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ABSTRACT 

This paper presents a new, highly parallel 
algorithm for OPS5 production system match- 
ing, and a multiprocessor architecture to sup- 
port it. The algorithm is based on a parti- 
tioning of the Rete algorithm at the com- 
parison level, suitable for execution on an 
array of several hundred processing elements. 
The architecture ’ provides an execution 
environment which optimizes the algorithm’s 
performance. Analysis of existing production 
systems and results of simulations indicate 
that an increase in match speed of two orders 
of magnitude or more over current implemen- 
tations is possible. 

1. Introduction 

The recent popularity of expert systems in a variety of 
application areas demonstrates their value as problem 
solving tools. This technology, however, does not come 
without a price; executing expert systems is computa- 
tionally very expensive. 

Expert systems are often written using production 
languages such as OPS5[Forg81] and OPS83[Forg83]. 
Production system execution consists of repeatedly 
matching the conditions of IF-THEN rules to the prob- 
lem solving state and firing the most appropriate rule - 
which in turn alters the problem solving state. A 
majority of the computational expense is in the match- 
ing phase of the production cycle. 

Efforts have been made to define customized pro- 
cessors to speed matching but invariably bus 
bandwidths and device speeds limit their performance. 
Several multiprocessor designs have been put forward 
to deal with the amount of computation that matching 
requires. They too provide limited benefit, but more 
due to algorithmic considerations than the boundaries 
imposed by physics; the inherent granularity of the 
match operation does not allow effective use of more 
than a small number of processors. 

The paper describes a new partitioning of the esta- 
blished matching algorithm for OPS5, leading to a 
much higher potential for parallel execution than 
previous versions. An architecture to support this new 
algorithm is presented along with some initial simula- 

tion results. The simulations show that a high degree 
of parallelism can be effectively exploited. 

2. Requirements of Matching - The Rete 
Algorithm 

The match phase of a production cycle consists of a 
many-pattern/many-object matching of rules to prob- 
lem state information. The condition pattern of a rule 
is a set of, possibly interdependent, condition elements. 
The problem state is represented by a set of indepen- 
dent working memory elements. Matching results in a 
set (the conflict set) of rule instantiations which are 
rules whose conditions have been satisfied by a partic- 
ular set of working memory elements. Conflict resolu- 
tion consists of choosing the most appropriate rule 
instantiation for firing in the act phase of the produc- 
tion cycle. 

A very efficient matching algorithm, the Rete 
Algorithm[Forg82], takes advantage of two observed 
characteristics of expert system execution to speed 
matching. One is that the set of rules for a particular 
application will have many similarities in their condi- 
tion patterns. The other is that the problem state 
changes slowly, i.e. firing a rule changes only a small 
subset of the working memory. The efficiency of this 
algorithm is the reason it was chosen as the basis for 
the parallel matching algorithm described in the next 
section. 

The Rete algorithm requires compiling the condition 
patterns of a system’s rules into a network of condition 
and memory nodes. An example of this compilation is 
shown in Figure 1. 

Working memory elements are fed into one end of 
the network and filter through to emerge from the 
other end as entries to the conflict set. The memory 
nodes store partial match information as the match 
proceeds. This means that when a rule is fired, only 
the changes it makes in the working memory need be 
presented to the network. A new conflict set results 
from applying the changes indicated by the network’s 
output to the set which existed before the rule was 
fired. 

Matching, as described, consists of a set of node 
activations. Each node activation means receiving and 
storing a token (representing a piece of partial match 
information) generated by a previous node activation. 
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because individual node activations can represent a 
considerable amount of processing. Data from 
[Gupt83) shows that a two-input node activation 
involves comparing a token with an average 10 - and 
up to 870 - others. 

The above discussion suggests that, if the advan- 
tages of the Rete algorithm are to be exploited, a par- 
tition involving entities smaller than nodes is required. 
A possible solution is to partition at the level of 
token-token comparisons. A node is split into several 

Rete Network: 
working memory changes 

copies, each associated with a single token from the 
original memory nodes. Each node copy and its single 
token, from either a left side or right side memory, 
represents a separate process. As a group, the 
independent copies perform the same match function 
as the complete network. As individuals, they can be 
distributed over a large set of independent processing 
elements. This distribution poses some unique com- 
munication problems but offers a high degree of paral- 
lelism, in the order of 350 (the number of node activa- 
tions expected times the average number of token com- 
parisons to be done for each). 

