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Abstract 
Achieving flexibility and efficiency in blackboard- 
based AI applications are often conflicting goals. 
Flexibility, the ability to easily change the black- 
board representation and retrieval machinery, can 
be achieved by using a general purpose blackboard 
database implementation, at the cost of efficient per- 
formance for a particular application. Conversely, 
a customized blackboard database implementation, 
while efficient, leads to strong interdependencies be- 
tween the application code (knowledge sources) and 
the blackboard database implementation. Both flexi- 
bility and efficiency can be achieved by maintaining a 
sufficient level of data abstraction between the appli- 
cation code and the blackboard implementation. The 
abstraction techniques we present are a crucial aspect 
of the generic blackboard development system GBB. 
Applied in concert, these techniques simultaneously 
provide flexibility, efficiency, and sufficient general- 
ity to make GBB an appropriate blackboard devel- 
opment tool for a wide range of applications. 

I. Introduction 
Blackboard architectures, first introduced in the Hearsay- 
II speech understanding system from 1971 to 1976 [Erman 
et al., 19801, have become popular for knowledge-based 
applications. The interest in the generic blackboard con- 
trol architecture of BBl [Hayes-Roth, 19851 is but one ex- 
ample of the increasing popularity of blackboard architec- 
tures. The blackboard paradigm, while relatively simple 
to describe, is deceptively difficult to implement effectively 
for a particular application. As noted by Nii [Nii, 19861, 
the blackboard model with its knowledge sources (KSs), 
global blackboard database, and control components does 
not specify a methodology for designing and implementing 
a blackboard system for a particular application. 

Historically, most blackboard-based systems have 
been built from scratch, implementing the blackboard 
model according to the criteria that appeared most ap- 
propriate for the particular application. Some implemen- 
tations were built for execution eficiency, with consider- 
able effort placed on providing fast insertion and retrieval 
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of objects on the blackboard. The KSs and control com- 
ponents in these implementations were so tied to the un- 
derlying blackboard database that making modifications 
to the blackboard structure or insertion/retrieval strate- 
gies was difficult. Other implementations were designed 
with jlexibility in mind. These applications were built on 
top of a general-purpose blackboard database retrieval fa- 
cility (for example, a relational database system [Erman 
et al., 19811). While these implementations could be re- 
structured relatively easily, their inefficiency in accessing 
objects on the blackboard made them slow. Finally, a few 
implementations were simply built in a hurry, with little 
effort toward achieving either flexibility or efficiency. 

In this paper, we concentrate on the two con- 
flicting issues of flexibility and efficiency of blackboard 
systems. We show that by appropriately hiding in- 
formation between three phases of blackboard system 
development-blackboard database specification, applica- 
tion coding (KSs and control components), and blackboard 
database implementation-it is possible to achieve both 
flexibility and efficiency. This principle of blackboard data 
abstraction is an integral design principle of the generic 
blackboard development system GBB [Corkill et al., 19861. 
Abstraction also makes GBB sufficiently general for use in 
a wide range of applications. Although we describe the 
benefits of blackboard abstraction in the context of GBB, 
these abstractions are appropriate for any blackboard de- 
velopment environment. 

II. n Flexibility and Efficiency 
Flexibility in a blackboard system is the ability to 
change the blackboard database implementation, the inser- 
tion/retrieval strategies, and the representation of black- 
board objects without modifying KS or control code 
and vice-versa. Flexibility is important for two reasons. 
First, the application writer’s understanding of the in- 
sertion/retrieval characteristics and the representation of 
blackboard objects may be uncertain and therefore sub- 
ject to change as the application is developed. Second, 
even after a prototype of the application has been com- 
pleted, the number and placement of blackboard objects 
as the application is used may differ from the prototype. 
This again requires changes to the blackboard representa- 
tion in order to achieve the desired level of performance. 
Therefore, it is important that the blackboard implemen- 
tation provides enough flexibility to allow these changes 
without significant changes to the KSs, the control code, 
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or to the blackboard database implementation machinery. 
With sufficient flexibility it is possible to actually “tune” 
the blackboard representation to the specific characteris- 
tics of the application. 

