
Achieving Flexibility, Efficiency, and Generality
in Blackboard Architectures

Daniel D. Corkill, Kevin Q. Gallagher, and Philip M. Johnson

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

Abstract
Achieving flexibility and efficiency in blackboard-
based AI applications are often conflicting goals.
Flexibility, the ability to easily change the black-
board representation and retrieval machinery, can
be achieved by using a general purpose blackboard
database implementation, at the cost of efficient per-
formance for a particular application. Conversely,
a customized blackboard database implementation,
while efficient, leads to strong interdependencies be-
tween the application code (knowledge sources) and
the blackboard database implementation. Both flexi-
bility and efficiency can be achieved by maintaining a
sufficient level of data abstraction between the appli-
cation code and the blackboard implementation. The
abstraction techniques we present are a crucial aspect
of the generic blackboard development system GBB.
Applied in concert, these techniques simultaneously
provide flexibility, efficiency, and sufficient general-
ity to make GBB an appropriate blackboard devel-
opment tool for a wide range of applications.

I. Introduction
Blackboard architectures, first introduced in the Hearsay-
II speech understanding system from 1971 to 1976 [Erman
et al., 19801, have become popular for knowledge-based
applications. The interest in the generic blackboard con-
trol architecture of BBl [Hayes-Roth, 19851 is but one ex-
ample of the increasing popularity of blackboard architec-
tures. The blackboard paradigm, while relatively simple
to describe, is deceptively difficult to implement effectively
for a particular application. As noted by Nii [Nii, 19861,
the blackboard model with its knowledge sources (KSs),
global blackboard database, and control components does
not specify a methodology for designing and implementing
a blackboard system for a particular application.

Historically, most blackboard-based systems have
been built from scratch, implementing the blackboard
model according to the criteria that appeared most ap-
propriate for the particular application. Some implemen-
tations were built for execution eficiency, with consider-
able effort placed on providing fast insertion and retrieval

This research was sponsored in part by the National Science
Foundation under CER Grant DCR-8500332, by a donation from
Texas Instruments, Inc., by the Defense Advanced Research Projects
Agency, monitored by the Office of Naval Research under Contract
NR049-041, and by the National Science Foundation under Support
and Maintenance Grant DCR-8318776.

of objects on the blackboard. The KSs and control com-
ponents in these implementations were so tied to the un-
derlying blackboard database that making modifications
to the blackboard structure or insertion/retrieval strate-
gies was difficult. Other implementations were designed
with jlexibility in mind. These applications were built on
top of a general-purpose blackboard database retrieval fa-
cility (for example, a relational database system [Erman
et al., 19811). While these implementations could be re-
structured relatively easily, their inefficiency in accessing
objects on the blackboard made them slow. Finally, a few
implementations were simply built in a hurry, with little
effort toward achieving either flexibility or efficiency.

In this paper, we concentrate on the two con-
flicting issues of flexibility and efficiency of blackboard
systems. We show that by appropriately hiding in-
formation between three phases of blackboard system
development-blackboard database specification, applica-
tion coding (KSs and control components), and blackboard
database implementation-it is possible to achieve both
flexibility and efficiency. This principle of blackboard data
abstraction is an integral design principle of the generic
blackboard development system GBB [Corkill et al., 19861.
Abstraction also makes GBB sufficiently general for use in
a wide range of applications. Although we describe the
benefits of blackboard abstraction in the context of GBB,
these abstractions are appropriate for any blackboard de-
velopment environment.

II. n Flexibility and Efficiency
Flexibility in a blackboard system is the ability to
change the blackboard database implementation, the inser-
tion/retrieval strategies, and the representation of black-
board objects without modifying KS or control code
and vice-versa. Flexibility is important for two reasons.
First, the application writer’s understanding of the in-
sertion/retrieval characteristics and the representation of
blackboard objects may be uncertain and therefore sub-
ject to change as the application is developed. Second,
even after a prototype of the application has been com-
pleted, the number and placement of blackboard objects
as the application is used may differ from the prototype.
This again requires changes to the blackboard representa-
tion in order to achieve the desired level of performance.
Therefore, it is important that the blackboard implemen-
tation provides enough flexibility to allow these changes
without significant changes to the KSs, the control code,

18 Al Architectures

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

or to the blackboard database implementation machinery.
With sufficient flexibility it is possible to actually “tune”
the blackboard representation to the specific characteris-
tics of the application.

