
CCLISPm on the IPSC” Concurrent Computer

David Billstrom and Joseph Brandenburg
Intel Scientific Computers

Beaverton, Oregon, 97006 USA

Abstract

Concurrent Common LISPTM (CCLISP) is the LISP
environment for the iPSCm system, the Intel Personal
SuperComputer. CCLISP adds message-passing
communication and other constructs to the Common LISP
environment on each processor node. The iPSC system is
configured with Intel 80286 processor nodes, in systems
ranging from 8 to 128 nodes. Performance on a per node basis
roughly equivalent to AI workstation LISP performance is
discussed, as are the implementation details of the CCLISP
language constructs.

Concurrent Common LISP (CCLISP) is a LISP environment
extended for concurrency for the Intel Personal SuperComputer
(iPSC) System. This software environment enables the
researcher to implement concurrent symbolic programs on the
iPSC System in a familiar language: Common LISP. The
iPSC System is based on the hyperc&~ interconnect topology
pioneered by architects at California Institute of Technology
[Seitz, 851. The CCLISP environment is LISP listners at each
processing node, communicating with each other via message
St?WW?lS.

The iPSC System, first available in 1985, utilizes VLSI
technology in each of the processing nodes. Processing nodes
consist of an Intel 80286 processor, 512 Kbytes random access
main memory, and ethernet-based communication processors.
Processing nodes are packaged in a standalone cabinet, along
with optional memory expansion cards and vector processing
cards. Additional memory enables 4.5 Mbytes of memory per
node, and vector processing nodes offer better than 6 MPLOPS
numeric performance per node. An Intermediate Host,
currently a 286-based multiuser UNIX-based system, serves as
network gateway, system administration console, and disk file
system.

The availability of a concurrent LISP for a concurrent
computer is attractive because existing artificial intelligence
tools and applications may be ported from conventional
computers and workstations. Several applications have already
been moved to CCLISP, demonstrating substantial speedup by
the use of many processors executing concurrently.

The speedup demonstrated by these first applications
provides the motivation for using concurrent computers for
symbolic problems. Many symbolic problems are too large for
currently available uniprocessor computers to solve in a
reasonable time, or at all [Stolfo et al. 831, @Iillyer and Shaw,
861. Computers such as the iPSC system are used to develop
algorithms, which in turn will be used to implement
applications on future very large scale concurrent computers.

John Teeter
Gold Hill Computers

Cambridge, Massachusetts, 02139 USA

1.1 Architecture

The Intel concurrent computer is based upon a
message-passing architecture. Asynchronous processor nodes
execute their own programs, sharing data by passing
messages. Although several alternative architectures provide
ways of sharing data between processes, most are
disadvantaged as the collection of processing nodes increases
to hundreds or thousands of nodes. Since future delivery
systems are planned to utilize such large numbers of nodes, the
architecture of the iPSC system easily accommodates
thousands of nodes.

Message passing avoids shared memory architectural
solutions, which require expensive and complex data buses or
switches for large numbers of nodes &ee, 851, (Pfister, SS].
Data is exchanged between processors not by accessing
common memory, with semaphores or monitors for
synchronization, but by requesting and sending data objects
among the processors via messages. The architecture was
attractive because of the low component cost, and also because
the system scales to large sizes. The message-passing
architecture is also attractive because it translates relatively
easily into language semantics and software protocols. Parallel
architectures were built upon the pretext of message-passing,
such as ACTORS from MIT, even before such architectures
existed in hardware. ACTOR languages have been
implemented on top of workstations, maintaining message
passing [Agha and Hewitt, 851. (The MIT Artificial
Intelligence Lab is in progress bringing ACTORS to the iPSC
system).

2. Constructs

Each processing node has a complete and separate Common
LISP environment, with interpreter, editor, compiler, and
debugging facilities. The programmer can open a window to
any Concurrent Common LISP environment, on any node,
from a workstation. Pile access is provided from each node
CCLISP environment to connected workstations and to the
system manager. Currently, the programmer edits and
prototypes LISP code on the workstation, and then moves the
source code down to a CCLISP node on the cube for testing,
debugging, and compilation. Both compiled and interpreted
code may be moved to other nodes as desired.

