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Abstract 
The BBl blackboard control architecture has been 
proposed to enable systems to integrate diverse rea- 
soning methods to control their own actions. Previ- 
ous work has shown BBl’s ability to integrate hierar- 
chical planning and opportunistic focusing. We show 
how it can integrate goal-directed reasoning as well 
and demonstrate these capabilities in the PROTEAN 
system. We also compare BBl with alternative con- 
trol architectures. 

I. Overview 
Many researchers have recognized the need for AI systems to 
use diverse reasoning methods - individually or together - 
to control problem-solving actions [Corkill et al., 1982, Davis, 
1976, Durfee and Lesser, 1986, Erman et al., 1980, Erman 
et al., 1981, Genesereth and Smith, 1982, Hayes-Roth, 1985, 
Hayes-Roth and Hayes-Roth, 1979, McCarthy, 1960, Newell et 
al., 1959, Stefik, 1981b, Stefik, 1981a, Terry, 1983, Weyrauch, 
19801. In previous papers, we proposed the BBl blackboard 
control architecture [Hayes-Roth, 19851, which enables systems 
to construct control plans for their own actions in real time. We 
argued that BBl can accommodate a range of reasoning meth- 
ods and demonstrated its performance and integration of hier- 
archical planning and opportunistic focusing in several appli- 
cation systems [Garvey et al., 1987, Hayes-Roth, 1985, Hayes- 
Roth et al., 1986b, Hayes-Roth et al., 1986a, Tommelein et al., 
19871. 

In this paper, we extend the empirical evidence for BBl’s 
capabilities. Specifically, we show how BBl supports goal- 
directed reasoning and integrates it with hierarchical planning 
and opportunistic focusing. We demonstrate these capabilities 
within PROTEAN [Buchanan et al., 1985, Hayes-Roth et at., 
1986b], a BBl application system for protein structure mod- 
elling. Although we discuss only PROTEAN, we also have 
demonstrated these capabilities in other BBl systems, includ- 
ing the FEATURE system [Altman, 19861 for identifying in- 
teresting features of protein structures. In fact, BBl provides 
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generic control mechanisms to support these three kinds of rea- 
soning individually and in combination, in any BBl application 
system. 

II. easoning in 
A. The BBl Blackboard Control Archi- 

tecture 
BBl [Hayes-Roth, 1984, Hayes-Roth, 1985, Hewett and Hayes- 
Roth, 19871 is a domain-independent architecture based on the 
blackboard model [Erman et al., 1980, Nii, 19861. Multiple in- 
dependent knowledge sources (KSs) post and modify solution 
elements on a commonly accessible blaclcboard. Domain KSs 
solve domain problems on the domain blackboard. Control KSs 
develop a dynamic control plan on the control &&board. Both 
blackboards distinguish solution elements for different solution 
intervals and different abstraction levels. All knowledge sources 
operate simultaneously, generating knowledge source activation 
records (KSfiRs) when specified trigger events occur in the con- 
text of specified precondition states. A scheduler sequences the 
execution of pending KSARs in accordance with the current 
control plan. Thus, BBl repeatedly executes the following ba- 
sic cycle: 

Interpret the action of the scheduled KSAR, producing 
modifications to the appropriate domain or control black- 
board. If the KSAR changes the control blackboard, it 
may alter the criteria used to rate KSARs in the next 
step. 

Update the agenda to include KSARs triggered by the re- 
cent blackboard modifications and rate all KSARs against 
the current control plan. 

Schedule the highest-rated KSAR. 

The next two sections describe how PROTEAN is built in 
BBl and how BBl enables PROTEAN to integrate hierarchical 
planning and opportunistic focusing. 

B. PROTEAN 
PROTEAN models the three-dimensional conformations of 
proteins in accordance with biochemical constraints. PRO- 
TEAN’s domain-specific knowledge is layered upon ACCORD 
(a domain-independent framework for the class of arrangement 
problems), which is layered on BBl. (We refer to the growing 
set of compatible modules exemplified by these three as BB* 
[Hayes-Roth et al., 1986a].) 