Efficiency in the insertion and retrieval of blackboard
objects is an equally important design goal. Typically,
improving the execution efficiency of blackboard systems
is achieved through improvements to the quality and ca-
pability of the control components. Reducing the num-
ber of “inappropriate” KSs that are executed (by making
more informed scheduling decisions) can significantly re-
duce the time required to arrive at a solution. Making
appropriate control decisions should never be neglected in
the development of an application. In this paper, how-
ever, we assume that a high-quality control component
and high-quality KSs will be written by the application
implementer. We will focus on the remaining source of
execution inefficiency-the cost of inserting and retrieving
objects from the blackboard.

A. The Need Rx Blackboard atabase
Efficiency

Why are we placing such an emphasis on the efficiency
of the blackboard database? In addition to inserting new
hypotheses on the blackboard, KSs perform associative re-
trieval to locate relevant hypotheses that have been placed
on the blackboard by other KSs. This need for KSs to lo-
cute appropriate information on the blackboard is often
overlooked in casual discussions of blackboard-based sys-
tems. A KS is typically invoked by one or more triggering
stimulus objects. The KS then looks on the blackboard to
find other objects that are “appropriately related” to the
stimulus object. Each KS thus spends its time:
1. retrieving objects from the blackboard based on their

“location” on the blackboard;

2. performing computations using existing objects
termine new blackboard objects to create);

(to de-

3. creating and placing these new objects onto the black-
board.

The ratio of items 1 and 3 over item 2 defines the
amount of time the KS spends interacting with the black-
board versus the amount of time the KS spends performing
computations. The larger this interaction/computation ra-
tio is, the more that blackboard efficiency issues will dom-
inate performance. The ratio of item 1 over item 3 defines
the read/write ratio of blackboard interactions for the KS.
This ratio can be used to aid the selection blackboard im-
plementation and retrieval strategies.

Note that associative retrieval is central to the black-
board paradigm. Associative retrieval is used to provide
anonymous communication among KSs by allowing KSs
to look for relevant information on the blackboard rather
than receiving the information via direct invocation by
other KSs. Yet the blackboard provides more than this
anonymous communication channel among KSs. Objects
on the blackboard often have significant latency between
the time they are placed on the blackboard and the time
they are retrieved and used by another KS. If it were not
for this latency, the blackboard could be “compiled away”

into direct calls among KSs by a configuration-time com-
piler. This latency in blackboard objects indicates that the
blackboard also serves as a global memory for the KSs.
Objects are held on the blackboard to be used when and
if they are needed by the KSs. Without the blackboard
each KS module would have to maintain its own copy of
objects received from other modules. Whether the mem-
ory is globally shared (on the blackboard) or private, an
efficient means of scanning the remembered objects is still
required.

The amount of time a KS spends creating and scan-
ning for objects versus performing other computations (the
interaction/computation ratio) varies greatly between dif-
ferent applications and even between different KSs in a sin-
gle application. Of course, the greater this ratio the more
significant the efficiency of the blackboard implementation
becomes. Experience with the Hearsay-II speech under-
standing system [Erman et al., 19801 and the Distributed
Vehicle Monitoring Testbed (DVMT) [Lesser and Corkill,
19831 demonstrates that blackboard performance has a sig-
nificant effect on system performance in these applications.

If the underlying hardware provided true associative
retrieval, these efficiency issues would become irrelevant
and the implementer would only need to write the applica-
tion KSs and control code. However, the present hardware
situation requires that the associative retrieval of black-
board objects be simulated in software by appropriate re-
trieval strategies on the blackboard database.

. asic Blackboard perations
Before we continue, it is useful to describe in more detail
the blackboard operations that are typically required to
support an application.

Insertion: When a blackboard object is created, it must
be placed onto the blackboard. Placement onto the black-
board involves creating one or more locators, pointers that
are used to retrieve the object. In the simplest situation
where blackboard objects are merely pushed onto a list, the
single locator is the list pointer. With retrieval strategies
supporting efficient retrieval of objects based on complex
criteria, multiple locators are used. These locators are de-
termined based on attribute values of the object.