2.1

As with other languages for the iPSC system (C and

Billstrom, Brandenburg, and Teeter 7

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

FORTRAN), the hypercube network is not directly visible to
the programmer. Instead, the system provides a completely
connected graph of processors. Resident on each processor
node is a lightweight operating system, called Nx (Node
executive) with two kinds of services: multitasking and
message communications. Multiple UNIX-like processes may
execute, passing messages between themselves and processes
on other nodes. Communication services appear to the
programmer a$ system calls such as recv, send, recvw, and
sendw . The programmer is ‘responsible for assembling
messages in local memory, and specifying the message buffer,
buffer size, type of message, and target processor id when
calling the system service. In CCLISP, rather than the original
C, the message is somewhat simpler; an example of a message
would be:

(defstruct node-message
connection ; fixnum, NX channel id
host-addr : fixnum, src/dest node
correspondent-id ; fixnum, process on host-addr
tw= ; fixnum, (always 0 for now)
buffer ; simple-vector with fill ptr

Host-add?-, correspondent-id, and buffer are filled with
information during the receipt of a message, with host-addr
indicating the source node of the message; correspondent-id
indicating the name of the sender of the message; and buffer
filled with the incoming information.
follows:

An example of a receive

(sYs:recv node-message)

The. buffer is a simple LISP array, containing either
fixnum or chars. Messages passed at this level are compatible
with C and FORTRAN processes, and their message-passing
routines, so this is a method of implementing so-called hybrid
applications. These are applications with mixed processor
nodes: LISP on extended memory nodes, C on standard nodes,
and FORTRAN on vector processing nodes. For instance,
LISP applications with graphical output have been implemented
by passing messages to C processes outside the iPSC system
on connected workstations, utilizing the existing C graphic
libraries on those workstations [Brandenburg, 861.

2.2 Node Streams

Above the transport-level message passing services, each node
has the ability to communicate with any of the other nodes
through a facility called node streams. Node streams are
similar to Common LISP I/O streams. A stream can be
established between any two LISP processes whether on the
same node, different nodes, or on the remotely connected AI
workstations. A wide array of LISP functions enable the
programmer to send small or large packets of data to other
processes, over a node stream (See Table 1). Since node
streams are similar to I/O streams, many Common LISP
functions operate on both I./O streams and node streams.

(let (stream (make-node-stream 0 :a-test
:direction :io))

(print 'hello-world stream)
(finish-output stream)
(close stream))

This code establishes a stream from the node where the
code is executed to the node specified as a parameter, node 0.
Nodes on the iPSC are numbered from 0. As many as 64

nodes can be loaded with LISP. The parameter :a-test is the
name of the established stream; and :direction specifies the
nature of the movement: input, output, or input/output. The
name of the stream can be specified by the companion
make-node-stream function on the opposing node, and the
names are checked for equality. In this example a string is
printed on node 0.

The node message stream is a powerful construct because
of the similarity with I/O streams of Common LISP. Although
it is premature for standards in concurrent languages, it is
encouraging that such a concurrent construct could be added to
the language, while approximating existing constructs such as
I/O streams.

The CCLISP node stream is also notable because it is the
first higher-level abstraction for communication on the iPSC
system. Previous implementations for assembler, C, and
FORTRAN languages exclusively utilized libraries of
communication services, providing transport-level functions.
Each of these calls required parameters containing not only
node number and message, but message buffer length,
processor id, and message type. Sufficient for the style of
scientific

:read-char..

:read-line
:unread-char..

:read-char-no-hang

peek

:listen..

:fill-array..

:write-char..
write-line..
:dump-array..

:finish-output..

:flush-output..

:clear-output..

:name..
:host..

:element-type..
:close..
:direction..

:messages-sent..