ACCORD supports an incremental assembly method for 
solving arrangement problems. The problem-solver defines one 
or more partial arrangements, each comprising a subset of the 
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Sl : Incrementally assemble one PA 
S2 : Define one PA 

STRATE(IY 

Fl : FAVOR.CONTROL.KSARS 
F2 : Per?Orm> Create ANY.NAME 
F3 : Perform> Include SECONDARY-FE in PA1 

FOCUS 

Trigger: On cycle 0, PROTEAN’s control KS, Assemble-One-PA, 
Did-Include Object (The-Object) initiates problem-solving activity by posting strategy Sl and 

in Partial-Arrangement (The-PA). focus Fl, which favors control KSARs. 

Preconditions: 
Has The-PA Anchor (The-Anchor). 
Is-Constrained-By The-Object The-Anchor 

with Constraints (The-Constraints) 

Action: 
Anchor The-Object to The-Anchor 

in The-PA with The-Constraints. 

Given the following event and states: 

Did-Include RandomCoil4-1 in PAl. 
Has PA1 Anchor (Helixl-1). 
Is-Constrained-By RancomCoil4-1 Helisl-1 

with Constraints (CSetHlR4) 

this KS generates the action: 

Anchor RandomCoil4- 1 to He1 ixl-1 in PA1 
with CSetHlR4. 

PROTEAN might rate its action against a control decision 
perform certain kinds of actions: 

Perform: 
Position Anchorees in PA1 

with Strong Constraints. 

to 

by determining that: 

Anchor is-a Position action. 
RandomCoilB-1 is-a Anchoree. 
PA1 is PAl. 
CSetHlR4 is-a Constraint-Set, 

containing Constraints. 
The Constraints in CSetHlR4 are 

moderately Strong. 

C. PROTEAN’s Control Reasoning PROTEAN integrates opportunistic focusing with hierar- 
PROTEAN uses three of BBl’s generic control KSs, chical planning when other control KSs, triggered by intermedi- 
Initialize-Prescription, Update-Prescription, and Teminate- ate solution states, insert focus decisions into its evolvidg con- 
Prescription, to integrate hierarchical planning and opportunis- trol plan. BBl’s Terminate-Prescription KS deactivates those 
tic focusing. Consider PROTEAN’s hierirchical planning dur- focus decisions when their objectives are satisfied, just as it does 
ing the first eleven cycles of its reasoning about a protein called during hierarchical planning. Section 4 illustrates opportunistic 
the lac-repressor headpiece (figure 1). focusing. 

1; 
Hl : INTEGRATION-AND.SCHEDULlNG.RULES 
H2 : PREFERCONTROL-KSARS 

HEURISTIC 
0 1 2 3 4 5 6 7 6 9 10 11 12 13 

Figure 1: BBl/PROTEAN Control Blackboard at Cycle 
12 

On cycle 1, Initialize-Prescription, which was triggered by 
Sl, modifies Sl so that its first prescribed sub-strategy, Define- 
one-PA, is its Current-Prescription. 

On cycle 2, PROTEAN’s control KS, Define-$he-PA, 
which was triggered by Sl’s new Current-Prescription, posts 
sub-strategy S2. 

On cycle 3, Initialize-Prescription, which was triggered by 
the posting of S2, modifies S2 so that its first prescribed sub- 
strategy, Create-the-Space, is its Current-Prescription. 

On cycle 4, PROTEAN ‘s control KS, Create-the-Space, 
which was triggered by S2’s new Current-Prescription, posts 
focus F2. 

On cycle 5, the scheduler uses F2 to rate pending KSARs 
and chooses one that creates PAl. This satisfies F2’s objective. 

On cycle 6, Terminate-Prescription, triggered by satisfac- 
tion of F2’s objective, deactivates F2. 

On cycle 7, Update-Prescription, triggered by deactivation 
of F2, modifies S2 so that its second prescribed subordinate, 
Include-All-Structures, is its Current-Prescription. 

