
A Multiprocessor Architecture for Production System Matching

Michael A. Kelly, Rudolph E. Seviora

Department of Electrical Engineering
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

This paper presents a new, highly parallel
algorithm for OPS5 production system match-
ing, and a multiprocessor architecture to sup-
port it. The algorithm is based on a parti-
tioning of the Rete algorithm at the com-
parison level, suitable for execution on an
array of several hundred processing elements.
The architecture ’ provides an execution
environment which optimizes the algorithm’s
performance. Analysis of existing production
systems and results of simulations indicate
that an increase in match speed of two orders
of magnitude or more over current implemen-
tations is possible.

1. Introduction

The recent popularity of expert systems in a variety of
application areas demonstrates their value as problem
solving tools. This technology, however, does not come
without a price; executing expert systems is computa-
tionally very expensive.

Expert systems are often written using production
languages such as OPS5[Forg81] and OPS83[Forg83].
Production system execution consists of repeatedly
matching the conditions of IF-THEN rules to the prob-
lem solving state and firing the most appropriate rule -
which in turn alters the problem solving state. A
majority of the computational expense is in the match-
ing phase of the production cycle.

Efforts have been made to define customized pro-
cessors to speed matching but invariably bus
bandwidths and device speeds limit their performance.
Several multiprocessor designs have been put forward
to deal with the amount of computation that matching
requires. They too provide limited benefit, but more
due to algorithmic considerations than the boundaries
imposed by physics; the inherent granularity of the
match operation does not allow effective use of more
than a small number of processors.

The paper describes a new partitioning of the esta-
blished matching algorithm for OPS5, leading to a
much higher potential for parallel execution than
previous versions. An architecture to support this new
algorithm is presented along with some initial simula-

tion results. The simulations show that a high degree
of parallelism can be effectively exploited.

2. Requirements of Matching - The Rete
Algorithm

The match phase of a production cycle consists of a
many-pattern/many-object matching of rules to prob-
lem state information. The condition pattern of a rule
is a set of, possibly interdependent, condition elements.
The problem state is represented by a set of indepen-
dent working memory elements. Matching results in a
set (the conflict set) of rule instantiations which are
rules whose conditions have been satisfied by a partic-
ular set of working memory elements. Conflict resolu-
tion consists of choosing the most appropriate rule
instantiation for firing in the act phase of the produc-
tion cycle.

A very efficient matching algorithm, the Rete
Algorithm[Forg82], takes advantage of two observed
characteristics of expert system execution to speed
matching. One is that the set of rules for a particular
application will have many similarities in their condi-
tion patterns. The other is that the problem state
changes slowly, i.e. firing a rule changes only a small
subset of the working memory. The efficiency of this
algorithm is the reason it was chosen as the basis for
the parallel matching algorithm described in the next
section.

The Rete algorithm requires compiling the condition
patterns of a system’s rules into a network of condition
and memory nodes. An example of this compilation is
shown in Figure 1.

Working memory elements are fed into one end of
the network and filter through to emerge from the
other end as entries to the conflict set. The memory
nodes store partial match information as the match
proceeds. This means that when a rule is fired, only
the changes it makes in the working memory need be
presented to the network. A new conflict set results
from applying the changes indicated by the network’s
output to the set which existed before the rule was
fired.

Matching, as described, consists of a set of node
activations. Each node activation means receiving and
storing a token (representing a piece of partial match
information) generated by a previous node activation.

36 Al Architectures

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Rule Conditions:

1) (Cl ^attrl 12 ^attr6 <= 7)
(C2 ^attr2 > 5)

(C4)

2) (Cl *attrl 12 ^attr2 <X>)
(C3 ^attr3 <X>)

(w

3) (C2
(C4

* attr2
A attrl

> 5 ^attr3 <Y>)
<Y> ^attr3 >= <Y>)

because individual node activations can represent a
considerable amount of processing. Data from
[Gupt83) shows that a two-input node activation
involves comparing a token with an average 10 - and
up to 870 - others.

The above discussion suggests that, if the advan-
tages of the Rete algorithm are to be exploited, a par-
tition involving entities smaller than nodes is required.
A possible solution is to partition at the level of
token-token comparisons. A node is split into several

Rete Network:
working memory changes

copies, each associated with a single token from the
original memory nodes. Each node copy and its single
token, from either a left side or right side memory,
represents a separate process. As a group, the
independent copies perform the same match function
as the complete network. As individuals, they can be
distributed over a large set of independent processing
elements. This distribution poses some unique com-
munication problems but offers a high degree of paral-
lelism, in the order of 350 (the number of node activa-
tions expected times the average number of token com-
parisons to be done for each).

