occlusion is 
explored if there is a change in camera position between 
acquisitions. If so, it is then necessary to decide if the 
occlusion is due to a significant object. As noted in Section 3, 
man-made objects are not modelled well by the linear approach 
and thus give rise to large modelling errors. Two types of 
changes occur; a man-made object occluded by a natural object, 
and a man-made object occluded by man-made objects. The 
former change is insignificant and is being examined because it 
frequently occurs as a result of natural object overlay, e.g., a 
tree obscuring one side of the road. In this case, partial 
occlusion can be identified by linear edges or regions which 
once extended in the changed image are similar to edges 
contained in the unchanged image. 

As it is currently being developed, change 
interpretation must handle a variety of scenes from different 
geographic areas. Efforts are being made to structure the 
physical cause ruleset so that it is robust across all scenes. 
Senario-specific rulesets are being developed for semantic level 
interpretation since the relevance of a change depends on what 
one is looking for in the imagery. 

6. EXAMPLES 

For the following two examples, aerial photographs 
were acquired from USGS and digitized using a CCD camera. 
The images are cloud-free, and were acquired at about the same 
time of day. The pair of images in Fig. 3 are of a scene in 
which a building not present in the reference image (a) appears 
in the newly acquired image (b). The images differ both in 
perspective and in the amount of haze present (which is 
simulated). The images are registered so that features on the 
ground are spatially aligned. The pair of images in Fig. 5 show 
the prediction error obtained by predicting the image in Fig. 3a 
from that in Fig. 3b (5a), and the prediction error obtained in 
predicting the image in Fig. 3b from that in Fig. 3a (5b). (A 
7x7 sliding window was used.) It is evident that prediction 
errors occur in the vicinity of the building which appeared in 
Fig. 3b as well as around buildings and other vertical structures 
due to parallax effects. To mitigate the effects of parallax, 
differences in illumination, as well as other effects due to minor 
misregistration and noise, the prediction error images are 
locally averaged. For parallax effects, the assumption is that the 
residual errors caused by vertical features will cancel within 
windows that are large compared to the feature of interest. The 
result of averaging the prediction error within a 33x33 
Gaussian tapered window (Fig. 4) shows that the parallax 
effects do in fact cancel in areas that did not change; however, a 
net prediction error residual is evident in the vicinity of the 
building that appeared in the new image. 

The second example in Fig. 6 is of another scene in 
which a vehicle in (a) is missing in (b) and a building in (b) is 
missing in (a). By examining the sign of the prediction error 
one can identify objects that either appear or disappear between 
images. Fig. 7a shows an area of negative error caused by the 
disappearance of the vehicle in Fig. 6b. Fig. 7b shows an area 
of positive error due caused by the appearance of the building 
in Fig. 6b. 

Figure 2 
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7. SUMMARY 

A hybrid approach to detecting changes in imagery 
was described. It consists of a signal-based change detection 
algorithm which identifies all areas which have changed at the 
signal level (significant or not), and a symbol-based change 
interpreter which eliminates those areas caused by changes that 
are not physically significant or semantically relevant. 
Preliminary results of the signal change detection algorithm, 
and a discussion of the design of the change interpreter were 
presented. Preliminary results indicate that the methodology is 
extremely effective in screening out large portions of imagery 
which do not contain significant change. On-going work 
focusses on expanding the rulebases within the change 
interpreter which reason about the physical cause and semantic 
relevance of the detected changes. 
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