
CP as a general- urpose constraint-language

Vijay A. Saraswat
Computer Science Department Carnegie Group Inc

Carnegie-Mellon University Station Square
Pittsburgh Pa 15213 Pittsburgh Pa 15209

Abstract

In this paper we present the notion of concurrent,
controllable constraint systems. We argue that purely
declarative search formalisms, whether they are based on
dependency-directed backtracking (as in Steele [Steele, 19801
or Bruynooghe [Bruynooghe and Pereira, 19851) or bottom-
up breadth-fist (albeit incremental) definite clause theorem
provers (as in deKleer’s ATM approach [deKleer, 19861) or
built-in general purpose heuristics (as in Laurier’s work [Lau-
riere, 19781) are unlikely to be efficient enough to serve as
the basis of a general purpose programming formalism which
supports the notion of constraint-based computation. To that
end we propose the programming language CP[J, 1, &], based
on the concurrent interpretation of definite clauses, which al-
lows the user to express domain-specific heuristics and con-
trol the forward search process based on eager propogation
of constraints and early detection of determinacy and con-
tradiction. This control follows naturally from the alternate
metaphor of viewing constraints as processes that communi-
cate by exchanging messages. The language, in addition, al-
lows for the dynamic generation and hierarchical specification
of constraints, for concurrent exploration of alternate solutions,
for pruning and merging sub-spaces and for expressing pref-
erences over which portions of the search space to explore
next.

. . . a constraint is a declarative statement of relation-
ship... (and) a computational device for enforcing
the relationship... [From Steele [Steele, 1980]]’

In this paper we examine the concurrent logic program-
ing (CLP) language CP2 which strongly supports the notion
of concurrent, controllable constraint-based programming in
the sense of [Steele, 19801. Steele presented the programming
model of constraint-based computation, and raised the possi-
bility that some day a general purpose programming language
may be constructed based on such a model. He noted that
‘The constraint model of computation is not supported by any

‘All quotations in this paper are from [Steele, 19801, unless otherwise noted

2More speciIicaUy, the language discussed in this paper is CP[L, I, &]. which is one
of a family of language.s, all based on the concurrent interprebon of &finite clauses.
See e.g. [Saraswat, 1987c] for more details.

programming language in existence today; the closest approx-
imation is probably Prolog.’ We show that a concurrent inter-
pretation of definite clause programs provides a computational
paradigm that strongly supports constraint-based computation,
and, in fact, naturally extends it to the notion of controllable
constraint-based systems.

‘The d@culty with general theorem provers is the
combinatorial explosion which resuls from simply
trying to deduce all possible consequences from a
set of statements. There must be some means of lim-
iting this explosion in a useful way. The challenge
is to invent a limiting technique powerful enough to
contain the explosion, permissive enough to allow
deductions of use&l results in most cases of interest,
and simple enough that the programmer can under-
stand the consequences of the limiting mechanism.’

This quote captures our attempt to design control struc-
tures to allow the programmer to control (limit) potential com-
binatorial explosions. To the list above, we only wish to add
that, in some appropriate sense, the control structures should
be sound. The soundness of the control structures we present
with respect to the logical interpretation of the clauses un-
derlying the program has been proven in the author’s thesis
([Saraswat, forthcoming]), in which the language is studied
more extensively (this paper is an abstract of a chapter in it).
A formal operational semantics may be found in [Saraswat,
1987c].

We recapitulate the essentials here.

A. Syntax
We take as primitive the usual logic programming notions of
variables, junctions, predicates and atomic formulas (‘atoms’).

For the purposes of this paper, a CP program consists
of a sequence of clauses. A clause consists of a head and
a body separated (in sequence) by the <if’ symbol (‘+-‘), a
guard and a commitment operation (which is one of ‘I’, the
don’t care commit or ‘&‘, the don’t know commit). me guard
is a conjunction of atoms for built-in predicates. For syntactic
convenience, the guard and the commitment operation may
be omitted: they default to the special goal true and ‘ 1’
respectively.

Saraswat 53

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

The body is a goal system g, which is either an atom (no-
tated a), a simple goal system (gl.g2), an isolated atom ([a])
or an isolated goal system ([gl .g2]). A query is syntactically
the same as the body of a clause.