Partitioning at the comparison level is being con-
sidered (in somewhat dissimilar forms) in other
research projects, [Gupt86] and [Ramn86], both of
which agree that substantial speedup is possible.

conflict set changes
Nodes :

0 one input 0 memory 0 two input

Figure 1: Example Rete Network

0 terminal

The relatively high potential for comparison level
partitioning is the reason it was chosen for the archi-
tecture described here. A difficulty of this approach is
the definition of a partitioning algorithm that both
preserves match correctness and keeps communication

An attribute value is extracted from the new token overhead to a manageable level. Also of concern when
and is compared against corresponding attribute values dealing with multiprocessors is the problem of load
extracted from each of the complementary tokens
already stored at that node. Successful comparisons,
as defined by the node condition, result in the genera-
tion of new partial match information, in the form of
tokens, sent to subsequent nodes.

balancing.
The next section presents the partitioned match

algorithm and a dynamic load balancing algorithm.

4, A Fine Grain Match Algorithm

3. Sources of Parallelism

One potential source of parallelism in the execution of
production systems is in the act phase, which directly
affects match execution. Normally, working memory
changes caused by a rule firing are introduced to the
matching mechanism separately. If these changes, typ-
ically two or three, are processed in parallel, an added
degree of parallelism of two to three can be realized.

Two algorithms are presented in this section. The first
algorithm is a distributed Rete algorithm based on a
discrimination network slightly different from the one
employed by the original matching algorithm. It dis-
tributes the network condition information at the node
level, and the match state information at the token
level. This results in ‘comparison level’ distribution of
match processing, suitable for a system containing a
large number of processing elements.

A second, more extensive source of parallelism is in
the match phase via a partitioning of the Rete algo-
rithm. One method considered is to execute node
activations in a Rete network as individual processes.
The degree of parallelism available is roughly
estimated to be equal to the number of two-input node
activations caused by a working memory change, about
35 [Gupt83], since these activations represent the bulk
of the processing required. A scheme involving this
approach is discussed in [Sto184] and [Gupt84]. The
overall expected speedup from this proposal is small

The second algorithm operates in cooperation with
the first to manage the workload at each processing
element. It redistributes portions of the match process
between match phases to- ensure a balanced load over
the entire set of processing elements.

4.1. A Distributed Rete Algorithm

This algorithm is targetted for a machine consisting of
a large number of processing elements, each with its
own local storage. The one input nodes in the network
can be distributed over a set of processors without

Kelly and Seviora 37’

alteration since they use no stored data. A process will cause the generation of a new node copy to which
representing a one input node receives working the new token is attached. One of the existing node
memory changes and transmits tokens representing the copies, the ‘generative’ copy, is made responsible for
ones that have passed the node’s constant tests. In this so that only one new copy is generated. (The gen-
order to partition the rest of the network, it is neces- erative node copy is not deleted if a negative of its
sary to provide separate memories for each node. An token arrives, so that node information is not lost.)
example netvork where this has been done is shown in
Figure 2. For this network’, a two input node and its

Processing of Not nodes, which have one positive
input and one negative input, is a little more difficult
because of the asymmetry involved, and the fact that
node responses are based on information about the
entire contents of the token memory on the negated
side. This dependence on information that does not
exist at any one node copy is overcome by making a
stipulation about the communication system over
which tokens will be transported. The stipulation is
that tokens will always reach their destinations in the
order they were generated. There are several ways
this could be performed; one is to force all tokens over
a single, linearizing channel. The architecture chosen
includes this characteristic, as is discussed in the next
section of this paper.

Figure 2: Network from Figure 1
with Split Memory Nodes

two associated memories can be processed indepen-
dently. To isolate individual tokens for comparison,
the two input nodes are separated into a number of
node copies, each associated with a single token from
one of the original memory nodes. A node copy con-
tains comparison information for a left- or right-
handed test, destination information for new tokens it
forms, and some status information. Figure 3 shows
how a single node with its left and right memories is
split up. Duplication and splitting of memory nodes
increases the storage required by a factor of approxi-
mately three.

rtl
rt2
rt3
rt4
I 4

It1 1t2 It3 lt4

0 #7 0 #7

&

\
0 #7

\
0 #7

&

Node operation is as follows: node copies storing
tokens from the positive side of the original two input
node operate similarly to the node copies from nodes
where both inputs are positive. The exception being
that new tokens are generated with the opposite polar-
ity to the ones received i.e. the addition of a new
token on the negative side causes the deletion of a
token previously generated by the positive side, and
vice versa. To deal with the negated input, node
copies storing tokens from the negative side of the ori-
ginal node are placed in the path of tokens generated
by their positive counterparts. If a positive-side node
copy generates a new positive token, the negative-side
copy will receive it and has the option of generating a
cancelling token if it contains information that negates
it. The negating token will always arrive at destina-
tions later than the positive token since it was gen-
erated later. This ensures the correctness of the can-
celling operation.