Partitioning at the comparison level is being con- 
sidered (in somewhat dissimilar forms) in other 
research projects, [Gupt86] and [Ramn86], both of 
which agree that substantial speedup is possible. 

conflict set changes 
Nodes : 

0 one input 0 memory 0 two input 

Figure 1: Example Rete Network 

0 terminal 

The relatively high potential for comparison level 
partitioning is the reason it was chosen for the archi- 
tecture described here. A difficulty of this approach is 
the definition of a partitioning algorithm that both 
preserves match correctness and keeps communication 

An attribute value is extracted from the new token overhead to a manageable level. Also of concern when 
and is compared against corresponding attribute values dealing with multiprocessors is the problem of load 
extracted from each of the complementary tokens 
already stored at that node. Successful comparisons, 
as defined by the node condition, result in the genera- 
tion of new partial match information, in the form of 
tokens, sent to subsequent nodes. 

balancing. 
The next section presents the partitioned match 

algorithm and a dynamic load balancing algorithm. 

4, A Fine Grain Match Algorithm 

3. Sources of Parallelism 

One potential source of parallelism in the execution of 
production systems is in the act phase, which directly 
affects match execution. Normally, working memory 
changes caused by a rule firing are introduced to the 
matching mechanism separately. If these changes, typ- 
ically two or three, are processed in parallel, an added 
degree of parallelism of two to three can be realized. 

Two algorithms are presented in this section. The first 
algorithm is a distributed Rete algorithm based on a 
discrimination network slightly different from the one 
employed by the original matching algorithm. It dis- 
tributes the network condition information at the node 
level, and the match state information at the token 
level. This results in ‘comparison level’ distribution of 
match processing, suitable for a system containing a 
large number of processing elements. 

A second, more extensive source of parallelism is in 
the match phase via a partitioning of the Rete algo- 
rithm. One method considered is to execute node 
activations in a Rete network as individual processes. 
The degree of parallelism available is roughly 
estimated to be equal to the number of two-input node 
activations caused by a working memory change, about 
35 [Gupt83], since these activations represent the bulk 
of the processing required. A scheme involving this 
approach is discussed in [Sto184] and [Gupt84]. The 
overall expected speedup from this proposal is small 

The second algorithm operates in cooperation with 
the first to manage the workload at each processing 
element. It redistributes portions of the match process 
between match phases to- ensure a balanced load over 
the entire set of processing elements. 

4.1. A Distributed Rete Algorithm 

This algorithm is targetted for a machine consisting of 
a large number of processing elements, each with its 
own local storage. The one input nodes in the network 
can be distributed over a set of processors without 
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alteration since they use no stored data. A process will cause the generation of a new node copy to which 
representing a one input node receives working the new token is attached. One of the existing node 
memory changes and transmits tokens representing the copies, the ‘generative’ copy, is made responsible for 
ones that have passed the node’s constant tests. In this so that only one new copy is generated. (The gen- 
order to partition the rest of the network, it is neces- erative node copy is not deleted if a negative of its 
sary to provide separate memories for each node. An token arrives, so that node information is not lost.) 
example netvork where this has been done is shown in 
Figure 2. For this network’, a two input node and its 

Processing of Not nodes, which have one positive 
input and one negative input, is a little more difficult 
because of the asymmetry involved, and the fact that 
node responses are based on information about the 
entire contents of the token memory on the negated 
side. This dependence on information that does not 
exist at any one node copy is overcome by making a 
stipulation about the communication system over 
which tokens will be transported. The stipulation is 
that tokens will always reach their destinations in the 
order they were generated. There are several ways 
this could be performed; one is to force all tokens over 
a single, linearizing channel. The architecture chosen 
includes this characteristic, as is discussed in the next 
section of this paper. 

