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Abstract 

In this paper we present the notion of concurrent, 
controllable constraint systems. We argue that purely 
declarative search formalisms, whether they are based on 
dependency-directed backtracking (as in Steele [Steele, 19801 
or Bruynooghe [Bruynooghe and Pereira, 19851) or bottom- 
up breadth-fist (albeit incremental) definite clause theorem 
provers (as in deKleer’s ATM approach [deKleer, 19861) or 
built-in general purpose heuristics (as in Laurier’s work [Lau- 
riere, 19781 ) are unlikely to be efficient enough to serve as 
the basis of a general purpose programming formalism which 
supports the notion of constraint-based computation. To that 
end we propose the programming language CP[J, 1, &], based 
on the concurrent interpretation of definite clauses, which al- 
lows the user to express domain-specific heuristics and con- 
trol the forward search process based on eager propogation 
of constraints and early detection of determinacy and con- 
tradiction. This control follows naturally from the alternate 
metaphor of viewing constraints as processes that communi- 
cate by exchanging messages. The language, in addition, al- 
lows for the dynamic generation and hierarchical specification 
of constraints, for concurrent exploration of alternate solutions, 
for pruning and merging sub-spaces and for expressing pref- 
erences over which portions of the search space to explore 
next. 

. . . a constraint is a declarative statement of relation- 
ship... (and) a computational device for enforcing 
the relationship... [From Steele [Steele, 1980]]’ 

In this paper we examine the concurrent logic program- 
ing (CLP) language CP2 which strongly supports the notion 
of concurrent, controllable constraint-based programming in 
the sense of [Steele, 19801. Steele presented the programming 
model of constraint-based computation, and raised the possi- 
bility that some day a general purpose programming language 
may be constructed based on such a model. He noted that 
‘The constraint model of computation is not supported by any 

‘All quotations in this paper are from [Steele, 19801, unless otherwise noted 

2More speciIicaUy, the language discussed in this paper is CP[L, I, &]. which is one 
of a family of language.s, all based on the concurrent interprebon of &finite clauses. 
See e.g. [Saraswat, 1987c] for more details. 

programming language in existence today; the closest approx- 
imation is probably Prolog.’ We show that a concurrent inter- 
pretation of definite clause programs provides a computational 
paradigm that strongly supports constraint-based computation, 
and, in fact, naturally extends it to the notion of controllable 
constraint-based systems. 

‘The d@culty with general theorem provers is the 
combinatorial explosion which resuls from simply 
trying to deduce all possible consequences from a 
set of statements. There must be some means of lim- 
iting this explosion in a useful way. The challenge 
is to invent a limiting technique powerful enough to 
contain the explosion, permissive enough to allow 
deductions of use&l results in most cases of interest, 
and simple enough that the programmer can under- 
stand the consequences of the limiting mechanism.’ 

This quote captures our attempt to design control struc- 
tures to allow the programmer to control (limit) potential com- 
binatorial explosions. To the list above, we only wish to add 
that, in some appropriate sense, the control structures should 
be sound. The soundness of the control structures we present 
with respect to the logical interpretation of the clauses un- 
derlying the program has been proven in the author’s thesis 
([Saraswat, forthcoming]), in which the language is studied 
more extensively (this paper is an abstract of a chapter in it). 
A formal operational semantics may be found in [Saraswat, 
1987c]. 

We recapitulate the essentials here. 

A. Syntax 
We take as primitive the usual logic programming notions of 
variables, junctions, predicates and atomic formulas (‘atoms’). 

For the purposes of this paper, a CP program consists 
of a sequence of clauses. A clause consists of a head and 
a body separated (in sequence) by the <if’ symbol (‘+-‘), a 
guard and a commitment operation (which is one of ‘I’, the 
don’t care commit or ‘&‘, the don’t know commit). me guard 
is a conjunction of atoms for built-in predicates. For syntactic 
convenience, the guard and the commitment operation may 
be omitted: they default to the special goal true and ‘ 1’ 
respectively. 
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The body is a goal system g, which is either an atom (no- 
tated a), a simple goal system (gl.g2), an isolated atom ([a]) 
or an isolated goal system ([gl .g2 ]). A query is syntactically 
the same as the body of a clause. 