Efficiency in the insertion and retrieval of blackboard 
objects is an equally important design goal. Typically, 
improving the execution efficiency of blackboard systems 
is achieved through improvements to the quality and ca- 
pability of the control components. Reducing the num- 
ber of “inappropriate” KSs that are executed (by making 
more informed scheduling decisions) can significantly re- 
duce the time required to arrive at a solution. Making 
appropriate control decisions should never be neglected in 
the development of an application. In this paper, how- 
ever, we assume that a high-quality control component 
and high-quality KSs will be written by the application 
implementer. We will focus on the remaining source of 
execution inefficiency-the cost of inserting and retrieving 
objects from the blackboard. 

A. The Need Rx Blackboard atabase 
Efficiency 

Why are we placing such an emphasis on the efficiency 
of the blackboard database? In addition to inserting new 
hypotheses on the blackboard, KSs perform associative re- 
trieval to locate relevant hypotheses that have been placed 
on the blackboard by other KSs. This need for KSs to lo- 
cute appropriate information on the blackboard is often 
overlooked in casual discussions of blackboard-based sys- 
tems. A KS is typically invoked by one or more triggering 
stimulus objects. The KS then looks on the blackboard to 
find other objects that are “appropriately related” to the 
stimulus object. Each KS thus spends its time: 
1. retrieving objects from the blackboard based on their 

“location” on the blackboard; 

2. performing computations using existing objects 
termine new blackboard objects to create); 

(to de- 

3. creating and placing these new objects onto the black- 
board. 

The ratio of items 1 and 3 over item 2 defines the 
amount of time the KS spends interacting with the black- 
board versus the amount of time the KS spends performing 
computations. The larger this interaction/computation ra- 
tio is, the more that blackboard efficiency issues will dom- 
inate performance. The ratio of item 1 over item 3 defines 
the read/write ratio of blackboard interactions for the KS. 
This ratio can be used to aid the selection blackboard im- 
plementation and retrieval strategies. 

Note that associative retrieval is central to the black- 
board paradigm. Associative retrieval is used to provide 
anonymous communication among KSs by allowing KSs 
to look for relevant information on the blackboard rather 
than receiving the information via direct invocation by 
other KSs. Yet the blackboard provides more than this 
anonymous communication channel among KSs. Objects 
on the blackboard often have significant latency between 
the time they are placed on the blackboard and the time 
they are retrieved and used by another KS. If it were not 
for this latency, the blackboard could be “compiled away” 

into direct calls among KSs by a configuration-time com- 
piler. This latency in blackboard objects indicates that the 
blackboard also serves as a global memory for the KSs. 
Objects are held on the blackboard to be used when and 
if they are needed by the KSs. Without the blackboard 
each KS module would have to maintain its own copy of 
objects received from other modules. Whether the mem- 
ory is globally shared (on the blackboard) or private, an 
efficient means of scanning the remembered objects is still 
required. 

The amount of time a KS spends creating and scan- 
ning for objects versus performing other computations (the 
interaction/computation ratio) varies greatly between dif- 
ferent applications and even between different KSs in a sin- 
gle application. Of course, the greater this ratio the more 
significant the efficiency of the blackboard implementation 
becomes. Experience with the Hearsay-II speech under- 
standing system [Erman et al., 19801 and the Distributed 
Vehicle Monitoring Testbed (DVMT) [Lesser and Corkill, 
19831 demonstrates that blackboard performance has a sig- 
nificant effect on system performance in these applications. 

If the underlying hardware provided true associative 
retrieval, these efficiency issues would become irrelevant 
and the implementer would only need to write the applica- 
tion KSs and control code. However, the present hardware 
situation requires that the associative retrieval of black- 
board objects be simulated in software by appropriate re- 
trieval strategies on the blackboard database. 

. asic Blackboard perations 
Before we continue, it is useful to describe in more detail 
the blackboard operations that are typically required to 
support an application. 