On cycle 8, PROTEAN ‘s control KS, Include-All- 
Structures, which was triggered by S2’s new Current- 
Prescription, posts focus F3. 

On cycle 9 and each of several subsequent cycles, the 
scheduler uses F3 to rate pending KSARs and chooses the best 
rated ones in turn. 

Eventually, the scheduled KSARs will Wisfy F3’s objec- 
tive and trigger Terminate-Prescription. It will deactivate F3 
and the process of plan elaboration will resume. 
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Es. Generic C roa ss fw 
Goal-Directed asoning 

A. The Semantics of Goal- 
soning 

Goal-directed reasoning entails identifying and performing ac- 
tions in order to perform other desirable actions. These other 
actions may be desirable per se or because of their effects. 

For example, suppose that PROTEAN wishes to perform 
actions of this type: 

Yoke several long Helices in PA1 
with Constraints. 

Suppose also that the current agenda contains an appropriate 
yoking action: 

Yoke Helix2-1 with Helix3-1 in PA1 with CSetH2H3. 

but that it requires satisfaction of one precondition prior to 
execution: 

Is-Anchored Helix3-l to Anchor in PA1 
with strong Constraints. 

PROTEAN might reason backward from its goal (to perform 
the designated class of yoking actions), identifying a subgoal to 
perform actions that satisfy the precondition: 

BBl can initiate goal-directed reasoning in two situations: (a) 
the system notices that it has an important focus, but no exe- 
cutable KSARs that satisfy it; or (b) the system notices that it 
has a highly rated KSAR with unsatisfied preconditions. The 
first situation corresponds to conventional goal-directed reason- 
ing; the system deliberately sets about enabling itself to per- 
form desirable actions. The second situation differs in motiva- 
tion; here, the system notices an opportunity to enable itself 
to perform desirable actions. When there is exactly one very 
important focus on the control blackboard, the two kinds of 
goal-directed reasoning will favor the same kinds of actions. 
However, when there are several foci of varying importance, 
the two kinds may favor different types of actions. For exam- 
ple, in the first situation, the system would favor actions that 
satisfy the single most important focus, while in the second 
situation, it could favor actions that get a high overall rating 
against the set of active foci. In this section, we describe generic 
BBl knowledge sources for both situations. 

BBl’s generic control knowledge source, Satisfy-Priority- 
Focus, is triggered whenever no executable KSARs rate highly 
against an important focus. When executed, it determines what 
potential actions could rate highly against the focus. If trig- 
gered (not executable) actions on the agenda match the poten- 
tial actions, Satisfy-Priority-Focus posts a goal-directed focus 
decision for each unsatisfied precondition: 

Perform Actions that Promote: 
Is-Anchored Helix3-1 to Anchor in PA1 

with strong Constraints. 

Now suppose that the agenda contains no actions that 
promote the designated state. PROTEAN might continue rea- 
soning backward to identify a new subgoal. For example, it 
might determine that the action: 

Anchor Helix3-1 to Helixl-l in PA1 with CSetH3Hl. 

would promote 
the event: 

the desired state if it were executed, and that 

Did-Include Helix3-1 in PAl. 

would trigger that action. PROTEAN could then identify a new 
subgoal to perform actions that cause the designated event: 

Perform Actions that Cause : 
Did-Include Helix3-1 in PAl. 

As in all goal-directed reasoning, this regression through 
enabling conditions could continue indefinitely. 

This simple example illustrates two key aspects of the se- 
mantics of goal-directed reasoning. First, the goal that initi- 
ates goal-directed reasoning need not be the ultimate goal of 
the problem-solving process, but can be any intermediate goal 
along the way. A good control architecture must be able to in- 
tegrate goal-directed reasoning capabilities with any other rea- 
soning method that might produce intermediate goals. Second, 
a “goal” can b e 1s mguished as a desire to perform an action, d’ t’ 
cause an event, or promote a state. A good control architecture 
must exploit knowIedge of the relations between different types 
of actions, events, and states to guide goal-directed reasoning. 
The BBl mechanism for goal-directed reasoning meets these 
two objectives. 