The head of a clause is a well-annotated atom in a 
language whose non-logical symbols contain a special unary 
function-symbol ‘J. ‘. If t is a term in the language, we say 
that tL is an annotated term (if t is a functional term, then 
its function symbol must be different from ‘1 ‘.) A term is 
well-annotated if either it does not contain an annotated sub- 
term or every super-term of an annotated term is annotated. 
For simplicity of syntax, we ussume that every super-term of 
an annotated term is annotated: hence only the innermost an- 
notations need be explicitly written. 

formal semantics 
Very roughly, the operational semantics of CB programs is the 
same as the operational semantics of pure Horn clauses (us- 
ing SLD-refutation) except that in every step of the refutation 
process, the mgul of two atoms is used, instead of the mgu 
(most general unifier), and it must be possible to satisfy the 
(built-in) goals if any, in the guard. 

The mgul of two terms, when it exists, is the same as the 
ntlagll~ of the two terms. To compute the mgul of two terms, 
one follows the same algorithm as for computing the mgu 
except that an annotated term t J can unify against another 
term t 1 only if the term t 1 is not a variable. In case t 1 is a 
variable, unification is said to suspend until such time as some 
event causes t 1 to be instantiated Decorating a term in the 
head of a clause with a ‘1’) then ensures that the clause can be 
used only for goals in which the argument in the corresponding 
place is a non-variuble. 

As an example consider the clauses, which may be taken 
to define a ‘plus’ constraint: 

xi + YJ = 2 t Z is X+Y. 
xj. + Y = zl t Y is Z-X. 
x + Y.J = z.j, f- Z is Y-X. 

For a given goal A + B = C, these clauses are applica- 
ble only if at least two of the variables A, B, C are instan- 
tiated. 

The only ‘built-in’ predicates we consider in this paper 
are is/2 and ==/2. A goal A is B) succeeds if B can be 
‘evaluated’ as an arithmetic expression; the value is unified 
with A. The god A == B suspends until either A is unified 
with B or A and B are (top-level) instantiated, whence it suc- 
ceeds if A and B can be unified and fails otherwise. Consider 
the following clause: 

x * Y = ZJ. t- X == Y I X is sqrt(Z). 

A god A * B = C succeeds (with this clause) only if 
A and B are either the same variable or are instantiated, and 
C is instantiated; as a result of the execution of this clause X 
(and Y) are unified with sqrt (Z) . 

We now consider the execution cycle in more detail. 
Computation is initiated by the presentation of a query t 
a0 . ..a.-1. Each goal ai will try to find a proof by ‘1 ‘- 
unifying against the head of a clause, and finding proofs for 
first, the goals in the guard and, after committing, for the goals 
in the body of that clause. Unification results in bindings for 
the variables in the goal, which are communicated (applied) 
to sibling goals at commit-time. A goal can simultaneously 
attempt to unify against the heads of all the clauses; however 
different clause invocations for a goal must commit in some 
serializable order. 

Commitment involves three operations: the atomic pub- 
lication of the answer bindings, action on other OR-siblings 
and promotion of body goals. 

Atomic publication of bindings means that the bindings 
are (conceptually) instantaneously applied to all the goals in 
the body of the clause and to all AND-sibling goals of the 
committing goal ai. The extent of this publication is deter- 
mined by goal system boundaries: the bindings are published 
only upto the smallest enclosing goal system boundary. 

Together with atomic publication, both the commit op- 
erations also cause the goals in the body goal-system to be 
executed as AND-siblings of the goals that were the siblings 
of the committing goal (i.e. their uncles). 