Insertion: When a blackboard object is created, it must 
be placed onto the blackboard. Placement onto the black- 
board involves creating one or more locators, pointers that 
are used to retrieve the object. In the simplest situation 
where blackboard objects are merely pushed onto a list, the 
single locator is the list pointer. With retrieval strategies 
supporting efficient retrieval of objects based on complex 
criteria, multiple locators are used. These locators are de- 
termined based on attribute values of the object. 

Merging: When placing an object onto the blackboard, 
it can be important to determine if an “identical” object 
already exists on the blackboard. The semantics of iden- 
tity depend on the application, but an example is two hy- 
potheses created by different KSs that differ only in their 
belief attribute. Often it is desirable that hypotheses on 
the blackboard be unique; that is, no identical hypotheses 
be created on the blackboard. Instead, the two hypothe- 
ses should be merged into a single blackboard object that 
reflects the two by merging their belief attributes into a 
single attribute value in the existing hypothesis. 
Merging can be handled in two ways. One approach is to 
have all KSs avoid creating identical hypotheses by check- 
ing for an existing hypothesis before creating a new one. If 
an existing hypothesis is found, its attributes are updated 
by the KS. The second approach builds an application- 
specific merging capability into the basic blackboard object 
insertion machinery. 
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Retrieval: Retrieval involves searching the blackboard for 
objects that satisfy a set of constraints specified in a re- 
trieval pattern. Retrieval can be broken down into two 
steps. The first step determines a set of locators (based on 
the retrieval pattern) that contain pointers to potentially 
desirable objects. The second step eliminates those candi- 
dates from the first step that do not satisfy the constraints 
of the retrieval pattern. Since this elimination process can 
be computationally expensive, an efficient retrieval strat- 
egy is one where the first step substantially reduces the 
number of candidates. In order to implement an efficient, 
yet flexible, retrieval strategy the constraints must be ex- 
pressed declaratively so that they may be examined by 
the blackboard implementation machinery to determine 
the appropriate set of locators to use in the retrieval. 

Deletion: Deleting an object from the blackboard re- 
quires removing it from the locators which point to it. 
Since other blackboard objects may contain links pointing 
to the deleted object, these links must also be found and 
eliminated. For example, if links are maintained as bidi- 
rectional pointers (as is the case in GBB), deleting these 
links is simply a matter of traversing all links from the 
deleted object and then eliminating the inverse links. 

Repositioning: If the attributes that determine the ob- 
ject’s locators (such attributes are termed indexing at- 
tributes) are mbdified, the locators may also need to be 
changed (deleting some and adding others) to maintain 
consistency in the blackboard database. In many applica- 
tions, all indexing attributes are static-only the values of 
the other attributes (such as belief) are allowed to change. 
Domains involving objects that move over time, however, 
are examples of situations where the positioning of objects 
may need to be modified during the course of problem 
solving. 

A. The Unstructured Blackboard 
A simplistic approach to building a blackboard application 
is to represent each blackboard level as an unstructured 
list of the objects residing on that level. KSs add a new 
object to the blackboard by simply pushing it onto the 
appropriate list. Retrieval is performed by having the KS 
scan the list for objects of interest. 

This approach only appears to be simple, as there is 
no work to implementing the blackboard implementation 
machinery (global variables serve quite nicely). Actually, 
all the effort has been shifted into the KSs. Each KS must 
worry about the entire retrieval process, and since each 
object on the blackboard level must be tested for appro- 
priateness, the KS must perform this test as efficiently as 
possible. Each KS may also need to worry about merging 
blackboard objects; avoiding the creation of a blackboard 
object that is semantically equivalent to an existing object. 
If merging is not performed, KSs must consider the possi- 
bility that semantically equivalent objects may be retiieved 

from the blackboard. Insertion, deletion, and reposition- 
ing of blackboard objects must also be directly handled by 
the KSs as well. 