The head of a clause is a well-annotated atom in a
language whose non-logical symbols contain a special unary
function-symbol ‘J. ‘. If t is a term in the language, we say
that tL is an annotated term (if t is a functional term, then
its function symbol must be different from ‘1 ‘.) A term is
well-annotated if either it does not contain an annotated sub-
term or every super-term of an annotated term is annotated.
For simplicity of syntax, we ussume that every super-term of
an annotated term is annotated: hence only the innermost an-
notations need be explicitly written.

formal semantics
Very roughly, the operational semantics of CB programs is the
same as the operational semantics of pure Horn clauses (us-
ing SLD-refutation) except that in every step of the refutation
process, the mgul of two atoms is used, instead of the mgu
(most general unifier), and it must be possible to satisfy the
(built-in) goals if any, in the guard.

The mgul of two terms, when it exists, is the same as the
ntlagll~ of the two terms. To compute the mgul of two terms,
one follows the same algorithm as for computing the mgu
except that an annotated term t J can unify against another
term t 1 only if the term t 1 is not a variable. In case t 1 is a
variable, unification is said to suspend until such time as some
event causes t 1 to be instantiated Decorating a term in the
head of a clause with a ‘1’) then ensures that the clause can be
used only for goals in which the argument in the corresponding
place is a non-variuble.

As an example consider the clauses, which may be taken
to define a ‘plus’ constraint:

xi + YJ = 2 t Z is X+Y.
xj. + Y = zl t Y is Z-X.
x + Y.J = z.j, f- Z is Y-X.

For a given goal A + B = C, these clauses are applica-
ble only if at least two of the variables A, B, C are instan-
tiated.

The only ‘built-in’ predicates we consider in this paper
are is/2 and ==/2. A goal A is B) succeeds if B can be
‘evaluated’ as an arithmetic expression; the value is unified
with A. The god A == B suspends until either A is unified
with B or A and B are (top-level) instantiated, whence it suc-
ceeds if A and B can be unified and fails otherwise. Consider
the following clause:

x * Y = ZJ. t- X == Y I X is sqrt(Z).

A god A * B = C succeeds (with this clause) only if
A and B are either the same variable or are instantiated, and
C is instantiated; as a result of the execution of this clause X
(and Y) are unified with sqrt (Z) .

We now consider the execution cycle in more detail.
Computation is initiated by the presentation of a query t
a0 . ..a.-1. Each goal ai will try to find a proof by ‘1 ‘-
unifying against the head of a clause, and finding proofs for
first, the goals in the guard and, after committing, for the goals
in the body of that clause. Unification results in bindings for
the variables in the goal, which are communicated (applied)
to sibling goals at commit-time. A goal can simultaneously
attempt to unify against the heads of all the clauses; however
different clause invocations for a goal must commit in some
serializable order.

Commitment involves three operations: the atomic pub-
lication of the answer bindings, action on other OR-siblings
and promotion of body goals.

Atomic publication of bindings means that the bindings
are (conceptually) instantaneously applied to all the goals in
the body of the clause and to all AND-sibling goals of the
committing goal ai. The extent of this publication is deter-
mined by goal system boundaries: the bindings are published
only upto the smallest enclosing goal system boundary.

Together with atomic publication, both the commit op-
erations also cause the goals in the body goal-system to be
executed as AND-siblings of the goals that were the siblings
of the committing goal (i.e. their uncles).

The commit operators differ in the actions they take with
respect to other OR-siblings of the committing guard system,
either in the same clause or in other clauses. The don’t care
commit kills them all. The don’t know commit allows OR-
siblings to keep on computing, in effect allowing a goal to
commit multiple bindings. Each of these bindings is commit-
ted to a different copy of the rest of the goals in the smallest
enclosing GoalSyst em. Thus, if a goal ‘&‘-commits bind-
ings 8, all the sibling goals in the smallest enclosing goal
system are split into two at commit time. Goal system bound-
aries are one-way walls: they allow bindings committed by a
sibling of the goal system to enter the block, but prevent the
bindings committed from within the goal system from leaving.

