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Abstract 

Concurrent Common LISPTM (CCLISP) is the LISP 
environment for the iPSCm system, the Intel Personal 
SuperComputer. CCLISP adds message-passing 
communication and other constructs to the Common LISP 
environment on each processor node. The iPSC system is 
configured with Intel 80286 processor nodes, in systems 
ranging from 8 to 128 nodes. Performance on a per node basis 
roughly equivalent to AI workstation LISP performance is 
discussed, as are the implementation details of the CCLISP 
language constructs. 

Concurrent Common LISP (CCLISP) is a LISP environment 
extended for concurrency for the Intel Personal SuperComputer 
(iPSC) System. This software environment enables the 
researcher to implement concurrent symbolic programs on the 
iPSC System in a familiar language: Common LISP. The 
iPSC System is based on the hyperc&~ interconnect topology 
pioneered by architects at California Institute of Technology 
[Seitz, 851. The CCLISP environment is LISP listners at each 
processing node, communicating with each other via message 
St?WW?lS. 

The iPSC System, first available in 1985, utilizes VLSI 
technology in each of the processing nodes. Processing nodes 
consist of an Intel 80286 processor, 512 Kbytes random access 
main memory, and ethernet-based communication processors. 
Processing nodes are packaged in a standalone cabinet, along 
with optional memory expansion cards and vector processing 
cards. Additional memory enables 4.5 Mbytes of memory per 
node, and vector processing nodes offer better than 6 MPLOPS 
numeric performance per node. An Intermediate Host, 
currently a 286-based multiuser UNIX-based system, serves as 
network gateway, system administration console, and disk file 
system. 

The availability of a concurrent LISP for a concurrent 
computer is attractive because existing artificial intelligence 
tools and applications may be ported from conventional 
computers and workstations. Several applications have already 
been moved to CCLISP, demonstrating substantial speedup by 
the use of many processors executing concurrently. 

The speedup demonstrated by these first applications 
provides the motivation for using concurrent computers for 
symbolic problems. Many symbolic problems are too large for 
currently available uniprocessor computers to solve in a 
reasonable time, or at all [Stolfo et al. 831, @Iillyer and Shaw, 
861. Computers such as the iPSC system are used to develop 
algorithms, which in turn will be used to implement 
applications on future very large scale concurrent computers. 
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Gold Hill Computers 

Cambridge, Massachusetts, 02139 USA 

1.1 Architecture 

The Intel concurrent computer is based upon a 
message-passing architecture. Asynchronous processor nodes 
execute their own programs, sharing data by passing 
messages. Although several alternative architectures provide 
ways of sharing data between processes, most are 
disadvantaged as the collection of processing nodes increases 
to hundreds or thousands of nodes. Since future delivery 
systems are planned to utilize such large numbers of nodes, the 
architecture of the iPSC system easily accommodates 
thousands of nodes. 

Message passing avoids shared memory architectural 
solutions, which require expensive and complex data buses or 
switches for large numbers of nodes &ee, 851, (Pfister, SS]. 
Data is exchanged between processors not by accessing 
common memory, with semaphores or monitors for 
synchronization, but by requesting and sending data objects 
among the processors via messages. The architecture was 
attractive because of the low component cost, and also because 
the system scales to large sizes. The message-passing 
architecture is also attractive because it translates relatively 
easily into language semantics and software protocols. Parallel 
architectures were built upon the pretext of message-passing, 
such as ACTORS from MIT, even before such architectures 
existed in hardware. ACTOR languages have been 
implemented on top of workstations, maintaining message 
passing [Agha and Hewitt, 851. (The MIT Artificial 
Intelligence Lab is in progress bringing ACTORS to the iPSC 
system). 

2. Constructs 

Each processing node has a complete and separate Common 
LISP environment, with interpreter, editor, compiler, and 
debugging facilities. The programmer can open a window to 
any Concurrent Common LISP environment, on any node, 
from a workstation. Pile access is provided from each node 
CCLISP environment to connected workstations and to the 
system manager. Currently, the programmer edits and 
prototypes LISP code on the workstation, and then moves the 
source code down to a CCLISP node on the cube for testing, 
debugging, and compilation. Both compiled and interpreted 
code may be moved to other nodes as desired. 