B. The General-Purpose Kernel 
In t,his approach, a general-purpose blackboard database 
facility is provided to the KS and control component imple- 
menters. The facility supports blackboard object retrieval 
based on the attributes of the objects. In its most general 
form, all attributes of the objects may be used as retrieval 
keys (for example, blackboard objects may be stored in 
a relational database). The application implementers re- 
trieve objects by writing queries in the retrieval language. 
This approach provides a very flexible development envi- 
ronment, but the unused generality of the blackboard data- 
base implementation poses severe time/space performance 
penalties. 

C. The Customized Kernel 
As noted above, the use of a general-purpose retrieval 
strategy for all blackboard applications is a source of in- 
efficiency. Retrieval of blackboard objects in a particu- 
lar application may be made significantly faster using a 
specialized retrieval mechanism. Furthermore, retrieval 
of different classes of blackboard objects within a single 
application may be best achieved using different retrieval 
strategies. One solution is to custom-code the appropriate 
retrieval strategy for each situation. In this approach an 
insertion/retrieval kernel is written that is tailored to the 
situations that arise in a particular application. When a 
KS needs to locate blackboard objects, it invokes kernel 
functions to perform an initial retrieval from the black- 
board and then uses procedural “filters” to identify which 
returned objects are actually of interest. This approach 
is significantly more efficient then the general-purpose ap- 
proach when the kernel functions significantly prune the 
number of blackboard objects that need to be filtered by 
the KS. However, it poses a number of disadvantages: 

A new customized kernel must be written to suit the 
different insertion/retrieval characteristics of each ap- 
plication. 

If the kernel is found to be inappropriate to the applica- 
tion, due to incorrect intuition during the initial design 
or to changing application characteristics, it must be 
rewritten. 

The KS code is directly coupled to the particular kernel. 
The code must be written with the knowledge of which 
attributes are matched by the kernel code and which at- 
tributes must be filtered by the KS. Changing the kernel 
attributes requires rewriting the KSs. 

The kernel code is tied to the blackboard representa- 
tion. Changes to the blackboard representation require 
modifications to the kernel code. 

The KS and kernel code is tied to the structure of black- 
board objects. Changes to the representation of at- 
tributes require code modifications. 

In short, although the custom-coded kernel approach 
can provide efficient insertion and retrieval of blackboard 
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objects, that efficiency comes at the cost of inflexibility to 
changes in the KS and control code and to changes in the 
blackboard and object representation. 

By appropriately combining a number of blackboard data 
abstraction techniques, it is possible to “have your cake 
and eat it too” with respect to flexibility and efficiency. 
The generic blackboard development system GBB [John- 
son et al., 19873 provides the application implementer and 
blackboard database administrator with distinct, abstract 
views of the blackboard. Developing an application using 
GBB involves three separate, but interrelated phases: 

blackboard & blackboard object specification: 
This phase involves describing the blackboard structure 
(the blackboard hierarchy), the structure of each black- 
board level, the attributes associated with each class of 
blackboard objects (called units in GBB), and the mapping 
of units onto blackboard levels (called spaces in GBB). 

application coding: This phase involves writing KSs 
and control code in terms of the blackboard and black- 

GBB also supports enumerated dimensions. An enu- 
merated dimension consists of a fixed set of labeled cate- 
gories. For example, in the vehicle tracking domain a space 
might also have the enumerated dimension “classification” 
corresponding to a set of vehicle types. 

Space dimensionality is a key means of abstracting the 
blackboard database. It provides information hiding by 
allowing the application code to create and retrieve units 
according to the dimensions of spaces, without regard to 
the underlying implementation of the blackboard struc- 
ture. Dimensional references, however, contain enough 
information when combined with information about the 
structure of the blackboard to allow efficient retrieval code 
to be generated. 

Here is an example of the space definitions frorn the 
DVMT application that specifies the time, x-position, y- 
position, dimensions discussed above (as well as a sensory 
event classification dimension): 

(define-spaces (PT PL VT VL GT CL ST SL) 
: UNITS (hyp) 
:DIMENSIONS 

((time :ORDERED ebb-time-range*) 
(x :ORDERED *bb-x-range*) 
(Y :ORDERED *bb-y-range*) 
(event-class :ORDERED *bb-event-class-range*))). 

board object specifications. Application code deals with 
the creation, deletion, retrieval, and updating of units. Re- 
trieval is specified by patterns based on the structure of the 
relevant blackboard space(s). 