:messages-received

:which-operations..

Inputs next character from
stream, waits if none
Inputs next line, as delimited
Places character back onto the
front of the stream
Inputs next character from the
Sm
Inputs next character without
removing it
Returns t if a character is
available
Places next n characters available
into array
Outputs character into stream
Outputs string to the stream
Outputs the contents of array to
the stream
Attempts to insure that all output
is complete
Initiates the send of all internally
buffered data
Aborts outstanding output
operations in progress
Returns the name of stream
Returns the name of the node to
which COMCCtCd
Returns the type of the stream
Closes the stream
Returns the direction of the
Stream
Returns the number of messages
sent
Returns the number of messages
received
Returns list of operations
supported by the stream

:close-all-node-streams. Closes all of the streams

Table 1: The functions available for
use with node streams.

8 Al Architectures

programming in C and FORTRAN, the message stream
construct offers a level of abstraction in communication not
previously seen on the iPSC system. Further, the message
streams are used to communicate with processes not within the
hypercube concurrent computer, such as LISP environments
on network connected AI workstations.

F’ASE streams are a special version of node streams allowing
the transfer of CCLISP objects between nodes. This
communication is speedier than regular node streams, at some
sacrifice of functionality -- the functions supplied are
enumerated in Table 2. The intent is to supply the programmer
with a construct to move larger structures and compiled objects
more rapidly. Compiled objects cannot be moved on regular
node streams; all of the formats and protocols compatible with
the CCLISP compiler may be moved by Pas1 stream. In this
example, the Pas1 stream is used to move a compiled object:

(let (f&ream (open-fasl-node-stream 0 :fasl-test
:direction))

(dump-object myfun fstream)
(close fstream))

The ability to move compiled
developing load balancing schemes
movement.

peek .

:listen..
:read-object..
:dump-object..

:dump-fasl-operator... . .

:close
:host..

:name.

:which-operations......

objects will be key to
, dependent upon code

Inputs next byte without
removing it from stream
Returns t if byte available
Returns next object available
Outputs the specified object to the

biis the specified
fasl-operator to the stream
Closes the stream
Returns the node number to
which it is connected
Returns the name used when
stream made
Returns a list of the operations
supported

Table 2: The functions operating on FAST stream.

2.4 emote Evaluation

In addition to message streams, there is a powerful construct
called remote evaluation. Remote evaluation offers the
programmer a way to pass a Common LISP expression from
one LISP environment to another LISP environment for
evaluation. The programmer specifies a Common LISP form,
and a target node number, and chooses either a synchronous or
asynchronous remote evaluation of the form. The effect of the
remote evaluation is to interrupt the target node (or connected
AI workstation) and cause a read-eval-print loop to execute on
the passed form.

In the case of synchronous execution, called
evel-remotely, the sending process blocks and waits for the
results of the evaluation before contmuing to execute it’s own
program code. Consider the example of a simulation

application: the basic “cause and effect” paradigm may be
divided across processor nodes easily.

(if (cause)
(eval-remote ly 3 ' (effect #myparameter)))

Here, a cause results in an effect on a different node, node
3 in this case. There is no user code on the target node needed
to “listen” for an activate request. Mowever, the programmer
must remember that the LISP form will be executed in the
target environment, and there is no automatic provision for
maintaining synchronous environments.

In the case of asynchronous execution, the sending
process does not block and wait, but continues execution of its
own code, while the specified destination process evaluates the
passed expression. If the sending process needs the return
value, the target node can use a message node-stream, or
remote evaluate the value back to the original sending process.
This simple-eval-remotely is the more commonly used
construct, since it follows the paradigm of asynchronous
processing, necessary for maximum utilization of a concurrent
computer: processors do not stand idle dependent upon other
processors.

(dotimes (node max-node)
(simple-eval-remotely t1+ node) ' (myfunction)))

In this example, the previously specified function
myfunction is executed on each of the processor nodes in the
system, in a serial manner. Since no value is returned,
simple-eval-remotely is utilized for the side-effects it causes in
the target node.