Promote: <state> 

If no matching actions appear on the agenda, Satisfy- 
Priority-Focus identifies knowledge sources that specify a 
matching action and, for each one, posts a goal-directed focus 
decision for each KS triggering condition: 

Cause: <event> 

If any executable KSARs rate highly against a goal- 
directed focus posted by Satisfy-Priority-Focus, the BBl sched- 
uler will choose them. If their actions produce the specified 
state or event, this will trigger Terminate-Prescription, which 
will deactivate the goal-directed focus. On the other hand, if no 
executable actions rate highly against the goal-directed focus, 
this will retrigger Satisfy-Priority-Focus. It will then post sub- 
goal foci to trigger and satisfy the preconditions of knowledge 
sources that could rate highly against the prior goal-directed fo- 
cus. Thus, Satisfy-Priority-Focus can reason backward through 
a chain of subgoals to trigger and satisfy the preconditions of 
knowledge sources that match high-priority foci. We have not 
yet implemented Satisfy-Priority-Focus. 

BBl’s generic control knowledge source, Enable-Priority- 
Action, is triggered whenever a highly rated KSAR has unsat- 
isfied preconditions. When executed, it posts a goal-directed 
focus for each unsatisfied precondition: 

Promote: <state> 

If any executable KSARs rate highly against a goal- 
directed focus posted by Enable-Priority-Action, the BBl 
scheduler will choose them. If their actions produce the spec- 
ified state, this will trigger Terminate-Prescription, which will 
deactivate the goal-directed focus. In addition, if the goal- 
directed focus raises the ratings of any triggered (but not ex- 
ecutable) KSARs, this can retrigger Enable-Priority-Action, 
which will post another goal-directed focus for each of their 
unsatisfied preconditions. Thus, Enable-Priority-Action can 
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reason backward through a chain of subgoals to satisfy the 
preconditions of high-priority actions. We have implemented 
Enable-Priority-Action and used it in several systems, includ- 
ing PROTEAN. 

BBl integrates diverse reasoning methods by permitting inde- 
pendent control knowledge sources to contribute decisions to 
an explicit, dynamic control plan on the control blackboard. 
For example, consider PROTEAN’s reasoning during part of 
its work on the lac-repressor headpiece (figure 2). At cycle 
27, PROTEAN has elaborated its hierarchical plan through 
sub-strategy S3. It is busy anchoring and yoking structured 
secondary structures in PAl. 

Is-Anchored Helix3-1 to Anchor in PA1 
with Constraints. 

On cycle 28, a number of new KSARs are triggered, in- 
cluding two control KSARs. First, the anchoring of BelixZ 
1 produced an intractably large family of locations and this 
triggers PROTEAN 's control KS, Now-Restrict. In the con- 
text of its hierarchical strategy, PROTEAN occasionally trig- 
gers Now-Restrict to post an opportunistic focus for restricting 
(statistically sampling the legal locations) of positioned objects. 
PROTEAN introduces this focus only when it identifies an un- 
manageably large family of locations for an object. Second, 
KSAR34’s high priority triggers Enable-Priority-Action. Since 
PROTEAN has an overriding preference for control actions (fo- 
cus Fl), the BBl scheduler chooses to execute these two KSARs 
on cycles 28 and 29, producing focus decisions F7 and F8 (figure 
3). F7 is an opportunistic focus to restrict Helix2-l’s family of 
locations. F8 is a goal-directed focus on actions that can satisfy 
KSAR34’s outstanding precondition. 