Abstracting Unit Insertion 
When a unit is created in GBB, it is inserted on the black- 
board based on the unit’s attributes. There are two de- 
cisions to be made when inserting a unit on the black- 

blackboard database implementation specification: 
This phase involves specifying the blackboard database im- 
plementation and retrieval strategies. The locator data 
structures appropriate for the particular characteristics of 
the application are specified in this phase. These specifi- 
cations are also made in terms of the blackboard structure 
and unit specifications. 

By maintaining an abstracted view of the blackboard, 
the details of decisions made in each of the three phases 
can be hidden until they are combined in GBB’s code gen- 
eration facility. 

board. The first is what space or spaces to store the unit 
on and the second is the location of the unit within the n- 
dimensional volume of each space. The definition of each 
unit includes the information required to make these two 
decisions based on the values of the unit’s attributes. This 
insulates the KS code from the details of the blackboard 
structure. For example, the KS code does not need to know 
which attributes and dimensions are actually used to cre- 
ate locators for the unit. Thus changes in the blackboard 
structure do not necessitate changing KS code. 

Here is an example of the hypothesis unit class defi- 
nition from the DVMT application: 

A. Abstracting the Blackboard 
In GBB, each blackboard space is a highly structured n- 
dimensional volume. Space dimensionality provides a met- 
ric for positioning units onto the blackboard in terms that, 
are natural to the application domain. Units are viewed 
as occupying some n-dimensional extent within the space’s 
dimensionality. 

For example, in a speech understanding system, one of 
the dimensions of a blackboard space could be utterance 
time. In the domain of vehicle tracking, a space might 
contain the dimensions sighting time, x-position, and y- 
position. In GBB, such dimensions are termed ordered. 
Ordered dimensions use numeric ranges which support the 
concept of one unit being “nearby” another unit along that 
dimension. In the speech understanding domain, this al- 
lows a KS to extend a phrase by retrieving words that 
begin “close in time” to the phrase’s end time. 

(define-unit (HYP (:NAME-FUNCTION generate-hyp-name) 
(:INCLUDE basic-hyp-unit)) 

: SLOTS 
((belief 0 :TYPE belief) 
(event-class 0 :TYPE event-class) 
(level nil :TYPE symbol) 
(node 0 : TYPE node-index) 
(time-location-list 0 :TYPE time-location-list)) 
:LINKS 
((supported-hyps (hyp supporting-hyps) 

:UPDATE-EVENTS (supported-hyp-event)) 
(supporting-hyps (hyp supported-hyps) 

:UPDATE-EVENTS (supporting-hyp-event))) 
: DIMENSIONAL-INDEXES 
((time time-location-list) 
(x time-location-list) 
(Y time-location-list) 
(event-class event-class)) 
:PATH-INDEXES 
((node node :TYPE :label) 
(level level :TYPE :label)) 

((t ('node-blackboards node 'hyp level)))). 
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The dimensional indexes define how attributes seman- 
tically specify the positioning of hypothesis units onto the 
dimensionality of a space. (The details of which attributes 
are actually used in locator construction are specified in the 
unit-space mapping discussed in Section E.) These specifi- 
cations include the information required for destructuring 
when highly structured attribute values are used for unit 
positioning. Path indexes specify the space(s) on which 
created units are to reside. A unit is simply created by 
supplying its attributes: 
(make-hyp :NODE 

:LEVEL 
*current-node-number* 
bb-level 

activities are performed. The goal blackboard mirrors the 
structure of the data blackboard, and contains eight cor- 
responding spaces. Specifying complete blackboard/space 
paths makes such a transition cumbersome, because each 
call to find-units must be changed to reflect the new 
blackboard-space paths. 