2.1 

As with other languages for the iPSC system (C and 
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FORTRAN), the hypercube network is not directly visible to 
the programmer. Instead, the system provides a completely 
connected graph of processors. Resident on each processor 
node is a lightweight operating system, called Nx (Node 
executive) with two kinds of services: multitasking and 
message communications. Multiple UNIX-like processes may 
execute, passing messages between themselves and processes 
on other nodes. Communication services appear to the 
programmer a$ system calls such as recv, send, recvw, and 
sendw . The programmer is ‘responsible for assembling 
messages in local memory, and specifying the message buffer, 
buffer size, type of message, and target processor id when 
calling the system service. In CCLISP, rather than the original 
C, the message is somewhat simpler; an example of a message 
would be: 

(defstruct node-message 
connection ; fixnum, NX channel id 
host-addr : fixnum, src/dest node 
correspondent-id ; fixnum, process on host-addr 
tw= ; fixnum, (always 0 for now) 
buffer ; simple-vector with fill ptr 

Host-add?-, correspondent-id, and buffer are filled with 
information during the receipt of a message, with host-addr 
indicating the source node of the message; correspondent-id 
indicating the name of the sender of the message; and buffer 
filled with the incoming information. 
follows: 

An example of a receive 

(sYs:recv node-message) 

The. buffer is a simple LISP array, containing either 
fixnum or chars. Messages passed at this level are compatible 
with C and FORTRAN processes, and their message-passing 
routines, so this is a method of implementing so-called hybrid 
applications. These are applications with mixed processor 
nodes: LISP on extended memory nodes, C on standard nodes, 
and FORTRAN on vector processing nodes. For instance, 
LISP applications with graphical output have been implemented 
by passing messages to C processes outside the iPSC system 
on connected workstations, utilizing the existing C graphic 
libraries on those workstations [Brandenburg, 861. 

2.2 Node Streams 

Above the transport-level message passing services, each node 
has the ability to communicate with any of the other nodes 
through a facility called node streams. Node streams are 
similar to Common LISP I/O streams. A stream can be 
established between any two LISP processes whether on the 
same node, different nodes, or on the remotely connected AI 
workstations. A wide array of LISP functions enable the 
programmer to send small or large packets of data to other 
processes, over a node stream (See Table 1). Since node 
streams are similar to I/O streams, many Common LISP 
functions operate on both I./O streams and node streams. 

(let (stream (make-node-stream 0 :a-test 
:direction :io)) 

(print 'hello-world stream) 
(finish-output stream) 
(close stream)) 

This code establishes a stream from the node where the 
code is executed to the node specified as a parameter, node 0. 
Nodes on the iPSC are numbered from 0. As many as 64 

nodes can be loaded with LISP. The parameter :a-test is the 
name of the established stream; and :direction specifies the 
nature of the movement: input, output, or input/output. The 
name of the stream can be specified by the companion 
make-node-stream function on the opposing node, and the 
names are checked for equality. In this example a string is 
printed on node 0. 

The node message stream is a powerful construct because 
of the similarity with I/O streams of Common LISP. Although 
it is premature for standards in concurrent languages, it is 
encouraging that such a concurrent construct could be added to 
the language, while approximating existing constructs such as 
I/O streams. 

The CCLISP node stream is also notable because it is the 
first higher-level abstraction for communication on the iPSC 
system. Previous implementations for assembler, C, and 
FORTRAN languages exclusively utilized libraries of 
communication services, providing transport-level functions. 
Each of these calls required parameters containing not only 
node number and message, but message buffer length, 
processor id, and message type. Sufficient for the style of 
scientific 

:read-char.. .............. 

:read-line ................. 
:unread-char.. ........... 

:read-char-no-hang ...... 

peek ...................... 

:listen.. ................... 

:fill-array.. ............... 

:write-char.. ............. 
write-line.. .............. 
:dump-array.. ............ 

:finish-output.. .......... 

:flush-output.. ........... 

:clear-output.. ........... 

:name.. ................... 
:host.. .................... 

:element-type.. .......... 
:close.. ................... 
:direction.. ............... 