Merging: When placing an object onto the blackboard,
it can be important to determine if an “identical” object
already exists on the blackboard. The semantics of iden-
tity depend on the application, but an example is two hy-
potheses created by different KSs that differ only in their
belief attribute. Often it is desirable that hypotheses on
the blackboard be unique; that is, no identical hypotheses
be created on the blackboard. Instead, the two hypothe-
ses should be merged into a single blackboard object that
reflects the two by merging their belief attributes into a
single attribute value in the existing hypothesis.
Merging can be handled in two ways. One approach is to
have all KSs avoid creating identical hypotheses by check-
ing for an existing hypothesis before creating a new one. If
an existing hypothesis is found, its attributes are updated
by the KS. The second approach builds an application-
specific merging capability into the basic blackboard object
insertion machinery.

Co&ill, Gallagher, and Johnson 19

Retrieval: Retrieval involves searching the blackboard for
objects that satisfy a set of constraints specified in a re-
trieval pattern. Retrieval can be broken down into two
steps. The first step determines a set of locators (based on
the retrieval pattern) that contain pointers to potentially
desirable objects. The second step eliminates those candi-
dates from the first step that do not satisfy the constraints
of the retrieval pattern. Since this elimination process can
be computationally expensive, an efficient retrieval strat-
egy is one where the first step substantially reduces the
number of candidates. In order to implement an efficient,
yet flexible, retrieval strategy the constraints must be ex-
pressed declaratively so that they may be examined by
the blackboard implementation machinery to determine
the appropriate set of locators to use in the retrieval.

Deletion: Deleting an object from the blackboard re-
quires removing it from the locators which point to it.
Since other blackboard objects may contain links pointing
to the deleted object, these links must also be found and
eliminated. For example, if links are maintained as bidi-
rectional pointers (as is the case in GBB), deleting these
links is simply a matter of traversing all links from the
deleted object and then eliminating the inverse links.

Repositioning: If the attributes that determine the ob-
ject’s locators (such attributes are termed indexing at-
tributes) are mbdified, the locators may also need to be
changed (deleting some and adding others) to maintain
consistency in the blackboard database. In many applica-
tions, all indexing attributes are static-only the values of
the other attributes (such as belief) are allowed to change.
Domains involving objects that move over time, however,
are examples of situations where the positioning of objects
may need to be modified during the course of problem
solving.

A. The Unstructured Blackboard
A simplistic approach to building a blackboard application
is to represent each blackboard level as an unstructured
list of the objects residing on that level. KSs add a new
object to the blackboard by simply pushing it onto the
appropriate list. Retrieval is performed by having the KS
scan the list for objects of interest.

This approach only appears to be simple, as there is
no work to implementing the blackboard implementation
machinery (global variables serve quite nicely). Actually,
all the effort has been shifted into the KSs. Each KS must
worry about the entire retrieval process, and since each
object on the blackboard level must be tested for appro-
priateness, the KS must perform this test as efficiently as
possible. Each KS may also need to worry about merging
blackboard objects; avoiding the creation of a blackboard
object that is semantically equivalent to an existing object.
If merging is not performed, KSs must consider the possi-
bility that semantically equivalent objects may be retiieved

from the blackboard. Insertion, deletion, and reposition-
ing of blackboard objects must also be directly handled by
the KSs as well.

B. The General-Purpose Kernel
In t,his approach, a general-purpose blackboard database
facility is provided to the KS and control component imple-
menters. The facility supports blackboard object retrieval
based on the attributes of the objects. In its most general
form, all attributes of the objects may be used as retrieval
keys (for example, blackboard objects may be stored in
a relational database). The application implementers re-
trieve objects by writing queries in the retrieval language.
This approach provides a very flexible development envi-
ronment, but the unused generality of the blackboard data-
base implementation poses severe time/space performance
penalties.