As computation proceeds, the goal system within a block
may thus repeatedly split. Two adjacent blocks (isolated atom
or isolated goal systems) are combined when there is no more
progress to be made in either one, i.e. either each has termi-
nated successfully or suspended for lack of input. The pro-
cess of merging two blocks bl and b2 is concerned with
creating another block b which has one OR-branch for every
compatible pair of OR-branches, one each from bl and b2.
An OR-branch contains a sequence of suspended blocks and
goals, together with (possibly vacuous) substitution, which is
the composition of all the substitutions that have been com-
mitted internal to the goal system. Two OR-branches are com-
patible if their substitutions are compatible. Informally, two
substitutions are compatible if they do not assign ununifiable
values to the same variable. The substitution associated with
an OR-branch of b is obtained from these two substitutions,
and the sequence of blocks obtained by concatenating the two
sequences. Conceptually, all the branches of one block may
be merged with all the branches of another block in parallel.

Finally, computation succeeds when a branch finds a so-

54 Al Architectures

lution (no more goals left to prove); it fails when all branches
terminate in failure.

8s 8 constraint-based language

Design Goal 2: As fur us possible, u construint-
bused system shall perform its computations on the
basis of locally available information only.

In our language the only information that can influence
The use of CP as a constraint language should now be clear:
goals in the current resolvent correspond to constraints and

the behaviour of a Constraint is information contained directly
in the constraint in the form of variables, and their current

the program axioms correspond to the rules of behaviour for bindings. Hence this design goal is trivially satisfied.
a constraint.

The versatility of CP as a constraint language arises from
its simple solution for tie control problem. The control prob-
lem in the context of constraint-based languages is: given an
under-constrained system, which of a possible set of assump-
tions to make next? Another useful metaphor for programming
in CP is to think of a goal as representing a process, pro-
cesses communicating with each other by instantiating shared
variables to structures which may contain other terms, called
messuges.3 (Recall that variables may be instantiated not just
to constants - actually, just integers in Steele’s language -
but also to arbitrary terms.) This allows the user to solve the
control problem by programming negotiations between vari-
ous constraints. For example, in the case of a discrete con-
straint satisfaction problem, it is possible for the user to write
constraints such that if local propagation does not yield a solu-
tion then the constraints cooperate to determine the problem-
variable which is the most constrained (the so-called ‘fail-fist’
heuristic) and have the constraint corresponding to this variable
make ussumptions about the possible values for the variable.
(We discuss a specific example in the next section.) The el-
egance of the CP solution to the control problem lies in that
such heuristic rules ure expressed in the sume language, using
the same concepts und techniques us the construint propaga-
tion rules.

The process metaphor provides another important bene-
fit: in CLP languages, process behaviours are naturally spec-
ified in a recursive form. Such rules can describe in a suc-
cinct fashion arbitrary recursively constructed topologies and
inter-connection patterns for constraints. For example, one
constraint system may be specified for solving the N-queens
problem, where N is an input: this system uses the value of N
to spawn a network of appropriate size. Moreover constraint
definitions (and not just connection structures) may recursively
depend upon each other.

We now consider the design criteria Steele lays down for
a constraint language.

Design Goal I : As fur us possible, the computational
stute of u constraint system should depend only upon
the relationships stated so fup; and not on the order
in which they were stated.

In our language constraints am represented by means of
goals in the current resolvent. All these goals are treated as
AND-parallel siblings: hence any one goal can reduce at any
given time, provided that it can find a matching behaviour.

31he venutility of CP as a conixment programming language is. demonstrated in
e.g. [Saraswat, foxthcoming& and [Saraswat, 1987a]. An ovexview of programming
techniques in the related CLF’ language Cmcurreat Pro@ may be found in [Shapiro,
19861.

Design Goal 3: A constraint-bused system should, so
fur us possible, be monotonic. The more is known,
the more can be deduced, and once a value has
been deduced, knowing more true things ought not
to capriciously invalidate it.

The language CP is monotonic in a very important sense:
as computation progresses, only bindings that are consistent
with the ones aheady generated are produced. Moreover, if a
constraint is known to be true, then providing more information
(in the form of bindings) cunnot invalidate the constraint.