Interrupts from multiple simple-eval-remotely calls at the
same target node can undesirably disrupt the execution of code,
so an evaluation construct without-interrupts is available to turn
interrupts off. Used carefully, for short periods of time, this
allows multiple sources of interrupts to occur within one
environment. For instance, the P and V primitives of
semaphores could be implemented @3ijkstra, 681.

Also, a broadcast of remote evaluations is offered by the
construct do-on-all-nodes.
previous example:

This macro replaces the code in the

(dotimes (node max-node)
(simple-eval .-remotely

to

(l+ node) n (myfunction)))

(do-on-all-nodes '(myfunction))

Do-on-all-nodes follows a ring architecture on the iPSC
system, an artifact of the system scheme for numbering nodes.
A spanning tree algorithm could also be utilized by the user to
broadcast to every node in the system in Log N iterations of
remote evaluation [Brandenburg and Scott, 861. A common
use of do-on-all-nodes is the need to load the same CCLISP
executable program on each node of the system, in order to
solve a large concurrent problem:

(do-on-all-nodes ' (load "my-file"') 1

Both forms of remote evaluation can be used to pass
Common LISP forms outside the iPSC system to connected
(and supported) AI workstations. This construct enables the
iPSC system to be used as an remote evaluation server in a
network of AI workstations -- an attractive scenario because a

current LISP application would remain on the workstation,
particularly user interface portions, and the compute intensive
portions of the application would be moved to the iPSC
system. Tasks would be assigned from the workstation or
multiple workstations to the iPSC system via remote
evaluation. While in development, the entire application could
be prototyped on the workstation, separately from iPSC code
development, and then later linked with the insertion of the
remote evaluation function call.

3 Development Environment

The intent of the development enviroment is to offer the user
flexibility: choosing dynamically during the development cycle
between a familiar, connected workstation and the concurrent
LISP environment.

The model of user interaction with CCLISP consists of
three parts: virtual terminals, keyboards, and file I/O. Every
CCLISP node is connected to a virtual terminal, and the user
can switch the physical terminal dynamically from window to
window. The user attaches the physical keyboard to one of the
virtual terminals, and may also switch that connection
dynamically. The intent is to give the programmer instant
access to any node of the iPSC system, and while independent
processes execute on various nodes, virtual terminals remain
connected in order to capture any output sent to the screen.
The virtual terminal and keyboard user interface may be
connected to a variety of physical devices, including connected
AI workstations.

Each CCLISP node environment is also connected, via
Common LISP I/O streams, to disk file services on the
Intermediate Host, as well as connected AI workstations. All
of the Common LISP I/O stream functions are available. Some
support for the specific file system on the Intermediate Host (a
UNIX file system), such as cd (change directory), is available
from CCLISP. Other support for the Intermediate Host also
exists, such as a single key escape to the operating system

4 Implementation

The. original CCLISP software was based upon Gold Hill
Computer’s 286 personal computer LISP product, GCLISP
286 DeveloperTM. Offering a subset of full Common LISP,
this interpreter with compiler provided strong performance
from the original iPSC 286 node processor. The GCLISP
environment is a subset of full Common LISP, with mark and
sweep garbage collection, reasonable performance, and a large
installed user base. The message-passing constructs already
available in the iPSC node operating system were interfaced to
CCLISP, and node streams and remote evaluation were built
on the message-passing.

The CCLISP environment on each node, including the
compiler, uses about 1.7 Mhytes of the 4.5 Mbytes available
on the node. The user may elect to not load the compiler on
every node of the iPSC, thus preserving an extra 0.6 Mbyte of
memory for the user’s own code and data.

The CCLISP node streams were added to LISP by
exploiting the transport-level services already provided by the
node processor operating system. The FASL Stream
implementation was based on work at Carnegie Mellon for fast
file formats in SPICE LISP. Briefly, at each end of the stream
a simple stack machine is established. Byte operators are

transmitted from the emitting end, along with data, and then
interpreted at the receiving end and assembled into objects.
The implementation code is available to users of the CCLISP
system.