C. The Customized Kernel
As noted above, the use of a general-purpose retrieval
strategy for all blackboard applications is a source of in-
efficiency. Retrieval of blackboard objects in a particu-
lar application may be made significantly faster using a
specialized retrieval mechanism. Furthermore, retrieval
of different classes of blackboard objects within a single
application may be best achieved using different retrieval
strategies. One solution is to custom-code the appropriate
retrieval strategy for each situation. In this approach an
insertion/retrieval kernel is written that is tailored to the
situations that arise in a particular application. When a
KS needs to locate blackboard objects, it invokes kernel
functions to perform an initial retrieval from the black-
board and then uses procedural “filters” to identify which
returned objects are actually of interest. This approach
is significantly more efficient then the general-purpose ap-
proach when the kernel functions significantly prune the
number of blackboard objects that need to be filtered by
the KS. However, it poses a number of disadvantages:

A new customized kernel must be written to suit the
different insertion/retrieval characteristics of each ap-
plication.

If the kernel is found to be inappropriate to the applica-
tion, due to incorrect intuition during the initial design
or to changing application characteristics, it must be
rewritten.

The KS code is directly coupled to the particular kernel.
The code must be written with the knowledge of which
attributes are matched by the kernel code and which at-
tributes must be filtered by the KS. Changing the kernel
attributes requires rewriting the KSs.

The kernel code is tied to the blackboard representa-
tion. Changes to the blackboard representation require
modifications to the kernel code.

The KS and kernel code is tied to the structure of black-
board objects. Changes to the representation of at-
tributes require code modifications.

In short, although the custom-coded kernel approach
can provide efficient insertion and retrieval of blackboard

20 Al Architectures

objects, that efficiency comes at the cost of inflexibility to
changes in the KS and control code and to changes in the
blackboard and object representation.

By appropriately combining a number of blackboard data
abstraction techniques, it is possible to “have your cake
and eat it too” with respect to flexibility and efficiency.
The generic blackboard development system GBB [John-
son et al., 19873 provides the application implementer and
blackboard database administrator with distinct, abstract
views of the blackboard. Developing an application using
GBB involves three separate, but interrelated phases:

blackboard & blackboard object specification:
This phase involves describing the blackboard structure
(the blackboard hierarchy), the structure of each black-
board level, the attributes associated with each class of
blackboard objects (called units in GBB), and the mapping
of units onto blackboard levels (called spaces in GBB).

application coding: This phase involves writing KSs
and control code in terms of the blackboard and black-

GBB also supports enumerated dimensions. An enu-
merated dimension consists of a fixed set of labeled cate-
gories. For example, in the vehicle tracking domain a space
might also have the enumerated dimension “classification”
corresponding to a set of vehicle types.

Space dimensionality is a key means of abstracting the
blackboard database. It provides information hiding by
allowing the application code to create and retrieve units
according to the dimensions of spaces, without regard to
the underlying implementation of the blackboard struc-
ture. Dimensional references, however, contain enough
information when combined with information about the
structure of the blackboard to allow efficient retrieval code
to be generated.

Here is an example of the space definitions frorn the
DVMT application that specifies the time, x-position, y-
position, dimensions discussed above (as well as a sensory
event classification dimension):

(define-spaces (PT PL VT VL GT CL ST SL)
: UNITS (hyp)
:DIMENSIONS

((time :ORDERED ebb-time-range*)
(x :ORDERED *bb-x-range*)
(Y :ORDERED *bb-y-range*)
(event-class :ORDERED *bb-event-class-range*))).

board object specifications. Application code deals with
the creation, deletion, retrieval, and updating of units. Re-
trieval is specified by patterns based on the structure of the
relevant blackboard space(s).

Abstracting Unit Insertion
When a unit is created in GBB, it is inserted on the black-
board based on the unit’s attributes. There are two de-
cisions to be made when inserting a unit on the black-

blackboard database implementation specification:
This phase involves specifying the blackboard database im-
plementation and retrieval strategies. The locator data
structures appropriate for the particular characteristics of
the application are specified in this phase. These specifi-
cations are also made in terms of the blackboard structure
and unit specifications.