To eliminate this problem, GBB now provides an ab- 
stract path specification mechanism which allows black- 
board/space paths to be specified rela.tive to other paths, 
to another space instance, or to the spaces on which a 
unit instance resides. For example, the path to a stimulus 
hypothesis’s space is coded as: 

GBB’s basic unit retrieval function, find-units , permits 

:TIME-LOCATION-LIST time-location-list 

a complex retrieval to be specified in its pattern language. 

:EVENT-CLASS event-class 

This declarative pattern language provides an abstraction 

:BELIEF computed-belief). 

over the blackboard database. A find-units pattern con- 

@. Abstracting Unit Retrieval 

(make-paths :UNIT-INSTANCES stimulus-hyp). 

(make-paths :UNIT-INSTANCES stimulus-hyp) 
'(:CHANCE-RELATIVE :UP st)) 

where :UP indicates to move up one level in the black- 

The path to the ST level of a hyp in the DVMT ap- 
plication can be coded as: r 

board/space hierarchy and st indicates to move back down 

(change-paths 

sists of an n-dimensional retrieval specification for partic- to the ST space. 
ular classes of units on a blackboard space. This means The path to a corresponding goal space given a hy- 
that the KS code need only specify the desired classes of pothesis unit in the DVMT application would be coded 
units, the spaces on which to look, and the values for the as. L . 

dimensions. 
We will present an example of unit retrieval shortly. 

Il. Abstracting the Blackboard Path 
Specifying a blackboard space in KS and control code is an- 
other area where data abstraction is important. In GBB, 
the blackboard is a hierarchical structure composed of 
atomic blackboard pieces called spaces. In addition to be- 
ing composed of spaces, a blackboard can also be composed 
of other blackboards (themselves eventually composed of 
spaces). This hierarchy is a tree where the leaves are spaces 
and the interior and root nodes are blackboards. Units are 
always stored on spaces; GBB’s blackboards simply allow 

(change-paths 
(make-paths :UNIT-INSTANCES stimulus-hyp) 
'(:CHANGE-SUBPATH hyp goal)). 

The following call to find-units illustrates the use 
of abstraction in unit retrieval: 
(find-units 'hyp 

; ; We look on the same space as the 'stimulus-hyp' :: 
(make-paths :UNIT-INSTANCES stimulus-hyp) 
‘(:AND 

; ; Check for adjacent (in time) hypotheses within 
.. the maximum velocity range of vehicle movement :: 
~IPATTERN-OBJECT 
(:INDEX-TYPE time-location-list 
:INDEX-OBJECT ,(hyp$time-location-list stimulus-hyp) 

the implementer to organize the set of spaces in the system. 
At a conceptual level, the space upon which to store the 
unit is specified by the sequence of nodes traversed from a 
root blackboard node through all intermediate blackboard 
nodes to the leaf space node. This sequence, which unam- 
biguously specifies a space, is called the blackboard/space 
path. In addition, blackboards and spaces can be repli- 
cated, which creates multiple copies of blackboard sub- 
trees. These copies of the blackboard structure are disam- 
biguated by qualifying the replicated blackboard or space 
with a index. 

In the original design of GBB, the blackboard path 
was directly specified in find-units. Even here, the lack 
of abstraction caused difficulty in modifying the black- 
board structure without modifying the application code. 
For example, consider the DVMT application where the 
basic data blackboard consists of eight spaces (the abstrac- 
tion levels SL, GL, VL, PL, ST, GT, VT, and PT). Using a 
very simple control shell for initial prototyping of the KSs, 
the blackboard structure might consist of a single black- 
board containing the eight levels and another blackboard 
containing the scheduling queues. Later on, however, a 
more complicated control shell might be desired which con- 

:DISPLACE ((time 1)) 
:DELTA ((x , *max-velocity*) 

(y ,*max-velocity*))) 
:ELEMENT-MATCH :within) 

; ; Check event class for frequency within 
'. *max-frequency-shift* of stimulus-hyp :: 
;IPATTERN-OBJECT 