Remote evaluation was then implemented with FASL
streams, and by an eval server, resident on each node LISP
environment (as well as on connected AI workstations). The
servers allow for the asynchronous handling of remote
evaluation requests in the target environment. The evaluation
of the requested form occurs in the current stack group, and
environment, of the target node. Care must be taken to insure
that node-specific CCLISP environments are maintained in a
consistent manner. This includes package considerations as
well as stack-group management.

Support for AI workstations for the user interface, file i/o
services, and remote evaluation required compatible lower level
services, such as TCP/IP ethernet connections. Special eval
servers for each of these workstation environments, along with
file servers and user interface connections, were developed.
Each follows, or will follow, a public protocol for such
support jointly developed by Intel, Gold Hill, and early users
of the CCLISP/iPSC system [Intel, 871.

5 erformance

Concurrent computers demand at least two steps to measuring
performance: first, processor node performance, and then
applications demonstrating aggregate performance, the effect of
all of the processing nodes. And, because benchmarks do not
always consume the dynamic memory required of real-life
applications, the total memory available per node is an
important secondary component.

Performance of sequential LISP is popularly compared by
use of Gabriel’s LISP Benchmarks [Gabriel, 851. Using a
simple average of (most of) the Gabriel Benchmarks, the
performance of the original CCLISP on a single node is almost
equivalent to a low-end AI workstation, such as the Xerox
1108 Dandelion, as illustrated in the chart below.

CCLlSP on
a single Xerox

Gabriel iPSC node 1108 Symbolice
Benchmarks (cornoiled) Dandelion 3600

‘A9 1 -74.60 1 11.89 I

Measuring the aggregate performance of a concurrent
computer is more difficult. Primarily the problem is one of

10 Al Architectures

size: large computers requite large problems, especially in light
of constant overhead. Only three of the Gabriel benchmarks
entice the effort of parallelization. The longest running Gabriel
Benchmark is the Triangle game, which consumes 14.44
seconds of cpu time on a CBAY-XMP, and 15 1.7 seconds on
a Symbolics 3600. Gn a 16 node iPSC system, the benchmark
is completed in 69.8 seconds, demonstrating 14.8 speedup for
16 processors. The benchmark completes in 37.5 seconds, for
27.6 speedup on a 32 node processor system. Perhaps more
interesting than numerical results from recent timings of
simple, small benchmarks are the approaches used to
“parallelize” these benchmarks. The following sections each
describe the changes made to run the simple benchmarks
concurrently.

The benchmark finds all solutions to the “triangle game.” The
game consists of a triangular board with fifteen holes; a peg is
placed in every hole except the middle. The player makes a
move by jumping over a peg into a vacant hole and removing
the jumped peg, as in checkers. The object of the game is to
remove all of the pegs but one,. There are many possible
sequences of moves, but only 1,550 sequences result in a
single remaining peg. The Gabriel version of the algorithm
finds 775 solutions; the other 775 solutions are symetrically
identical (only one of the two initial moves is taken by the
original benchmark algorithm).

The general problem is represented as a tree of possible
moves; each node of the tree represents a decision about the
next possible move. The problem heap technique
[Moller-Nielsen and Straunstrup, 85],[Brandenburg, 861 was
used as the basic distribution algorithm. This method uses a
single node as a manager; the manager assigns each of the other
nodes subgraphs from the search tree. The manager node
solves the tree to the fourth level of 120 leaves. It then
distributes each of the 120 subgraphs to the remaining ftiteen
worker nodes, assigning a subgraph to each worker node as
the worker node becomes available from solving a subgraph.

Bach node solves the subgraph using the traditional
sequential algorithm, and then reports back to the manager the
results, and requests another subgraph. The manager
continues to distribute subgraphs and receive results until
results for all subgraphs have been received from worker
nodes. This exhaustive search incurs little overhead from
communication between nodes, since nodes only communicate
when they have completed computing each of 120 tasks. The
algorithm is also attractive because it retains the basic search
algorithm of the original benchmark, and thus minimizes the
programming effort to implement the concurrent version.