By maintaining an abstracted view of the blackboard,
the details of decisions made in each of the three phases
can be hidden until they are combined in GBB’s code gen-
eration facility.

board. The first is what space or spaces to store the unit
on and the second is the location of the unit within the n-
dimensional volume of each space. The definition of each
unit includes the information required to make these two
decisions based on the values of the unit’s attributes. This
insulates the KS code from the details of the blackboard
structure. For example, the KS code does not need to know
which attributes and dimensions are actually used to cre-
ate locators for the unit. Thus changes in the blackboard
structure do not necessitate changing KS code.

Here is an example of the hypothesis unit class defi-
nition from the DVMT application:

A. Abstracting the Blackboard
In GBB, each blackboard space is a highly structured n-
dimensional volume. Space dimensionality provides a met-
ric for positioning units onto the blackboard in terms that,
are natural to the application domain. Units are viewed
as occupying some n-dimensional extent within the space’s
dimensionality.

For example, in a speech understanding system, one of
the dimensions of a blackboard space could be utterance
time. In the domain of vehicle tracking, a space might
contain the dimensions sighting time, x-position, and y-
position. In GBB, such dimensions are termed ordered.
Ordered dimensions use numeric ranges which support the
concept of one unit being “nearby” another unit along that
dimension. In the speech understanding domain, this al-
lows a KS to extend a phrase by retrieving words that
begin “close in time” to the phrase’s end time.

(define-unit (HYP (:NAME-FUNCTION generate-hyp-name)
(:INCLUDE basic-hyp-unit))

: SLOTS
((belief 0 :TYPE belief)
(event-class 0 :TYPE event-class)
(level nil :TYPE symbol)
(node 0 : TYPE node-index)
(time-location-list 0 :TYPE time-location-list))
:LINKS
((supported-hyps (hyp supporting-hyps)

:UPDATE-EVENTS (supported-hyp-event))
(supporting-hyps (hyp supported-hyps)

:UPDATE-EVENTS (supporting-hyp-event)))
: DIMENSIONAL-INDEXES
((time time-location-list)
(x time-location-list)
(Y time-location-list)
(event-class event-class))
:PATH-INDEXES
((node node :TYPE :label)
(level level :TYPE :label))

((t ('node-blackboards node 'hyp level)))).

Corkill, Gallagher, and Johnson 21

The dimensional indexes define how attributes seman-
tically specify the positioning of hypothesis units onto the
dimensionality of a space. (The details of which attributes
are actually used in locator construction are specified in the
unit-space mapping discussed in Section E.) These specifi-
cations include the information required for destructuring
when highly structured attribute values are used for unit
positioning. Path indexes specify the space(s) on which
created units are to reside. A unit is simply created by
supplying its attributes:
(make-hyp :NODE

:LEVEL
current-node-number
bb-level

activities are performed. The goal blackboard mirrors the
structure of the data blackboard, and contains eight cor-
responding spaces. Specifying complete blackboard/space
paths makes such a transition cumbersome, because each
call to find-units must be changed to reflect the new
blackboard-space paths.

To eliminate this problem, GBB now provides an ab-
stract path specification mechanism which allows black-
board/space paths to be specified rela.tive to other paths,
to another space instance, or to the spaces on which a
unit instance resides. For example, the path to a stimulus
hypothesis’s space is coded as:

GBB’s basic unit retrieval function, find-units , permits

:TIME-LOCATION-LIST time-location-list

a complex retrieval to be specified in its pattern language.

:EVENT-CLASS event-class

This declarative pattern language provides an abstraction

:BELIEF computed-belief).

over the blackboard database. A find-units pattern con-

@. Abstracting Unit Retrieval

(make-paths :UNIT-INSTANCES stimulus-hyp).

(make-paths :UNIT-INSTANCES stimulus-hyp)
'(:CHANCE-RELATIVE :UP st))

where :UP indicates to move up one level in the black-

The path to the ST level of a hyp in the DVMT ap-
plication can be coded as: r

board/space hierarchy and st indicates to move back down

(change-paths

sists of an n-dimensional retrieval specification for partic- to the ST space.
ular classes of units on a blackboard space. This means The path to a corresponding goal space given a hy-
that the KS code need only specify the desired classes of pothesis unit in the DVMT application would be coded
units, the spaces on which to look, and the values for the as. L .

dimensions.
We will present an example of unit retrieval shortly.