It1
lt2
lt3
lt4

\I - rtl rt2 rt3 rt4

0 #7

J
@’ 0’ @’ @’

J 4 J J
Figure 3: Example of Node Splitting

Processing of the node/token pairs resulting from
two input nodes with two positive inputs is done as
one of two operations : 1) If a token arrives at a node
on the opposite side to its stored one, the node test is
performed and may result in the generation of a new
token. 2) If a token arrives at a node on the same side
as the store-d token, the node’s response will depend on
whether the token represents the addition (positive) or
deletion (negative) of a piece of partial match informa-
tion. A negative of the stored token will cause the
node/token pair to be deleted. A new positive token

Terminal nodes can be eliminated since their func-
tion is effectively one of addressing rule instantiations
to the conflict set, which can be performed by the two
input nodes at the bottom of the Rete network.

This algorithm has the inherent property that it is
relatively unaffected by the ratio of program size to
data size. That is, activity over a large number of
Rete network nodes involving few tokens each is simi-
lar to activity concentrated at a few nodes associated
with many tokens each. Another advantage is that
node copies involve only one token each and so they
represent similar amounts of processing. Nodes are
also self managing in that the sizes of their images (in
terms of the number of copies which exist) change to
reflect the total amount of processing they require.

4.2. A Dynamic Load Balancing Algorithm

An architecture involving a large number of processing

38 Al Arckitectures

elements implies that each is small; local memory areas
can become easily overloaded. The small size of pro-
cess entities, node/token pairs, allows them to be
moved between processing elements to alleviate this
problem. The following algorithm describes a method
for spreading node copies over a large set of processors
while insuring that a correct match takes place:

When a generative node copy receives a positive
token on the same side as its own stored token, it gen-
erates a new, marked, copy of itself to hold the new
token. The marked copy becomes immediately active.
At the end of the match phase, the marked copy is
passed to another processor. The first new copy
created by the generative ‘copy becomes the new gen-
erative copy at the beginning of the next production
cycle, while the original copy ceases to be generative.
This action causes active nodes in the Rete network to
continually diffuse away from busy areas of the proces-
sor array. If a processing element becomes filled with
too many marked copies before the match phase is
complete, it can force a premature end-of-cycle. This
process involves halting the match until all marked
node copies are passed between processors. This
alleviates the memory shortage at the over-full proces-
sor. The Match phase continues after this pause as if
a new production cycle was starting. The frequency of
these forced end-of-cycle pauses is related to the load-
ing of processing elements, resulting in a graceful
decline in performance of the match phase as loading
increases.

5. Architecture

Two issues must be addressed in defining an appropri-
ate architecture for the algorithms of the previous sec-
tion.

One is the organization of processing elements to be
used. This is based on the communication required
between processors for the algorithms described. The
second consideration is the internal structure of a pro-
cessing element. These are influenced by the require-
ments of both the match operation and the communi-
cation systems defining the organization of processors.

5.1. Organization of Processing Elements

After considering several alternatives, a processor
organization consisting of a single uniform layer of pro-
cessing elements was chosen. There are three main
reasons for this choice. First, a single array of process-
ing elements allows effective response to node activa-
tion requests which occur simultaneously at various
depths in the network. This means a fast response
time to widely used match information. Secondly, the
amount of data to be stored at any one node in the
Rete network varies from system to system, and
dynamically as a system runs. Allowing all node infor-
mation to be spread over all processing elements avoids
the memory balancing problems that a segmented sys-
tem might incur. And thirdly, nodes involving negated
rule conditions imply examining the node’s entire set

of tokens before a response can be made. Using a sin-
gle array of processing elements, and the communica-
tion system described below, makes a solution to this
problem compatible with non-negated node activity.

An effective way to send match information to all
processing elements quickly is with a broadcast system
in the form of a word-width distribution tree. Such a
system provides a high bandwidth path but avoids
high fanout at any one node. It also allows some asyn-
chronism of data flow between various parts of the
tree. This async hronism helps accommodate varying
processing speeds at different processing elements. A
similar structure with data flowing from leaves to root
can be used to collect responses (new tokens) from the
processing elements. Individual processing elements
will respond infrequently but ,as a whole, the array
will produce responses roughly equal in volume to the
original input. This means that the collection tree
requires a root with bandwidth equal to that of the
broadcast tree but limb bandwidths can reduce toward
the processing elements, terminating in serial connec-
tions. Responses may be required by other processing
elements and so the roots of the two trees are joined,
creating a data path loop through the processing ele-
ments. Responses that are meant for the host, i.e.
conflict set changes, are separated out and redirected
at this joining point.