The commit operators differ in the actions they take with 
respect to other OR-siblings of the committing guard system, 
either in the same clause or in other clauses. The don’t care 
commit kills them all. The don’t know commit allows OR- 
siblings to keep on computing, in effect allowing a goal to 
commit multiple bindings. Each of these bindings is commit- 
ted to a different copy of the rest of the goals in the smallest 
enclosing GoalSyst em. Thus, if a goal ‘&‘-commits bind- 
ings 8, all the sibling goals in the smallest enclosing goal 
system are split into two at commit time. Goal system bound- 
aries are one-way walls: they allow bindings committed by a 
sibling of the goal system to enter the block, but prevent the 
bindings committed from within the goal system from leaving. 

As computation proceeds, the goal system within a block 
may thus repeatedly split. Two adjacent blocks (isolated atom 
or isolated goal systems) are combined when there is no more 
progress to be made in either one, i.e. either each has termi- 
nated successfully or suspended for lack of input. The pro- 
cess of merging two blocks bl and b2 is concerned with 
creating another block b which has one OR-branch for every 
compatible pair of OR-branches, one each from bl and b2. 
An OR-branch contains a sequence of suspended blocks and 
goals, together with (possibly vacuous) substitution, which is 
the composition of all the substitutions that have been com- 
mitted internal to the goal system. Two OR-branches are com- 
patible if their substitutions are compatible. Informally, two 
substitutions are compatible if they do not assign ununifiable 
values to the same variable. The substitution associated with 
an OR-branch of b is obtained from these two substitutions, 
and the sequence of blocks obtained by concatenating the two 
sequences. Conceptually, all the branches of one block may 
be merged with all the branches of another block in parallel. 

Finally, computation succeeds when a branch finds a so- 
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lution (no more goals left to prove); it fails when all branches 
terminate in failure. 

8s 8 constraint-based language 

Design Goal 2: As fur us possible, u construint- 
bused system shall perform its computations on the 
basis of locally available information only. 

In our language the only information that can influence 
The use of CP as a constraint language should now be clear: 
goals in the current resolvent correspond to constraints and 

the behaviour of a Constraint is information contained directly 
in the constraint in the form of variables, and their current 

the program axioms correspond to the rules of behaviour for bindings. Hence this design goal is trivially satisfied. 
a constraint. 

The versatility of CP as a constraint language arises from 
its simple solution for tie control problem. The control prob- 
lem in the context of constraint-based languages is: given an 
under-constrained system, which of a possible set of assump- 
tions to make next? Another useful metaphor for programming 
in CP is to think of a goal as representing a process, pro- 
cesses communicating with each other by instantiating shared 
variables to structures which may contain other terms, called 
messuges.3 (Recall that variables may be instantiated not just 
to constants - actually, just integers in Steele’s language - 
but also to arbitrary terms.) This allows the user to solve the 
control problem by programming negotiations between vari- 
ous constraints. For example, in the case of a discrete con- 
straint satisfaction problem, it is possible for the user to write 
constraints such that if local propagation does not yield a solu- 
tion then the constraints cooperate to determine the problem- 
variable which is the most constrained (the so-called ‘fail-fist’ 
heuristic) and have the constraint corresponding to this variable 
make ussumptions about the possible values for the variable. 
(We discuss a specific example in the next section.) The el- 
egance of the CP solution to the control problem lies in that 
such heuristic rules ure expressed in the sume language, using 
the same concepts und techniques us the construint propaga- 
tion rules. 

The process metaphor provides another important bene- 
fit: in CLP languages, process behaviours are naturally spec- 
ified in a recursive form. Such rules can describe in a suc- 
cinct fashion arbitrary recursively constructed topologies and 
inter-connection patterns for constraints. For example, one 
constraint system may be specified for solving the N-queens 
problem, where N is an input: this system uses the value of N 
to spawn a network of appropriate size. Moreover constraint 
definitions (and not just connection structures) may recursively 
depend upon each other. 

We now consider the design criteria Steele lays down for 
a constraint language. 

Design Goal I : As fur us possible, the computational 
stute of u constraint system should depend only upon 
the relationships stated so fup; and not on the order 
in which they were stated. 