‘31: lncmmsntally assemble one PA , 
S2 : Define one PA I 
S3 : Position anchomble STRUCNRED-SECONDARYSTFIUCNRE 

STRATEaY > 

Fi : FAVOR-CONTROL+KSARS , 
F3 : Perform> zde SECONDARYSTRUCNRE In PA1 
F4 : Perform> Orient PA1 about long constraining constrained 

STRUCNRED.SECONDA~FlY.STRU~TURE 
FS : Perform> Anchor long inflexible consb-ained consb-ainlnp 

STRUCTURED.SECONDARY-STRUCNRE to HELIXl-1 in PAi with 
strong CONSTRAINT-SET I , 

F6 : Perform> Yoke several long inflexible constraining 
recently.reduced STRUCNRED-SECONDARY-STRUCNRE in PA1 

FOCUO 
with strong CONSTRAINT-SET 

- 

Hl : lNTEGRATION.AND.SCHEDULlNG.RULES , 
H2 : PREFERJZONTROL-KSARS 

WErnTEC , 1 . , 
16 16 17 16 19 20 21 22 23 24 26 26 27 26 

~QEA~.~QE~-K~l~..~~~T~.SO~UTlONP~Tl~~ARRA~~MSNT.P~3 

\ KSPR4e..-~*NCHO”.“-o~~o,~ ,.,. TO-HELIX 1.1-1 N.P*,.W,T”.WCT”,Hl) 

Figure 2: BBl/PROTEAN Control Blackboard and Exe- 
cutable Agenda at Cycle 27 

On cycle 27, PROTEAN has two active hierarchical plan 
foci, F5 and F6. The BBl scheduler chooses to execute 
KSAR47: 

Anchor HelixlZ-1 to Helixl-1 in PA1 with CSetHlH2. 

because it is the highest-priority (92) executable KSAR. Actu- 
ally, KSAR34: 

Yoke Melix3-1 and Helix2-1 in PA1 with CSetH2H3. 

has a higher priority (196) because of PROTEAN’s preference 
for yoking actions (focus F6), but it is not yet executable be- 
cause it has an unsatisfied precondition: 

Sl : lncmmentally assemble one PA 
52 : Define one PA , 

f 

S3 : Position anchorable STRUCTURED-SECONDARY-STRUCTURE 
smTEc4Y > 

F? : FAVOR-CONTROL-KSARS , 
F4 : Perl’orm> Orient PA1 about long constraining constrained 

STRUCTURED.SEC?NDARY-STRUCTURE 
Fti : Perform> Anchor long inflexible constrained constraining 

STRUCNRED.SECONDARY.STRUCNRE to HELlXi.1 in PA1 with 
3tmng CONSTRAINT.SET I , 

F6 : Perform> Yoke several long inflexible constraining 
recently-reduced STRUCTURED-SECONDARY-STRUCTURE in PA1 
with strong CONSTRAINT.SET I b 

F7 : Perform> Restrict HELIXP-1 in PA1 with ANY.NAME b f 
F6 : Promote> Is-anchored HELIX3.1 to ANCHOR in PA1 with 

CONSTRAINT.SET 
FQCUS - 

Ill : INTEGRATION.AND-SCHEDULING-RULES , 
H2 : PREFER-CONTROL.KSARS 

l-mJRlsnc , I I . . . . VI I 
16 19 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 3: BBl/PROTEAN at Cycle 30 

On cycle 30, the BBl scheduler uses all five active foci to 
rate pending KSARs and chooses to execute KSAR49: 

Anchor Helix3-1 to Helixl-1 in PA1 
with CSetHlH3. 

On cycle 31, the anchoring of Helix3-1 produces the 
state targetted by the goal-directed focus, F8. This allows 
goal KSAR34 to become executable and triggers Terminate- 
Prescription. The BBl scheduler chooses to execute the 
Terminate-Prescription KSAR, deactivating F8. 
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On cycle 32 (fig ure 4), the scheduler uses the remaining 
four active foci to rate KSARs. It chooses to execute KSAR59: 

Restrict Helix2-1 in PA1 
with Sampling-Constraint-2. 