The broadcast/collection system described provides
a path for match information flow as well as a point of
contact for the host which executes the Conflict Reso-
lution and Act phases of the production cycle. The
load balancing algorithm also requires communication
between processing elements, but the broadcast system
is inappropriate for this. Unlike match information
which must be sent to all processing elements, a
packet carrying a new node/token pair is only required
at one - the one that will store it. The broadcast sys-
tem is not suited to this type of transfer since it treats
all destinations equally. Also, node/token packets
have no particular destination; short trips over a local,
low bandwidth communication network will suffice.
The design considered here uses a square network, con-
necting a processing element to each of its four closest
neighbours (this degree of interconnect may be recon-
sidered based on simulation results). Figure 4 shows
an example of the organization of processing elements
chosen for 16 elements. (The local communication
mesh is completed with links between processing ele-
ments on opposite edges, forming a uniform toroid.)

The broadcast system uses a word-width path while
the local links are serial. The number of local links,
and the expected number of links traversed by a
node/token packet before seating, give the local com-
munication system an effective bandwidth roughly
equal to the broadcast system bandwidth.

5.2. Processing Elements

Each processing element must perform a number
duties during a production cycle. They include:

of

Kelly and Seviora 39

I-

A Filter/Interface Node

B Broadcast Network

C PE Array and Local Network

D Collection Network

Figure 4: Processor Organization

1 1 A

B

I

C

!

D

1) receiving and filtering match information from
the broadcast system
2) performing match
and stored tokens

operations on received token

3) transmitting new match information
lection half of the broadcast system
4) receiving and storing (or passing on) node/token
packets from the local communication system, and

to the col-

5) generating
sary

new node/token packets when neces-

This set of responsibilities varies widely in process-
ing requirement. It also contains few constraints on
simultaneous execution. For these reasons, the struc-
ture chosen for the processing elements is a central
processor (and ROM) which performs the various algo-
rithm operations, and a set of state machines to handle
data transfers over the I/O ports. Figure 5 shows a
block diagram of a processing element. The state
machines can perform data transfers independently but

broadcast local
links

Figure 5: Processing Element Contents

are coordinated by the central processor. The central
processor also performs memory management of a com-
mon RAM area using a two level interrupt system. A
bus arbiter controls access to the common RAM bus on
a priority basis.

The BSM is a state machine connected to the
broadcast port. Its responsibility is to store relevant
incoming tokens into the local RAM. A CAM, accessi-
ble to both the central processor and the BSM, con-
tains the IDS of nodes which have copies in local RAM.
The CAM supplies present/not-present responses to
the BSM. The central processor has full access to the
CAM which also contains, as data, pointers to the
node copies in RAM. The QSM, when triggered by the
central processor, transmits new match information
onto the collection half of the broadcast system. The
LOSM, when triggered by the central processor,
transmits new node/token packets onto one of the
local communication links. The LISMs either store
incoming node/token packets, or pass them through
the processing element, depending on the amount of
free space available.

It is estimated that a processing element, less
memory blocks, is about the same complexity as a sim-
ple 8-bit microprocessor.

6. Simulations

A first pass design of the architecture has been com-
pleted and a register transfer level simulator has been
written. The purpose of simulations is two-fold :

1) The detail of simulation allows the verification of
the algorithms, using a small problem. They also
provide some initial performance values, for the
small problem considered.

2) The simulations also provide accurate timing
information for more elaborate simulations involving
larger problems, which will not be done at the regis-
ter transfer level.

6.1. The Simulator

The form of the simulator allows the simulation of 1,
2, 4, 8, and 16 processing element arrays. (The 4x4
array was the largest simulated due to the computa-
tional expense of such detailed simulations.)

The fairly mature CMOS technology available at
the University is assumed: Processor clock speed is 10
MHz. ROM, RAM and CAM access times are 200, 250,
and 500 nS, respectively.

In the simulations, the conflict resolution and act
phases do not take place. Changes to the working
memory are fed into the array as if a rule firing had
taken place, and response time is observed.

The simulation subject is a program loop performed
by a single production. The production contains four
condition elements and two actions; the condition ele-
ments contain two constant values along with the class
type, and one or two variables each (all typical values).