:messages-sent.. ........ 

:messages-received ..... 

:which-operations.. ..... 

Inputs next character from 
stream, waits if none 
Inputs next line, as delimited 
Places character back onto the 
front of the stream 
Inputs next character from the 
Sm 
Inputs next character without 
removing it 
Returns t if a character is 
available 
Places next n characters available 
into array 
Outputs character into stream 
Outputs string to the stream 
Outputs the contents of array to 
the stream 
Attempts to insure that all output 
is complete 
Initiates the send of all internally 
buffered data 
Aborts outstanding output 
operations in progress 
Returns the name of stream 
Returns the name of the node to 
which COMCCtCd 
Returns the type of the stream 
Closes the stream 
Returns the direction of the 
Stream 
Returns the number of messages 
sent 
Returns the number of messages 
received 
Returns list of operations 
supported by the stream 

:close-all-node-streams. Closes all of the streams 

Table 1: The functions available for 
use with node streams. 
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programming in C and FORTRAN, the message stream 
construct offers a level of abstraction in communication not 
previously seen on the iPSC system. Further, the message 
streams are used to communicate with processes not within the 
hypercube concurrent computer, such as LISP environments 
on network connected AI workstations. 

F’ASE streams are a special version of node streams allowing 
the transfer of CCLISP objects between nodes. This 
communication is speedier than regular node streams, at some 
sacrifice of functionality -- the functions supplied are 
enumerated in Table 2. The intent is to supply the programmer 
with a construct to move larger structures and compiled objects 
more rapidly. Compiled objects cannot be moved on regular 
node streams; all of the formats and protocols compatible with 
the CCLISP compiler may be moved by Pas1 stream. In this 
example, the Pas1 stream is used to move a compiled object: 

(let (f&ream (open-fasl-node-stream 0 :fasl-test 
:direction)) 

(dump-object myfun fstream) 
(close fstream)) 

The ability to move compiled 
developing load balancing schemes 
movement. 

peek . . . . . . . . . . . . . . . . . . . . . . 

:listen.. ................... 
:read-object.. ............ 
:dump-object.. ........... 

:dump-fasl-operator... . . 

:close ..................... 
:host.. .................... 

:name. . . . . . . . . . . . . . . . . . . . . 

:which-operations...... 

objects will be key to 
, dependent upon code 

Inputs next byte without 
removing it from stream 
Returns t if byte available 
Returns next object available 
Outputs the specified object to the 

biis the specified 
fasl-operator to the stream 
Closes the stream 
Returns the node number to 
which it is connected 
Returns the name used when 
stream made 
Returns a list of the operations 
supported 

Table 2: The functions operating on FAST stream. 

2.4 emote Evaluation 

In addition to message streams, there is a powerful construct 
called remote evaluation. Remote evaluation offers the 
programmer a way to pass a Common LISP expression from 
one LISP environment to another LISP environment for 
evaluation. The programmer specifies a Common LISP form, 
and a target node number, and chooses either a synchronous or 
asynchronous remote evaluation of the form. The effect of the 
remote evaluation is to interrupt the target node (or connected 
AI workstation) and cause a read-eval-print loop to execute on 
the passed form. 

In the case of synchronous execution, called 
evel-remotely, the sending process blocks and waits for the 
results of the evaluation before contmuing to execute it’s own 
program code. Consider the example of a simulation 

application: the basic “cause and effect” paradigm may be 
divided across processor nodes easily. 

(if (cause) 
(eval-remote ly 3 ' (effect #myparameter))) 

Here, a cause results in an effect on a different node, node 
3 in this case. There is no user code on the target node needed 
to “listen” for an activate request. Mowever, the programmer 
must remember that the LISP form will be executed in the 
target environment, and there is no automatic provision for 
maintaining synchronous environments. 

In the case of asynchronous execution, the sending 
process does not block and wait, but continues execution of its 
own code, while the specified destination process evaluates the 
passed expression. If the sending process needs the return 
value, the target node can use a message node-stream, or 
remote evaluate the value back to the original sending process. 
This simple-eval-remotely is the more commonly used 
construct, since it follows the paradigm of asynchronous 
processing, necessary for maximum utilization of a concurrent 
computer: processors do not stand idle dependent upon other 
processors. 