Il. Abstracting the Blackboard Path
Specifying a blackboard space in KS and control code is an-
other area where data abstraction is important. In GBB,
the blackboard is a hierarchical structure composed of
atomic blackboard pieces called spaces. In addition to be-
ing composed of spaces, a blackboard can also be composed
of other blackboards (themselves eventually composed of
spaces). This hierarchy is a tree where the leaves are spaces
and the interior and root nodes are blackboards. Units are
always stored on spaces; GBB’s blackboards simply allow

(change-paths
(make-paths :UNIT-INSTANCES stimulus-hyp)
'(:CHANGE-SUBPATH hyp goal)).

The following call to find-units illustrates the use
of abstraction in unit retrieval:
(find-units 'hyp

; ; We look on the same space as the 'stimulus-hyp' ::
(make-paths :UNIT-INSTANCES stimulus-hyp)
‘(:AND

; ; Check for adjacent (in time) hypotheses within
.. the maximum velocity range of vehicle movement ::
~IPATTERN-OBJECT
(:INDEX-TYPE time-location-list
:INDEX-OBJECT ,(hyp$time-location-list stimulus-hyp)

the implementer to organize the set of spaces in the system.
At a conceptual level, the space upon which to store the
unit is specified by the sequence of nodes traversed from a
root blackboard node through all intermediate blackboard
nodes to the leaf space node. This sequence, which unam-
biguously specifies a space, is called the blackboard/space
path. In addition, blackboards and spaces can be repli-
cated, which creates multiple copies of blackboard sub-
trees. These copies of the blackboard structure are disam-
biguated by qualifying the replicated blackboard or space
with a index.

In the original design of GBB, the blackboard path
was directly specified in find-units. Even here, the lack
of abstraction caused difficulty in modifying the black-
board structure without modifying the application code.
For example, consider the DVMT application where the
basic data blackboard consists of eight spaces (the abstrac-
tion levels SL, GL, VL, PL, ST, GT, VT, and PT). Using a
very simple control shell for initial prototyping of the KSs,
the blackboard structure might consist of a single black-
board containing the eight levels and another blackboard
containing the scheduling queues. Later on, however, a
more complicated control shell might be desired which con-

:DISPLACE ((time 1))
:DELTA ((x , *max-velocity*)

(y ,*max-velocity*)))
:ELEMENT-MATCH :within)

; ; Check event class for frequency within
'. *max-frequency-shift* of stimulus-hyp ::
;IPATTERN-OBJECT

(:INDEX-TYPE event-class
:INDEX-OBJECT ,(hyp$event-class stimulus-hyp)
:DELTA ((event-class ,*max-frequency-shift*))
:ELEMENT-MATCH :within))))

E. Specifying the Implement at ion Ma-
chinery

Specifying how locators are to be constructed from unit at-
tribute values is made by defining a mapping for each unit
class onto each blackboard space. The mapping is specified
in terms of the dimensionality of the space. For example,
here is a simple implementation of the levels in the DVMT
application where only the time dimension is used for loca-
tor construction (the other dimensions are checked during
the filtering step of the retrieval process):

tains a separate goal blackboard on which goal processing

22 AII Architectures

(define-unit-mapping (hyp) (pt pl vt vl gt gl at sl)
:INDEXES (time)
:INDEX-STRUCTURE

((time :SUBRANGES (:START :END (:WIDTH 1))))).

To add in other dimensions into the locator structure,
only the mapping declaration need be changed. Here is the
same definition implementing a locator strategy for time
and x-y-position:
(define-unit-mapping (hyp) (pt pl vt vl gt gl st 81)

:INDEXES (time (x y))
:INDEX-STRUCTURE

((time :SUBRANGES (:START :END (:WIDTH 1)))
(x :SUBRANGES (:START :END (:WIDTH 10)))
(Y ZSUBRANGES (:START :END (:WIDTH 16))))).

The parentheses in the : INDEXES value in the above
example indicates that the locators for the time dimension
are to be implemented as a single vector and the locators
for the x and y dimensions are to be grouped into a two-
dimensional array. Without the extra level of parentheses,
three vectors of locator structures would be implemented.