(:INDEX-TYPE event-class 
:INDEX-OBJECT ,(hyp$event-class stimulus-hyp) 
:DELTA ((event-class ,*max-frequency-shift*)) 
:ELEMENT-MATCH :within)))) 

E. Specifying the Implement at ion Ma- 
chinery 

Specifying how locators are to be constructed from unit at- 
tribute values is made by defining a mapping for each unit 
class onto each blackboard space. The mapping is specified 
in terms of the dimensionality of the space. For example, 
here is a simple implementation of the levels in the DVMT 
application where only the time dimension is used for loca- 
tor construction (the other dimensions are checked during 
the filtering step of the retrieval process): 

tains a separate goal blackboard on which goal processing 
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(define-unit-mapping (hyp) (pt pl vt vl gt gl at sl) 
:INDEXES (time) 
:INDEX-STRUCTURE 

((time :SUBRANGES (:START :END (:WIDTH 1))))). 

To add in other dimensions into the locator structure, 
only the mapping declaration need be changed. Here is the 
same definition implementing a locator strategy for time 
and x-y-position: 
(define-unit-mapping (hyp) (pt pl vt vl gt gl st 81) 

:INDEXES (time (x y)) 
:INDEX-STRUCTURE 

((time :SUBRANGES (:START :END (:WIDTH 1))) 
(x :SUBRANGES (:START :END (:WIDTH 10))) 
(Y ZSUBRANGES (:START :END (:WIDTH 16))))). 

The parentheses in the : INDEXES value in the above 
example indicates that the locators for the time dimension 
are to be implemented as a single vector and the locators 
for the x and y dimensions are to be grouped into a two- 
dimensional array. Without the extra level of parentheses, 
three vectors of locator structures would be implemented. 

I?. Abstracting the Control Interface 
In GBB, the control interface is separated from the black- 
board database implementation by viewing changes to the 
blackboard as a series of blackboard events. Control com- 
ponents are then defined to be triggered on particular 
events. 

An important capability for constructing generic 
control shells is the definition of basic units (such as 
basic-hyp) that can be included in the definition of ap- 
plication units. GBB’s unit inclusion mechanism (see the 
definition of the HYP unit in Section B) allows event han- 
dling to be appropriately inherited to the including unit’s 
definition. The application implementer does not need to 
know the details of the event handling machinery in spec- 
ifying blackboard units, and different control shells can be 
substituted without changing the unit definitions. 

0 mary 
Blackboard database abstraction is an appropriate imple- 
mentation goal for all the reasons typically associated with 
data abstraction. In this paper, we have described how in- 
formation hiding abstractions can be combined to permit a 
blackboard implementation system to simultaneously pro- 
vide flexibility, efficiency, and generality. These abstrac- 
tions are: 

1. Viewing blackboard levels (spaces) as structured n- 
dimensional volumes, blackboard objects (units) as oc- 
cupying some extent within a space’s n dimensions, 
and retrieval patterns as constrained volumes within a 
space’s dimensions. 

2. Extracting the information determining a unit’s dimen- 
sional extent and the space(s) on which the unit is to 
be placed (the blackboard path) directly from the val- 
ues of the unit’s attributes and from the general (class) 
definition of the unit. 

Specifying the constraints of a retrieval pattern relative 
to the attribute values of another (stimulus) unit. 

Specifying the blackboard path for unit retrieval rela- 
tive to the path of another (stimulus) unit or relative 
to a particular space instance. 

Separating control machinery from the blackboard 
database implementation via the use of blackboard 
events to trigger control activities. 

Separating the three phases of blackboard system de- 
velopment (blackboard and unit definition, application 
and control coding, and blackboard implementation 
specification), but combining the product of each phase 
in a code generation facility to produce an efficient, cus- 
tomized implementation. 

These abstractions are implemented in the current re- 
lease of GBB, and our initial experience using these infor- 
mation hiding abstractions indicate that they work well at 
providing flexibility, efficiency, and generality in the devel- 
opment of blackboard-based AI applications. 
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