(dotimes (node max-node) 
(simple-eval-remotely t1+ node) ' (myfunction))) 

In this example, the previously specified function 
myfunction is executed on each of the processor nodes in the 
system, in a serial manner. Since no value is returned, 
simple-eval-remotely is utilized for the side-effects it causes in 
the target node. 

Interrupts from multiple simple-eval-remotely calls at the 
same target node can undesirably disrupt the execution of code, 
so an evaluation construct without-interrupts is available to turn 
interrupts off. Used carefully, for short periods of time, this 
allows multiple sources of interrupts to occur within one 
environment. For instance, the P and V primitives of 
semaphores could be implemented @3ijkstra, 681. 

Also, a broadcast of remote evaluations is offered by the 
construct do-on-all-nodes. 
previous example: 

This macro replaces the code in the 

(dotimes (node max-node) 
(simple-eval .-remotely 

to 

(l+ node) n (myfunction))) 

(do-on-all-nodes '(myfunction)) 

Do-on-all-nodes follows a ring architecture on the iPSC 
system, an artifact of the system scheme for numbering nodes. 
A spanning tree algorithm could also be utilized by the user to 
broadcast to every node in the system in Log N iterations of 
remote evaluation [Brandenburg and Scott, 861. A common 
use of do-on-all-nodes is the need to load the same CCLISP 
executable program on each node of the system, in order to 
solve a large concurrent problem: 

(do-on-all-nodes ' (load "my-file"') 1 

Both forms of remote evaluation can be used to pass 
Common LISP forms outside the iPSC system to connected 
(and supported) AI workstations. This construct enables the 
iPSC system to be used as an remote evaluation server in a 
network of AI workstations -- an attractive scenario because a 



current LISP application would remain on the workstation, 
particularly user interface portions, and the compute intensive 
portions of the application would be moved to the iPSC 
system. Tasks would be assigned from the workstation or 
multiple workstations to the iPSC system via remote 
evaluation. While in development, the entire application could 
be prototyped on the workstation, separately from iPSC code 
development, and then later linked with the insertion of the 
remote evaluation function call. 

3 Development Environment 

The intent of the development enviroment is to offer the user 
flexibility: choosing dynamically during the development cycle 
between a familiar, connected workstation and the concurrent 
LISP environment. 

The model of user interaction with CCLISP consists of 
three parts: virtual terminals, keyboards, and file I/O. Every 
CCLISP node is connected to a virtual terminal, and the user 
can switch the physical terminal dynamically from window to 
window. The user attaches the physical keyboard to one of the 
virtual terminals, and may also switch that connection 
dynamically. The intent is to give the programmer instant 
access to any node of the iPSC system, and while independent 
processes execute on various nodes, virtual terminals remain 
connected in order to capture any output sent to the screen. 
The virtual terminal and keyboard user interface may be 
connected to a variety of physical devices, including connected 
AI workstations. 

Each CCLISP node environment is also connected, via 
Common LISP I/O streams, to disk file services on the 
Intermediate Host, as well as connected AI workstations. All 
of the Common LISP I/O stream functions are available. Some 
support for the specific file system on the Intermediate Host (a 
UNIX file system), such as cd (change directory), is available 
from CCLISP. Other support for the Intermediate Host also 
exists, such as a single key escape to the operating system 

4 Implementation 

The. original CCLISP software was based upon Gold Hill 
Computer’s 286 personal computer LISP product, GCLISP 
286 DeveloperTM. Offering a subset of full Common LISP, 
this interpreter with compiler provided strong performance 
from the original iPSC 286 node processor. The GCLISP 
environment is a subset of full Common LISP, with mark and 
sweep garbage collection, reasonable performance, and a large 
installed user base. The message-passing constructs already 
available in the iPSC node operating system were interfaced to 
CCLISP, and node streams and remote evaluation were built 
on the message-passing. 

The CCLISP environment on each node, including the 
compiler, uses about 1.7 Mhytes of the 4.5 Mbytes available 
on the node. The user may elect to not load the compiler on 
every node of the iPSC, thus preserving an extra 0.6 Mbyte of 
memory for the user’s own code and data. 