Steeele goes on to discuss the use of the term ‘capri-
ciously’. He wants to be able to allow the system to make
assumptions which may later be retracted in the light of more
information in a reasoned way.

, assumptions are made when a goal reduces us-
ing a rule with the don’t know commitment operation: the
bindings associated with this resolution step constitute the as-
sumptio made in this inference. In a sequential language
such as olog, such bindings may be undone on, backtrack-
ing: in CP, such bindings are always assumed to be made to a
copy of the current resolvent. Hence taking a tentative step in
CP always corresponds to splitting the current query into two
disjoint queries. If future processing results in a contradiction
being discovered, the current copy is merely discarded; mean-
while the other copy is free to make other derivations, and
thus pursue other contexts.

The presence of the other control structures may also be
motivated naturally. The ‘J, ‘-annotation is essential: without
some such annotation on unification it is impossible to specify
(efficiently) that a highly non-deterministic constraint should
suspend until more bindings are available which reduce the
number of possible solutions for the constraint. The don’t-care
commit is necessary to allow the user to specify that alternate
solutions to the constraint are to be eschewed, thus pruning
portions of the search-space. Both the ‘J. ‘-annotation and the
‘ I’ commit introduce incompleteness.

Finally, blocks allow the user to provide control informa-
tion which may be quite important in solving loosely connected
constraint systems efficiently. There are two important compu-
tational savings that blocks may introduce. First, in a system
such as 1. b . [gl 1 . [g2]] , any determinate bindings intro-
duced by b are shared by all the sub-contexts in gl and 92.
(This is quite analgous to pushing sub-contexts in Conniver-
style languages in which changes in the original context are
visible in the sub-context as well.) The advantage here is that
whenever gl splits into two, b is not copied into both the sub-
contexts, resulting in b making the same transition twice. The
price paid is that no bindings that gl produces can be commu-
nicated to b until merge-time. Second, in a system in which

Saraswat 55

gl and g2 spawn a large number (say cl and c2 respectively)
of alternate branches only a few of which survive at the end
(say br 5 cl and bz 5 CZ), the number of contexts examined
are cl + c2 + bl x b2 rather than cl + c2 + ci x ~2. If there
are few interactions between two large constraint systems, it
is preferrable therefore to solve the constraint-systems in iso-
lation and then combine the results. (See [Saraswat, 1987c]
for a discussion of an example used in [deKleer, 19861 to il-
lustrate pathological behaviour by chronological backtracking
systems.)

To sum up, our language design exhibits the follow-
ing charactersitics: it allows the user to express control over
the constraint-propagation as well as the constraint-selection
phase using naturally motivated concurrent programming id-
ioms, it allows a natural notion of user-definable, hierarchical,
mutually-recursive constraints, and provides a problem-solving
framework in which multiple solutions are possible, together
with the possibility of simultaneously working in more than
one context.

In the following we consider a solution to the N-queens exam-
ple. We first consider a purely declarative program (with no
search control) and then consider how to improve its perfor-
mance by programming various heuristics.

A. A straightforward solution
We consider a solution (first presented and discussed in
[Saraswat, 1987c]) in which there is a constraint for every
square on the chess-board. We imagine that in order to solve
the N-queens problem, we have spawned an N x N chess-board
with one cell constraint for every square on the board. Each
constraint has six parameters: its I and J coordinates, and four
wires (variables), the H, V, L R. All the cells on the same row
have the same H wire, on the same column the same V wire,
on the same left-diagonal the same L wire and on the same
right-diagonal the same R wire. (Each wire could thus have a
fan-in/fan-out of up to N.) There are just two behaviours for
every cell. Each cell may either non-deterministically decide
that it has a queen (in which case it sends its Id on all the four
wires incident on it and terminates) or else it waits for some
cell on the horizontal wire to declare that it has a queen and
then it terminates. Note that as soon as a cell decides that it
has a queen, no other cell that is dominated by it can decide
that it has a queen (no two cells have the same ID). It should
be clear that this solution is correct and complete: exactly the
set of solutions to the N-queens problem may be obtained by
following these behaviours. The specification for a cell is
simply:

cell(I,J,J,I,I,I) t true & true.
cell(I,J,Hi ,V,L,R) t true & true.