Figure 2: Network from Figure 1 
with Split Memory Nodes 

two associated memories can be processed indepen- 
dently. To isolate individual tokens for comparison, 
the two input nodes are separated into a number of 
node copies, each associated with a single token from 
one of the original memory nodes. A node copy con- 
tains comparison information for a left- or right- 
handed test, destination information for new tokens it 
forms, and some status information. Figure 3 shows 
how a single node with its left and right memories is 
split up. Duplication and splitting of memory nodes 
increases the storage required by a factor of approxi- 
mately three. 
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Node operation is as follows: node copies storing 
tokens from the positive side of the original two input 
node operate similarly to the node copies from nodes 
where both inputs are positive. The exception being 
that new tokens are generated with the opposite polar- 
ity to the ones received i.e. the addition of a new 
token on the negative side causes the deletion of a 
token previously generated by the positive side, and 
vice versa. To deal with the negated input, node 
copies storing tokens from the negative side of the ori- 
ginal node are placed in the path of tokens generated 
by their positive counterparts. If a positive-side node 
copy generates a new positive token, the negative-side 
copy will receive it and has the option of generating a 
cancelling token if it contains information that negates 
it. The negating token will always arrive at destina- 
tions later than the positive token since it was gen- 
erated later. This ensures the correctness of the can- 
celling operation. 

It1 
lt2 
lt3 
lt4 

\I - rtl rt2 rt3 rt4 

0 #7 

J 
@’ 0’ @’ @’ 

J 4 J J 
Figure 3: Example of Node Splitting 

Processing of the node/token pairs resulting from 
two input nodes with two positive inputs is done as 
one of two operations : 1) If a token arrives at a node 
on the opposite side to its stored one, the node test is 
performed and may result in the generation of a new 
token. 2) If a token arrives at a node on the same side 
as the store-d token, the node’s response will depend on 
whether the token represents the addition (positive) or 
deletion (negative) of a piece of partial match informa- 
tion. A negative of the stored token will cause the 
node/token pair to be deleted. A new positive token 

Terminal nodes can be eliminated since their func- 
tion is effectively one of addressing rule instantiations 
to the conflict set, which can be performed by the two 
input nodes at the bottom of the Rete network. 

This algorithm has the inherent property that it is 
relatively unaffected by the ratio of program size to 
data size. That is, activity over a large number of 
Rete network nodes involving few tokens each is simi- 
lar to activity concentrated at a few nodes associated 
with many tokens each. Another advantage is that 
node copies involve only one token each and so they 
represent similar amounts of processing. Nodes are 
also self managing in that the sizes of their images (in 
terms of the number of copies which exist) change to 
reflect the total amount of processing they require. 

4.2. A Dynamic Load Balancing Algorithm 

An architecture involving a large number of processing 
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elements implies that each is small; local memory areas 
can become easily overloaded. The small size of pro- 
cess entities, node/token pairs, allows them to be 
moved between processing elements to alleviate this 
problem. The following algorithm describes a method 
for spreading node copies over a large set of processors 
while insuring that a correct match takes place: 

When a generative node copy receives a positive 
token on the same side as its own stored token, it gen- 
erates a new, marked, copy of itself to hold the new 
token. The marked copy becomes immediately active. 
At the end of the match phase, the marked copy is 
passed to another processor. The first new copy 
created by the generative ‘copy becomes the new gen- 
erative copy at the beginning of the next production 
cycle, while the original copy ceases to be generative. 
This action causes active nodes in the Rete network to 
continually diffuse away from busy areas of the proces- 
sor array. If a processing element becomes filled with 
too many marked copies before the match phase is 
complete, it can force a premature end-of-cycle. This 
process involves halting the match until all marked 
node copies are passed between processors. This 
alleviates the memory shortage at the over-full proces- 
sor. The Match phase continues after this pause as if 
a new production cycle was starting. The frequency of 
these forced end-of-cycle pauses is related to the load- 
ing of processing elements, resulting in a graceful 
decline in performance of the match phase as loading 
increases. 

5. Architecture 

Two issues must be addressed in defining an appropri- 
ate architecture for the algorithms of the previous sec- 
tion. 

One is the organization of processing elements to be 
used. This is based on the communication required 
between processors for the algorithms described. The 
second consideration is the internal structure of a pro- 
cessing element. These are influenced by the require- 
ments of both the match operation and the communi- 
cation systems defining the organization of processors. 

5.1. Organization of Processing Elements 

After considering several alternatives, a processor 
organization consisting of a single uniform layer of pro- 
cessing elements was chosen. There are three main 
reasons for this choice. First, a single array of process- 
ing elements allows effective response to node activa- 
tion requests which occur simultaneously at various 
depths in the network. This means a fast response 
time to widely used match information. Secondly, the 
amount of data to be stored at any one node in the 
Rete network varies from system to system, and 
dynamically as a system runs. Allowing all node infor- 
mation to be spread over all processing elements avoids 
the memory balancing problems that a segmented sys- 
tem might incur. And thirdly, nodes involving negated 
rule conditions imply examining the node’s entire set 

of tokens before a response can be made. Using a sin- 
gle array of processing elements, and the communica- 
tion system described below, makes a solution to this 
problem compatible with non-negated node activity. 