The CCLISP node streams were added to LISP by 
exploiting the transport-level services already provided by the 
node processor operating system. The FASL Stream 
implementation was based on work at Carnegie Mellon for fast 
file formats in SPICE LISP. Briefly, at each end of the stream 
a simple stack machine is established. Byte operators are 

transmitted from the emitting end, along with data, and then 
interpreted at the receiving end and assembled into objects. 
The implementation code is available to users of the CCLISP 
system. 

Remote evaluation was then implemented with FASL 
streams, and by an eval server, resident on each node LISP 
environment (as well as on connected AI workstations). The 
servers allow for the asynchronous handling of remote 
evaluation requests in the target environment. The evaluation 
of the requested form occurs in the current stack group, and 
environment, of the target node. Care must be taken to insure 
that node-specific CCLISP environments are maintained in a 
consistent manner. This includes package considerations as 
well as stack-group management. 

Support for AI workstations for the user interface, file i/o 
services, and remote evaluation required compatible lower level 
services, such as TCP/IP ethernet connections. Special eval 
servers for each of these workstation environments, along with 
file servers and user interface connections, were developed. 
Each follows, or will follow, a public protocol for such 
support jointly developed by Intel, Gold Hill, and early users 
of the CCLISP/iPSC system [Intel, 871. 

5 erformance 

Concurrent computers demand at least two steps to measuring 
performance: first, processor node performance, and then 
applications demonstrating aggregate performance, the effect of 
all of the processing nodes. And, because benchmarks do not 
always consume the dynamic memory required of real-life 
applications, the total memory available per node is an 
important secondary component. 

Performance of sequential LISP is popularly compared by 
use of Gabriel’s LISP Benchmarks [Gabriel, 851. Using a 
simple average of (most of) the Gabriel Benchmarks, the 
performance of the original CCLISP on a single node is almost 
equivalent to a low-end AI workstation, such as the Xerox 
1108 Dandelion, as illustrated in the chart below. 

CCLlSP on 
a single Xerox 

Gabriel iPSC node 1108 Symbolice 
Benchmarks (cornoiled) Dandelion 3600 

‘A9 1 -74.60 1 11.89 I 

Measuring the aggregate performance of a concurrent 
computer is more difficult. Primarily the problem is one of 
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size: large computers requite large problems, especially in light 
of constant overhead. Only three of the Gabriel benchmarks 
entice the effort of parallelization. The longest running Gabriel 
Benchmark is the Triangle game, which consumes 14.44 
seconds of cpu time on a CBAY-XMP, and 15 1.7 seconds on 
a Symbolics 3600. Gn a 16 node iPSC system, the benchmark 
is completed in 69.8 seconds, demonstrating 14.8 speedup for 
16 processors. The benchmark completes in 37.5 seconds, for 
27.6 speedup on a 32 node processor system. Perhaps more 
interesting than numerical results from recent timings of 
simple, small benchmarks are the approaches used to 
“parallelize” these benchmarks. The following sections each 
describe the changes made to run the simple benchmarks 
concurrently. 

The benchmark finds all solutions to the “triangle game.” The 
game consists of a triangular board with fifteen holes; a peg is 
placed in every hole except the middle. The player makes a 
move by jumping over a peg into a vacant hole and removing 
the jumped peg, as in checkers. The object of the game is to 
remove all of the pegs but one,. There are many possible 
sequences of moves, but only 1,550 sequences result in a 
single remaining peg. The Gabriel version of the algorithm 
finds 775 solutions; the other 775 solutions are symetrically 
identical (only one of the two initial moves is taken by the 
original benchmark algorithm). 

The general problem is represented as a tree of possible 
moves; each node of the tree represents a decision about the 
next possible move. The problem heap technique 
[Moller-Nielsen and Straunstrup, 85],[Brandenburg, 861 was 
used as the basic distribution algorithm. This method uses a 
single node as a manager; the manager assigns each of the other 
nodes subgraphs from the search tree. The manager node 
solves the tree to the fourth level of 120 leaves. It then 
distributes each of the 120 subgraphs to the remaining ftiteen 
worker nodes, assigning a subgraph to each worker node as 
the worker node becomes available from solving a subgraph. 