B. Doing local propagation before choosing
While the program given above is correct, it may not exhibit
good run-time behaviour, because of two reasons. First, there
is no guarantee that when a cell asserts that it has a queen,
all other cells which have are dominated die immediately. If
these cells remain they may be unneccesarily copied each time
a new assumption is made. Second, it is preferable to detect
as soon as possible when all the cells on a row or column
have been dominated by queens already placed (and there is
no queen on that row or column), because such a state is bound
to lead to failure. Along the same lines, if a row or column has
just one non-dominated cell left, then it is preferrable if that
cell immediately decides that it has a queen, because given
the problem formulation, it must have one for a solution to
exist. In a phrase, local propagation should precede making
assumptions.

We obtain this effect as follows. We assume a mechanism
(discussed in the next section) for serialising phases. There
will be N phases; in each phase, one queen is placed, and the
next phase is not initiated until the previous phase quiesces.
A phase is initiated when a cell (the leader for this phase)
decides that it has a queen and is considered to terminate when
the leader detects quiescence. We now consider a topology in
which each cell, besides having its I and J coordinates and the
four wires, is also connected in four rings, one each along the
horizontal, vertical, left-diagonal and right-diagonal axes. For
each process, its ring-connections consist merely of two wires,
one connecting it to its predecessor (the left connection) in
the ring and the other connecting it to its successor (the right
connection). (To be precise, the left connection of a cell is
the same variable as the right connection of the cell to its
left along the given axis; similarly for the other direction.)

As before when a cell decides it has a queen, it sends
its Id on the H, V, L and R wires. We would now like
to force the cells that get dominated to die in the current
phase. We can achieve this by using a variation of the so-
called short-circuit technique for detecting distributed termi-
nation ([Saraswat, 1987a]).

The idea is simple. When a cell is dominated, it should
die; this implies that it should remove itself from all its rings.
It can remove itself from a ring by shorting its left and
right connections on that ring: by shorting two variables,
we mean unifying them. After it does this, its right neighbour
will become the right neighbour of its left neighbour, and vice
versa. (This is analogous to removing an item from a linked
list.) IIowever, when a cell decides it has a queen all Phe
cells remaining on all its rings will remove themselves. After
this occurs, the leader will find that, for each ring, its left
and right connections are the same; it thus detects that the
current phase has terminated.

We give a sample rule to show how straightforward this is
to implement in CP. We assume that each cell is of the form:

cell(id(I,J), wire(H, V, L, R),
rings(Hleft-Hright, Vleft-Vright),
rings(Lleft-Lright, Rleft-Rright))

where the variable names should be self-explanatory. (Note:

56 Al Architectures

Note that as in the previous section, the leader process
can detect that the current phase has quiesced exactly when all
its four rings are shorted. With this new protocol, however, it
is possible that the four rings are never shorted: this happens
exactly when, as a result of placing this queen, some row or
column which does not yet have a queen has no more cells
left. This results in the current context being deadlocked and
consequently abandoned by the problem-solver.

2. EWy deltectio~m of deterlminacy
We leave as an exercise for the reader the problem of

programming a protocol such that if in the current phase a cell
is detected as being the only one in a row or column, that cell
is forced to have a queen (in the current phase).

ext queen wiselly.
In the previous sections, the decision of which cell next decides
to have a queen is still non-deterministic: any cell that is not
yet dominated may so decide. We now sketch how the same
techniques may be used to implement heuristics for making
this control decision.

Recall that the problem was formulated by having a ce 11
constraint for every square on the chess-hoard. We now add
an extra constraint enable, one for each row in the chess
board. Each enable constraint is linked into the horizontal
ring for that row, and all the enable constraints are con-
nected together in another ring. Conceptually, a token will
flow down the links of this privilege ring, which will ensure
mutual exclusion, i.e. sequentialisation of each phase. A cell
can decide that it has a queen only if the enable process on
its horizontal ring has the token. When this cell detects the
end of its quiescence phase, the token is passed on to the next
enable contraint in the privilege ring. This simple protocol
results in the queens being placed in row-major order.