In our language constraints am represented by means of 
goals in the current resolvent. All these goals are treated as 
AND-parallel siblings: hence any one goal can reduce at any 
given time, provided that it can find a matching behaviour. 

31he venutility of CP as a conixment programming language is. demonstrated in 
e.g. [Saraswat, foxthcoming& and [Saraswat, 1987a]. An ovexview of programming 
techniques in the related CLF’ language Cmcurreat Pro@ may be found in [Shapiro, 
19861. 

Design Goal 3: A constraint-bused system should, so 
fur us possible, be monotonic. The more is known, 
the more can be deduced, and once a value has 
been deduced, knowing more true things ought not 
to capriciously invalidate it. 

The language CP is monotonic in a very important sense: 
as computation progresses, only bindings that are consistent 
with the ones aheady generated are produced. Moreover, if a 
constraint is known to be true, then providing more information 
(in the form of bindings) cunnot invalidate the constraint. 

Steeele goes on to discuss the use of the term ‘capri- 
ciously’. He wants to be able to allow the system to make 
assumptions which may later be retracted in the light of more 
information in a reasoned way. 

, assumptions are made when a goal reduces us- 
ing a rule with the don’t know commitment operation: the 
bindings associated with this resolution step constitute the as- 
sumptio made in this inference. In a sequential language 
such as olog, such bindings may be undone on, backtrack- 
ing: in CP, such bindings are always assumed to be made to a 
copy of the current resolvent. Hence taking a tentative step in 
CP always corresponds to splitting the current query into two 
disjoint queries. If future processing results in a contradiction 
being discovered, the current copy is merely discarded; mean- 
while the other copy is free to make other derivations, and 
thus pursue other contexts. 

The presence of the other control structures may also be 
motivated naturally. The ‘J, ‘-annotation is essential: without 
some such annotation on unification it is impossible to specify 
(efficiently) that a highly non-deterministic constraint should 
suspend until more bindings are available which reduce the 
number of possible solutions for the constraint. The don’t-care 
commit is necessary to allow the user to specify that alternate 
solutions to the constraint are to be eschewed, thus pruning 
portions of the search-space. Both the ‘J. ‘-annotation and the 
‘ I’ commit introduce incompleteness. 

Finally, blocks allow the user to provide control informa- 
tion which may be quite important in solving loosely connected 
constraint systems efficiently. There are two important compu- 
tational savings that blocks may introduce. First, in a system 
such as 1. b . [ gl 1 . [ g2 ] ] , any determinate bindings intro- 
duced by b are shared by all the sub-contexts in gl and 92. 
(This is quite analgous to pushing sub-contexts in Conniver- 
style languages in which changes in the original context are 
visible in the sub-context as well.) The advantage here is that 
whenever gl splits into two, b is not copied into both the sub- 
contexts, resulting in b making the same transition twice. The 
price paid is that no bindings that gl produces can be commu- 
nicated to b until merge-time. Second, in a system in which 

Saraswat 55 



gl and g2 spawn a large number (say cl and c2 respectively) 
of alternate branches only a few of which survive at the end 
(say br 5 cl and bz 5 CZ), the number of contexts examined 
are cl + c2 + bl x b2 rather than cl + c2 + ci x ~2. If there 
are few interactions between two large constraint systems, it 
is preferrable therefore to solve the constraint-systems in iso- 
lation and then combine the results. (See [Saraswat, 1987c] 
for a discussion of an example used in [deKleer, 19861 to il- 
lustrate pathological behaviour by chronological backtracking 
systems.) 

To sum up, our language design exhibits the follow- 
ing charactersitics: it allows the user to express control over 
the constraint-propagation as well as the constraint-selection 
phase using naturally motivated concurrent programming id- 
ioms, it allows a natural notion of user-definable, hierarchical, 
mutually-recursive constraints, and provides a problem-solving 
framework in which multiple solutions are possible, together 
with the possibility of simultaneously working in more than 
one context. 

In the following we consider a solution to the N-queens exam- 
ple. We first consider a purely declarative program (with no 
search control) and then consider how to improve its perfor- 
mance by programming various heuristics. 