40 Al Architectures

The characteristics of execution are :
1) A rule firing causes 2 working memory changes.
2) Each working memory change causes
cessful) one-input node activations.

3 (all suc-

3) Each working memory
node act ivat ions. And

change causes 6 two input

4) The match
conflict set.

phase generates two changes to the

Simulations were performed using
RAM area to avoid memory shortages.

a large enough

6.2. SirnuPation Resullts

Simulations for arrays using 1, 2, 4, 8, and 16 proces-
sors were performed until the cycle time stabilized - a
steady state was reached. Table 1 shows the match
times recorded for these simulations. The match phase
execution time for the problem simulated running on a
VAX 11/780 using an OPS83 compiler is 3.26 mS.
(The cycle time on the VAX was 3.62 mS. The con-
flict resolution and act phases of the cycle consisted of
a simple ‘for’ loop containing a ‘fire 1’ statement. It
was assumed that this would take a maximum of 10%
of the cycle time. This corresponds to a match time of
approximately 3.26 mS.)

r & of Processors I Execution Time (mS) 1

1 16 1 1.000 I

Table 1: Match Execution Times

7. Discussion

The results of these simulations show that the level of
parallelism exploited by the distributed Rete algorithm
is approximately four. The theoretical limit is 6 to 8
(from the number of tokens at each level), ignoring the
effects of the one input nodes. Node level parallelism
for the simulated rule is 1 to 2 (from the widths of the
two layers of two input nodes in the network), again
ignoring the effect of the one input nodes. The advan-
tage of the distributed Rete algorithm increases with
program size. As discussed, the level of parallelism
available in an average production system is in the
order of 300. Another consideration is variation in the
number of tokens stored at the nodes in a network.
This has little impact on the distributed Rete algo-
rithm but has a strong effect on the execution of an
algorithm based on node level parallelism.

Another matter to be considered in analyzing the
results of the simulations is the Det of technology
parameters used. They are based on a particular pro-
cess available at the University, and trail the leading
edge by a factor of about 3. The simulation serves to

compare the effects of varying the processor array size;
the comparison of match times shown versus the VAX
processing time could be improved by using more
advanced technology parameters.

Also available from the simulator is an all but com-
plete set of software for a processing element. This
has allowed a second analysis of instruction set require-
ments. It is apparent that some improvement is possi-
ble in this area as well.

With some additions to the model, further simula-
tion and analysis will determine the effects of such
things as larger overall system size, and the possibility
of multiple rule firing systems. These will impact on
the size of processing array required, and so the
requirements of the communication systems - particu-
larly the broadcast/collection system. Also to be
determined is the performance penalty associated with
production systems that approach the available
memory size.

Investigations are also under way to extend the
matching capabilities of the architecture to those of
OPS83 which includes simple function calls. One
approach that may be taken is the use of a non-
homogeneous array, using the processing elements
described along with arithmetic processing elements for
the execution of mathematical functions. This will add
to the flexibility of the programming environment at a
minimum of cost in match execution time.

8. References

[ForgSl] Forgy, C.L. “OPS5 Users Manual”, Technical
CMU-CS-81-135, Carnegie-Mellon University 1981.

Report

[Forg82] Forgy, C.L. “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”, Artificial Intelli-
gence 19, pp. 17-37, September 1982.

Forg85] Forgy, C.L. “OPS83 User’s Manual and Report”, Produc-
tion Systems Technologies Incorporated, 1985.

[Gupt83] Gupta, A., Forgy, C.L. “Measurements on Production
Systems”, Technical Report CMU-CS-83-167, Carnegie-Mellon
University, 1983.

[Gupt84] Gupta, A., “Implementing OPS5 Production Systems on
DADO”, Technical Report C&lU-CS-84-115, Carnegie-Mellon
University 1984.

[Gupt86] Gupta, A., Forgy, C.L., Newell, A., Wedig, R., “Parallel
Algorithms and Architectures for Rule-Based Systems”, Proceed-
ings 13th International Symposium on Computer Architecture, pp.
28-37, 1986.

[Ramn86] Ramnarayan, R., Zimmermann, G., Krolikoski, S.,
“PESA-1: A Parallel Architecture For OPS5 Production System”,
Proceedings of the Nineteenth Annual Hawaii International
Conference on System Sciences, pp. 201-205, 1986.

[Sto184] Stolfo, S. J., “Five Parallel Algorithms for Production Sys-
tem Execution on the DAD0 Machine”, Proceedings National
Conference on Artificial Intelligence, pp. 300-307, 1984.

kelly and Seviora 41