Consider now the implementation of a heuristic (which is
quite useful for the N-queens problem) that in each phase only
a cell with the highest weight can decide to place a queen:
the weight of a cell is the number of other cells this cell can
dominate if it had a queen. It is straightforward to associate
with each ring a count of the number of elements in the ring,
to have each cell compute its weight from the counts of the
rings incident on it and to add to the cells a network of max
devices which select in each phase the cell with the highest
weight. This cell then becomes the leader for the next phase,
and continues the cycle of waiting for local propagation to
terminate (achieved by means of the end goal) enabling the
selection phase for determining the next leader, and passing
control to it.

ark er
We very briefly consider other related work. More details may
be found in [Saraswat, forthcoming].

CP differs from other CLP languages such as G
ParIog in using atomic commitment, together with unifica-
tion (as opposed to matching) during process execution. This
ability seems fundamental to obtain the dynamic dataflow that

characterises constraint-based computation. Concurrent Pro-
log is also based on unification, but it introduces a problem-
atic capability annotation which does not seem to be directly
relevant to modelling constraints. An alternative viewpoint re-
lated to constraints may be found in [Lassez and Jaffar, 19871.
The techniques in [van Hentemyck and Dincbas, 19861 seem
to be easily representable, and are naturally generalised, in
our framework. CP avoids the combination of chronological
backtracking and pre-determined order for instantiating prob-
lem variables that plague the use of Prolog as a language for
constraint-based computation ([deIUeer, 19861). By making
sure that the opportunity is available to propagate all the con-
sequences of a choice to all the constraints before making the
next choice, we ensure that it is possible to write programs
such that when a contradiction is discovered, the last choice
made contributes to the contradiction.

Problem solvers based on reason-maintenance systems
have recently been studied (e.g. [deKleer, 19861, [McDermott,
19831). In such systems, as computation progresses, the prob-
lem solver informs the RMS of the assumptions it makes and
of the justifications that it discovers. The (well-known) prob-
lem here is that may be quite difficult for the problem-solver
to determine which dependencies to capture in its justification
of an inference and also quite difficult for the problem-solver
to exercise control.

I am grateful to Jon Doyle for extensive discussions, to Guy
Steele and to many others at CMU and CGI (particularly Gary
Kahn, Dave Homig and Mark Fox) who have discussed this
work with me.

Saraswat 57

References

[Bruynooghe and Pereira, 19851 M. Bruynooghe and L.M.
Pereira. Deduction revision by intelligent backtracking.
In J.A. Campbell, editor, Implementations of Prolog, El-
lis Horwood, 1985.

[deIUeer, 19861 J. deKleer. An assumption based TMS. Ar-
tifical Intelligence, 28:127-162, 1986.

[Lassez and Jaffar, 19871 J-.L. Lassez and J. Jaffar. Con-
straint logic programming. In Proceedings of the
SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, ACM, January 1987.

[Lauriere, 19781 J.-L. Lauriere. A language and a program for
stating and solving combinatorial problems. AZ, 10:29-
127, 1978.

[McDermott, 19831 D. McDermott. Contexts and data-
dependencies: a synthesis. IEEE Trans. on Pattern-
directed Inference and Machine Intelligence, 5(3), 1983.

[Saraswat, 1987a] V.A. Saraswat. Detecting distributed termi-
nation efficiently: the short-circuit technique in FCP(A
, I). February 1987. To be submitted

[Saraswat, 1987c] V.A. Saraswat. The concurrent logic pro-
gramming language CP: definition and operational se-
mantics. In Proceedings of the SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, ACM,
January 1987.

[Saraswat, forthcoming] V.A. Saraswat. Concurrent Logic
Programming Languages. PhD. thesis, Carnegie-Mellon
University, forthcoming.

[Shapiro, 19861 E.Y. Shapiro. Concurrent Prolog: a progress
report. IEEE Computer, ~~4-58, August 1986.

[Steele, 19801 G.L. Steele. The definition and implementa-
tion of a computer programming language based on Con-
straints. PhD thesis, M.I.T, 1980.

[van Hentenryck and Dincbas, 19861 P. van Hentenryck and
M. Dincbas. Domains in logic programming. In Pro-
ceedings of the AA.&, pages 759-765, 1986.

5% Al Architectures