Triangle
Gabriel
Benchmark

v (seconds)

Speedup

The Browse benchmark is a simple database search, similar to
many AI matching problems. The database itself is an artificial
representation of a real LISP database, consisting of very small
objects. To convert the problem to a concurrent computer> the
simple approach of dividing the database into 16 portions was
used. Each CCLISP node carries a duplicate copy of the
benchmark code, and its’ own l/l6 portion of the database.
There is no communication between processes, because the
iterative nature of the benchmark requires none. And the
results, compared with single node performance on the same
problem, indicate superlinear speedup. This extra efficient use
of 16 processors is not due to the architecture of the system, or
even the problem, but the decreased load on the processor for
garbage collection and other system resources in the LISP. As
the data objects were reduced in volume to l/16 the original
size, system resource overhead was reduced accordingly.

Browse
Gabriel
Benchmark

B (seconds)

Speedup
We-load T

Speedup

The Browse results clearly illustrate the difficulty of
measuring symbolic computational performance on a large
concurrent computer with small problems: the speedup for 32
nodes is 26.5, and for 16 nodes is 26.6. This lack of
improvement with additional computational resources is due to
the dominant factor of file access. This can be illustrated even
further by a simple tuning of the code. By pre-loading the
basic functions required in the benchmark -- lowering the
non-computational overhead -- speedup can be improved to 76
for 32 nodes, and 42.6 for 16 nodes.

The Puzzle benchmark was not successful demonstrating
substantial speedup; the parallel version (with 16 processing
nodes) found the solution only twice as fast as the sequential
version. This is due to Puzzle seeking only one sohH.i~n in the
search tree, rather than all of the SQ~U~~QIIS -- as Triangle
requires. When only one solution is sought, the decomposition
of the problem into segments for each node of a concurrent
computer becomes much more difficult. Depending upon
where in the search tree the single solution may be found, the
relative efficiency of a depth-fmt or breadth-first search varies
greatly. In the case of the Puzzle benchmark, the solution was
found among the first branches of the tree, down nine levels.

Billstrom, Brandenburg, and Teeter 1 I

Single solution search tree algorithms
remains an important research issue.

for ’ concurrent computers

The constructs of CCLISP were designed to allow relatively
easy conversion of sequential LISP applications to a concurrent
computer. As well as being conceptually simple but powerful,
the constraints are sufficient to have allowed, in most cases, the
first versions of applications to limp along in parallel within a
week of starting the conversion. Indeed, since CCLISP has
been in customer’s hands, two software environments have
been developed [Gasser et al., 861, [Gasser and Braganza, $71,
[Blanks, 861, others are on the way, and demonstration
applications have been shown [Brandenburg, 861, [Intel, 861,
[Gasser et al., 87a], [Gasser et al., 87b], fleung, 861. All of
the work thus far was converted from AI workstations such as
the TI Explorerm and the Symbolics 3600TM. A handful of
concurrent applications, including a community of expert
systems, were running within a few months.

The performance of the iPSC system with CCLISP is
wholly dependent upon algorithm choice and programmer
effort, but the initial indications are very encouraging, with
speedups of 14.8 for 16 processor systems on common
symbolic processing problems of search. Node performance
of CCLISP is respectable, almost equivalent to AI workstations
such as the XERQX 1108 Dandelion.

The iPSC System with CCLISP has been available since
September, 1986.

References

[Agha and Hewitt, SS] G. Agha & C. Hewitt. Concurrent
Programming Using ACTORS: Exploiting Large-Scale
Parallelism. RlIT Press, AI Memo No. 865, October
1985.

[Blanks, 861 M. Blanks. Concurrent Cooperating Knowledge
Bases. Presented at Aerospace Applications of Artificial
Intelligence. Dayton, QH. October, 1986.