An effective way to send match information to all 
processing elements quickly is with a broadcast system 
in the form of a word-width distribution tree. Such a 
system provides a high bandwidth path but avoids 
high fanout at any one node. It also allows some asyn- 
chronism of data flow between various parts of the 
tree. This async hronism helps accommodate varying 
processing speeds at different processing elements. A 
similar structure with data flowing from leaves to root 
can be used to collect responses (new tokens) from the 
processing elements. Individual processing elements 
will respond infrequently but ,as a whole, the array 
will produce responses roughly equal in volume to the 
original input. This means that the collection tree 
requires a root with bandwidth equal to that of the 
broadcast tree but limb bandwidths can reduce toward 
the processing elements, terminating in serial connec- 
tions. Responses may be required by other processing 
elements and so the roots of the two trees are joined, 
creating a data path loop through the processing ele- 
ments. Responses that are meant for the host, i.e. 
conflict set changes, are separated out and redirected 
at this joining point. 

The broadcast/collection system described provides 
a path for match information flow as well as a point of 
contact for the host which executes the Conflict Reso- 
lution and Act phases of the production cycle. The 
load balancing algorithm also requires communication 
between processing elements, but the broadcast system 
is inappropriate for this. Unlike match information 
which must be sent to all processing elements, a 
packet carrying a new node/token pair is only required 
at one - the one that will store it. The broadcast sys- 
tem is not suited to this type of transfer since it treats 
all destinations equally. Also, node/token packets 
have no particular destination; short trips over a local, 
low bandwidth communication network will suffice. 
The design considered here uses a square network, con- 
necting a processing element to each of its four closest 
neighbours (this degree of interconnect may be recon- 
sidered based on simulation results). Figure 4 shows 
an example of the organization of processing elements 
chosen for 16 elements. (The local communication 
mesh is completed with links between processing ele- 
ments on opposite edges, forming a uniform toroid.) 

The broadcast system uses a word-width path while 
the local links are serial. The number of local links, 
and the expected number of links traversed by a 
node/token packet before seating, give the local com- 
munication system an effective bandwidth roughly 
equal to the broadcast system bandwidth. 

5.2. Processing Elements 

Each processing element must perform a number 
duties during a production cycle. They include: 

of 
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I- 

A Filter/Interface Node 

B Broadcast Network 

C PE Array and Local Network 

D Collection Network 

Figure 4: Processor Organization 

1 1 A 
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I 
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1) receiving and filtering match information from 
the broadcast system 
2) performing match 
and stored tokens 

operations on received token 

3) transmitting new match information 
lection half of the broadcast system 
4) receiving and storing (or passing on) node/token 
packets from the local communication system, and 

to the col- 

5) generating 
sary 

new node/token packets when neces- 

This set of responsibilities varies widely in process- 
ing requirement. It also contains few constraints on 
simultaneous execution. For these reasons, the struc- 
ture chosen for the processing elements is a central 
processor (and ROM) which performs the various algo- 
rithm operations, and a set of state machines to handle 
data transfers over the I/O ports. Figure 5 shows a 
block diagram of a processing element. The state 
machines can perform data transfers independently but 

broadcast local 
links 

Figure 5: Processing Element Contents 

are coordinated by the central processor. The central 
processor also performs memory management of a com- 
mon RAM area using a two level interrupt system. A 
bus arbiter controls access to the common RAM bus on 
a priority basis. 

The BSM is a state machine connected to the 
broadcast port. Its responsibility is to store relevant 
incoming tokens into the local RAM. A CAM, accessi- 
ble to both the central processor and the BSM, con- 
tains the IDS of nodes which have copies in local RAM. 
The CAM supplies present/not-present responses to 
the BSM. The central processor has full access to the 
CAM which also contains, as data, pointers to the 
node copies in RAM. The QSM, when triggered by the 
central processor, transmits new match information 
onto the collection half of the broadcast system. The 
LOSM, when triggered by the central processor, 
transmits new node/token packets onto one of the 
local communication links. The LISMs either store 
incoming node/token packets, or pass them through 
the processing element, depending on the amount of 
free space available. 

It is estimated that a processing element, less 
memory blocks, is about the same complexity as a sim- 
ple 8-bit microprocessor. 