I?. Abstracting the Control Interface
In GBB, the control interface is separated from the black-
board database implementation by viewing changes to the
blackboard as a series of blackboard events. Control com-
ponents are then defined to be triggered on particular
events.

An important capability for constructing generic
control shells is the definition of basic units (such as
basic-hyp) that can be included in the definition of ap-
plication units. GBB’s unit inclusion mechanism (see the
definition of the HYP unit in Section B) allows event han-
dling to be appropriately inherited to the including unit’s
definition. The application implementer does not need to
know the details of the event handling machinery in spec-
ifying blackboard units, and different control shells can be
substituted without changing the unit definitions.

0 mary
Blackboard database abstraction is an appropriate imple-
mentation goal for all the reasons typically associated with
data abstraction. In this paper, we have described how in-
formation hiding abstractions can be combined to permit a
blackboard implementation system to simultaneously pro-
vide flexibility, efficiency, and generality. These abstrac-
tions are:

1. Viewing blackboard levels (spaces) as structured n-
dimensional volumes, blackboard objects (units) as oc-
cupying some extent within a space’s n dimensions,
and retrieval patterns as constrained volumes within a
space’s dimensions.

2. Extracting the information determining a unit’s dimen-
sional extent and the space(s) on which the unit is to
be placed (the blackboard path) directly from the val-
ues of the unit’s attributes and from the general (class)
definition of the unit.

Specifying the constraints of a retrieval pattern relative
to the attribute values of another (stimulus) unit.

Specifying the blackboard path for unit retrieval rela-
tive to the path of another (stimulus) unit or relative
to a particular space instance.

Separating control machinery from the blackboard
database implementation via the use of blackboard
events to trigger control activities.

Separating the three phases of blackboard system de-
velopment (blackboard and unit definition, application
and control coding, and blackboard implementation
specification), but combining the product of each phase
in a code generation facility to produce an efficient, cus-
tomized implementation.

These abstractions are implemented in the current re-
lease of GBB, and our initial experience using these infor-
mation hiding abstractions indicate that they work well at
providing flexibility, efficiency, and generality in the devel-
opment of blackboard-based AI applications.

]Corkill et al., 19861 Daniel D. Corkill, Kevin Q. Gallagher,
and Kelly E. Murray. GBB: A generic blackboard devel-
opment system. In Proceedings of the National Conference
on Artificial Intelligence, pages 1008-1014, Philadelphia,
Pennsylvania, August 1986. (Also to appear in Blackboard
Systems, Robert S. Engelmore and Anthony Morgan, edi-
tors, Addison-Wesley, in press, 1987).

/Errnan et al., 19811 Lee D. Erman, Philip E. London, and
Stephen F. Fickas. The design and an example use of
Hearsay-III. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, pages 409-415,
Tokyo, Japan, August 1981.

[Erman et al., 19801 Lee D. Erman, Frederick Hayes-Roth, Vic-
tor R. Lesser, and D. Raj Reddy. The Hearsay-H speech-
understanding system: Integrating knowledge to resolve
uncertainty. Computing Surveys, 12(2):213-253, June
1980.

[Hayes-Roth, 19851 B ar b ara Hayes-Roth. A blackboard archi-
tecture for control. Artificial Intelligence, 26(3):251-321,
July 1985.

(Johnson et al., 1987) Philip M. Johnson, Kevin Q. Gallagher,
and Daniel D. Corkill. GBB Reference Manual. Depart-
ment of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts 01003, GBB Ver-
sion IL.00 edition, March 1987.

[Lesser and Corkill, 19831 Victor R. Lesser and Daniel D.
Corkill. The Distributed Vehicle Monitoring Testbed:
A tool for investigating distributed problem solving net-
works. AI Magazine, 4(3):15-33, Fall 1983. (Also to ap-
pear in Blackboard Systems, Robert S. Engelmore and An-
thony Morgan, editors, Addison-Wesley, in press, 1987 and
in Readings from A I Magazine 1980-1985, in press, 1987).

[Nii, 19861 H. P enny Nii. Blackboard systems: The blackboard
model of problem solving and the evolution of blackboard
architectures. AI Magazine, 7(2):38-53, Summer 1986.

Corkill, Gallagher, and johnson 23