[Brandenburg, 861 J. Brandenburg. A Concurrent Symbolic
Program with Dynamic Load Balancing. To appear in
Proceedings of the Second Conference on Hvnercube
Multinrocessors, Qalaidge, TN. September, 1986.

[Brandenburg and Scott, 861 J. Brandenburg and D. Scott.
Embeddings of Communication Trees and Grids into
Hypercubes, Intel Scientific Computers Document:
Technical Report No.1, 1986.

[Dijkstra, 681 E.W. Dijkstra. Cooperating Sequential
Processes. Programmings. (F. Genuys,
editor), Academic Press (1968).

[Gabri;l,P85] R. Gabriel. Performance and Evaluation of
IId S Svstems. MIT Press, 1985.

[Gasser and Braganza, 871 L. Gasser and C. Braganza.
MACE Multi-Agent Computing Environment, Version
6.0. Technical Report CRI 87-16. Distributed Artificial
Intelligence Group, CS Dept, University of Southern
California. March, 1987.

[Gasser et al., 861 L. Gasser, C. Braganza, N. Herman, and
L. Liu. MACE Multi-Agent Computing Environment,
Reference Manual, Version 5.0. Distributed Artificial
Intelligence Group, CS Dept, University of Southern
California. July, 1986.

[Gasser et al., 87a] L. Gasser, C. Braganza, and N. Herman.
MACE, A Flexible Testbed for Distributed AI Research.
To appear in Distributed Artificial Intellirrence, H. Hugns,
Ed. Pitman, 1987.

[Gasser et al., 87b] L. Gasser, C. Braganza, and N. Herman.
Implementing Distributed AI Systems Using MACE. To .
appear in Proceed PS o f the Third IEEE Conference on
AI Annlications, &a.ndo, FA. February, 1987.

mllyer and Shaw, 861 Hillyer and Shaw. Execution ofOPS.5
Production Systems on a Massively Parallel Machine.
Journal of Parallel and Distributed Computing
Vo1.3,No.2, June 1986. pp. 236-268.

[Intel, 861 A Preliminary Naval Battle Management
Simulation. Intel Scientific Computers Document:
Artificial Intelligence Note 116. July, 1986.

[Intel, 871 iPSC CCLJSP host interface protocols. Intel
Scientific Computers Document, February, 1987.

@Lee, 851 R. Lee. On “Hot Spot” Contention, Computer
Architectu e News Vol 13 No. 5 December 1985.

woller-Nielsei and Straunstrup, 851 ‘P. Moller-Nielsen. and
J. Straunstrup. Problem Heap: A Paradigm for
Multiprocessor Algorithms. Aarhus University Technical
Report DK-8000. Denmark. 1985.

pfister and Norton, 851 G.F. Pfister & V.A. Norton. “Hot
Spots” Contention and Combining in Multistage
Interconnection Networks. EEE Transactions on

Vol. C-34, No. ‘10, October 1985, pp. F;r;;r.

[Seitz, 851 C.‘Seitz. The Cosmic Cube. Communications of
the ACM, 28-l (1985), pp. 22-23.

[Stolfo et al., 831 Stolfo, Miranker, and Shaw. Architecture
and Applications of DADO: A Large-scale Parallel
Computer for Ad. Proceedines of the EiPhth International
Joint Con erence on Artificial Intell&,&, August, 1983.
pp. 850&4.

[Yeung, 861 D. Yeung. Using Contract Net on the iPSC.
Distributed Artificial Intelligence Group Research Note
20, CS Dept, University of Southern California. July,
1986.

CCLISP, Concurrent Common LISP, and GCLISP 286 Developer are
trademarks of Gold Hill Computers; iPSC, Intel Personal SuperComputer,
80286, and 80287 are trademarks of Intel Corporation; Explorer is a
trademark of Texas Instruments; Symbolics 3600 is a trademark of
Symbolics, Inc; XEROX 1108 Dandelion is a trademark of XEROX.

12 Al Architectures