Bach node solves the subgraph using the traditional 
sequential algorithm, and then reports back to the manager the 
results, and requests another subgraph. The manager 
continues to distribute subgraphs and receive results until 
results for all subgraphs have been received from worker 
nodes. This exhaustive search incurs little overhead from 
communication between nodes, since nodes only communicate 
when they have completed computing each of 120 tasks. The 
algorithm is also attractive because it retains the basic search 
algorithm of the original benchmark, and thus minimizes the 
programming effort to implement the concurrent version. 

Triangle 
Gabriel 
Benchmark 

v (seconds) 

Speedup 

The Browse benchmark is a simple database search, similar to 
many AI matching problems. The database itself is an artificial 
representation of a real LISP database, consisting of very small 
objects. To convert the problem to a concurrent computer> the 
simple approach of dividing the database into 16 portions was 
used. Each CCLISP node carries a duplicate copy of the 
benchmark code, and its’ own l/l6 portion of the database. 
There is no communication between processes, because the 
iterative nature of the benchmark requires none. And the 
results, compared with single node performance on the same 
problem, indicate superlinear speedup. This extra efficient use 
of 16 processors is not due to the architecture of the system, or 
even the problem, but the decreased load on the processor for 
garbage collection and other system resources in the LISP. As 
the data objects were reduced in volume to l/16 the original 
size, system resource overhead was reduced accordingly. 

Browse 
Gabriel 
Benchmark 

B (seconds) 

Speedup 
We-load T 

Speedup 

The Browse results clearly illustrate the difficulty of 
measuring symbolic computational performance on a large 
concurrent computer with small problems: the speedup for 32 
nodes is 26.5, and for 16 nodes is 26.6. This lack of 
improvement with additional computational resources is due to 
the dominant factor of file access. This can be illustrated even 
further by a simple tuning of the code. By pre-loading the 
basic functions required in the benchmark -- lowering the 
non-computational overhead -- speedup can be improved to 76 
for 32 nodes, and 42.6 for 16 nodes. 

The Puzzle benchmark was not successful demonstrating 
substantial speedup; the parallel version (with 16 processing 
nodes) found the solution only twice as fast as the sequential 
version. This is due to Puzzle seeking only one sohH.i~n in the 
search tree, rather than all of the SQ~U~~QIIS -- as Triangle 
requires. When only one solution is sought, the decomposition 
of the problem into segments for each node of a concurrent 
computer becomes much more difficult. Depending upon 
where in the search tree the single solution may be found, the 
relative efficiency of a depth-fmt or breadth-first search varies 
greatly. In the case of the Puzzle benchmark, the solution was 
found among the first branches of the tree, down nine levels. 
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Single solution search tree algorithms 
remains an important research issue. 

for ’ concurrent computers 

The constructs of CCLISP were designed to allow relatively 
easy conversion of sequential LISP applications to a concurrent 
computer. As well as being conceptually simple but powerful, 
the constraints are sufficient to have allowed, in most cases, the 
first versions of applications to limp along in parallel within a 
week of starting the conversion. Indeed, since CCLISP has 
been in customer’s hands, two software environments have 
been developed [Gasser et al., 861, [Gasser and Braganza, $71, 
[Blanks, 861, others are on the way, and demonstration 
applications have been shown [Brandenburg, 861, [Intel, 861, 
[Gasser et al., 87a], [Gasser et al., 87b], fleung, 861. All of 
the work thus far was converted from AI workstations such as 
the TI Explorerm and the Symbolics 3600TM. A handful of 
concurrent applications, including a community of expert 
systems, were running within a few months. 

The performance of the iPSC system with CCLISP is 
wholly dependent upon algorithm choice and programmer 
effort, but the initial indications are very encouraging, with 
speedups of 14.8 for 16 processor systems on common 
symbolic processing problems of search. Node performance 
of CCLISP is respectable, almost equivalent to AI workstations 
such as the XERQX 1108 Dandelion. 

The iPSC System with CCLISP has been available since 
September, 1986. 
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