Sl : Incrementally assemble one PA 
S2 : Define ““2 

, 

S3 : Position anchorable SlRUCNRED-SECONDARY.STRUCTURE 
STRATEQV > 

Fl : FAVOR.CONTROL.KSARS 
FS : Petform> Anchor long inflexible constrained constmininQ 

STFuCTURED.SECONDARY-STRUCTUREto liELIX1.l in PA1 with 
strong CONSTRAINT.SET I > 

F6 : Perform> Yoke several long inflexibls constraining 
recently-reduced STRUCTURED-SECONDARY.STRUCTLlRE in PA1 
with strong CONSTRAINT-SET I 

F? : Perform> Restrict HELIXP-1 in PA1 with ArjY.NAME 
I > 

F6 : Promote> Is-anchored HELIX%1 to ANCHOR In PA1 with 
F&US 

CONSTRAINT-SET I i 

Hl : 
H2 : PREFER.CONTROL-KSARS 

HEURISTIC * I . I . 1 I I 
20 21 22 23 24 25 26 27 26 26 30 31 32 33 

Figure 4: BBl/PROTEAN at Cycle 32 

On cycle 33, the reduction in Helixa-l’s locations achieves 
the objective of opportunistic focus F7 and triggers Terminate- 
Prescription. The scheduler chooses to execute it, deactivating 
F7. 

On cycle 34, the BBl scheduler uses the two remaining 
strategic foci, F5 and F6, to rate pending KSARs and returns 
to its planned anchoring and yoking activities. It first chooses 
the previous goal KSAR34, because of its high priority as de- 
termined by F5 and F6. 

V. Discussion 
We have developed a goal-directed reasoning mechanism 
that goes beyond the syntactic method of backward-chaining 
through rules [Buchanan and Shortliffe, 19841. The BBl mech- 
anism follows semantic links relating actions, events, and states 
to determine which actions will achieve a specified goal. 

In addition, the goal-directed reasoning mechanism oper- 
ates in two conceptually different situations: deliberate efforts 
to perform particular kinds of actions; and detection of oppor- 
tunities to perform generally desirable actions. The mecha- 
nism exploits BBl’s control semantics (decisions to perform an 
action-class, cause an event-class, or promote a state-class in 

order to achieve specified objectives) and ACCORD’s represen- 
tation of the relations (cause, promote, trigger, enable) among 
particular actions, events, and states. 

Finally, BBl distinguishes itself from other control archi- 
tectures in its ability to integrate diverse reasoning methods 
with a uniform mechanism. Although some systems permit 
multiple reasoning methods, they provide separate mechanisms 
that must be selected for any given problem-solving system 
[Genesereth and Smith, 1982, Nii and Aiello, 19791 or com- 
bined modally within a system [Newell and Simon, 1972, Pohl, 
1969, Pohl, 1971, Rosenbloom and Newell, 19821. For ex- 
ample, Corkill, Lesser, and Hudlicka’s vehicle-tracking system 
[Corkill et al., 19821 p er ormed f goal-directed reasoning when- 
ever it could generate a goal, and otherwise performed data- 
driven reasoning. Although the Hearsay-II blackboard system 
[Erman et al., 19801 integrated reasoning methods similar to 
those we have demonstrated in PROTEAN, it engineered each 
method in a different domain-specific tailoring of its underly- 
ing architecture. By unifying these several methods within a 
principled architecture, we make them available to many dif- 
ferent application systems, with whatever form of integration 
is appropriate. 

The utility of a control architecture depends upon three 
factors: (1) the architecture’s functional capabilities; (2) the 
utility of these capabilities for particular application systems; 
and (3) the cost of these capabilities. In this paper, we have 
produced empirical evidence of BBl’s value on the first two 
factors. We have shown that it supports three different rea- 
soning methods (hierarchical planning, opportunistic focusing, 
and goal-directed reasoning) individually and in fully integrated 
combinations. We also have shown that at least one applica- 
tion system, PROTEAN, can usefully exploit integrated reason- 
ing with all three methods. Other reports [Hayes-Roth et al., 
1986a, Schulman and Hayes-Roth, 19871 demonstrate the utility 
of BBl’s capabilities for explaining and learning about its own 
actions - both of which rely critically upon its control archi- 
tecture. Although we do not address the cost of BBl’s control 
reasoning in this paper, that issue is addressed in detail else- 
where [Garvey et al., 19871, with current evidence suggesting 
that the computational advantages of BBl’s control reasoning 
outweigh the computational costs. 
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