6. Simulations 

A first pass design of the architecture has been com- 
pleted and a register transfer level simulator has been 
written. The purpose of simulations is two-fold : 

1) The detail of simulation allows the verification of 
the algorithms, using a small problem. They also 
provide some initial performance values, for the 
small problem considered. 

2) The simulations also provide accurate timing 
information for more elaborate simulations involving 
larger problems, which will not be done at the regis- 
ter transfer level. 

6.1. The Simulator 

The form of the simulator allows the simulation of 1, 
2, 4, 8, and 16 processing element arrays. (The 4x4 
array was the largest simulated due to the computa- 
tional expense of such detailed simulations.) 

The fairly mature CMOS technology available at 
the University is assumed: Processor clock speed is 10 
MHz. ROM, RAM and CAM access times are 200, 250, 
and 500 nS, respectively. 

In the simulations, the conflict resolution and act 
phases do not take place. Changes to the working 
memory are fed into the array as if a rule firing had 
taken place, and response time is observed. 

The simulation subject is a program loop performed 
by a single production. The production contains four 
condition elements and two actions; the condition ele- 
ments contain two constant values along with the class 
type, and one or two variables each (all typical values). 
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The characteristics of execution are : 
1) A rule firing causes 2 working memory changes. 
2) Each working memory change causes 
cessful) one-input node activations. 

3 (all suc- 

3) Each working memory 
node act ivat ions. And 

change causes 6 two input 

4) The match 
conflict set. 

phase generates two changes to the 

Simulations were performed using 
RAM area to avoid memory shortages. 

a large enough 

6.2. SirnuPation Resullts 

Simulations for arrays using 1, 2, 4, 8, and 16 proces- 
sors were performed until the cycle time stabilized - a 
steady state was reached. Table 1 shows the match 
times recorded for these simulations. The match phase 
execution time for the problem simulated running on a 
VAX 11/780 using an OPS83 compiler is 3.26 mS. 
(The cycle time on the VAX was 3.62 mS. The con- 
flict resolution and act phases of the cycle consisted of 
a simple ‘for’ loop containing a ‘fire 1’ statement. It 
was assumed that this would take a maximum of 10% 
of the cycle time. This corresponds to a match time of 
approximately 3.26 mS.) 

r & of Processors I Execution Time (mS) 1 

1 16 1 1.000 I 

Table 1: Match Execution Times 

7. Discussion 

The results of these simulations show that the level of 
parallelism exploited by the distributed Rete algorithm 
is approximately four. The theoretical limit is 6 to 8 
(from the number of tokens at each level), ignoring the 
effects of the one input nodes. Node level parallelism 
for the simulated rule is 1 to 2 (from the widths of the 
two layers of two input nodes in the network), again 
ignoring the effect of the one input nodes. The advan- 
tage of the distributed Rete algorithm increases with 
program size. As discussed, the level of parallelism 
available in an average production system is in the 
order of 300. Another consideration is variation in the 
number of tokens stored at the nodes in a network. 
This has little impact on the distributed Rete algo- 
rithm but has a strong effect on the execution of an 
algorithm based on node level parallelism. 

Another matter to be considered in analyzing the 
results of the simulations is the Det of technology 
parameters used. They are based on a particular pro- 
cess available at the University, and trail the leading 
edge by a factor of about 3. The simulation serves to 

compare the effects of varying the processor array size; 
the comparison of match times shown versus the VAX 
processing time could be improved by using more 
advanced technology parameters. 

Also available from the simulator is an all but com- 
plete set of software for a processing element. This 
has allowed a second analysis of instruction set require- 
ments. It is apparent that some improvement is possi- 
ble in this area as well. 

With some additions to the model, further simula- 
tion and analysis will determine the effects of such 
things as larger overall system size, and the possibility 
of multiple rule firing systems. These will impact on 
the size of processing array required, and so the 
requirements of the communication systems - particu- 
larly the broadcast/collection system. Also to be 
determined is the performance penalty associated with 
production systems that approach the available 
memory size. 

Investigations are also under way to extend the 
matching capabilities of the architecture to those of 
OPS83 which includes simple function calls. One 
approach that may be taken is the use of a non- 
homogeneous array, using the processing elements 
described along with arithmetic processing elements for 
the execution of mathematical functions. This will add 
to the flexibility of the programming environment at a 
minimum of cost in match execution time. 
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