A. A straightforward solution 
We consider a solution (first presented and discussed in 
[Saraswat, 1987c]) in which there is a constraint for every 
square on the chess-board. We imagine that in order to solve 
the N-queens problem, we have spawned an N x N chess-board 
with one cell constraint for every square on the board. Each 
constraint has six parameters: its I and J coordinates, and four 
wires (variables), the H, V, L R. All the cells on the same row 
have the same H wire, on the same column the same V wire, 
on the same left-diagonal the same L wire and on the same 
right-diagonal the same R wire. (Each wire could thus have a 
fan-in/fan-out of up to N.) There are just two behaviours for 
every cell. Each cell may either non-deterministically decide 
that it has a queen (in which case it sends its Id on all the four 
wires incident on it and terminates) or else it waits for some 
cell on the horizontal wire to declare that it has a queen and 
then it terminates. Note that as soon as a cell decides that it 
has a queen, no other cell that is dominated by it can decide 
that it has a queen (no two cells have the same ID). It should 
be clear that this solution is correct and complete: exactly the 
set of solutions to the N-queens problem may be obtained by 
following these behaviours. The specification for a cell is 
simply: 

cell(I,J,J,I,I,I) t true & true. 
cell(I,J,Hi ,V,L,R) t true & true. 

B. Doing local propagation before choosing 
While the program given above is correct, it may not exhibit 
good run-time behaviour, because of two reasons. First, there 
is no guarantee that when a cell asserts that it has a queen, 
all other cells which have are dominated die immediately. If 
these cells remain they may be unneccesarily copied each time 
a new assumption is made. Second, it is preferable to detect 
as soon as possible when all the cells on a row or column 
have been dominated by queens already placed (and there is 
no queen on that row or column), because such a state is bound 
to lead to failure. Along the same lines, if a row or column has 
just one non-dominated cell left, then it is preferrable if that 
cell immediately decides that it has a queen, because given 
the problem formulation, it must have one for a solution to 
exist. In a phrase, local propagation should precede making 
assumptions. 

We obtain this effect as follows. We assume a mechanism 
(discussed in the next section) for serialising phases. There 
will be N phases; in each phase, one queen is placed, and the 
next phase is not initiated until the previous phase quiesces. 
A phase is initiated when a cell (the leader for this phase) 
decides that it has a queen and is considered to terminate when 
the leader detects quiescence. We now consider a topology in 
which each cell, besides having its I and J coordinates and the 
four wires, is also connected in four rings, one each along the 
horizontal, vertical, left-diagonal and right-diagonal axes. For 
each process, its ring-connections consist merely of two wires, 
one connecting it to its predecessor (the left connection) in 
the ring and the other connecting it to its successor (the right 
connection). (To be precise, the left connection of a cell is 
the same variable as the right connection of the cell to its 
left along the given axis; similarly for the other direction.) 

As before when a cell decides it has a queen, it sends 
its Id on the H, V, L and R wires. We would now like 
to force the cells that get dominated to die in the current 
phase. We can achieve this by using a variation of the so- 
called short-circuit technique for detecting distributed termi- 
nation ([Saraswat, 1987a]). 

The idea is simple. When a cell is dominated, it should 
die; this implies that it should remove itself from all its rings. 
It can remove itself from a ring by shorting its left and 
right connections on that ring: by shorting two variables, 
we mean unifying them. After it does this, its right neighbour 
will become the right neighbour of its left neighbour, and vice 
versa. (This is analogous to removing an item from a linked 
list.) IIowever, when a cell decides it has a queen all Phe 
cells remaining on all its rings will remove themselves. After 
this occurs, the leader will find that, for each ring, its left 
and right connections are the same; it thus detects that the 
current phase has terminated. 

We give a sample rule to show how straightforward this is 
to implement in CP. We assume that each cell is of the form: 

cell(id(I,J), wire(H, V, L, R), 
rings(Hleft-Hright, Vleft-Vright), 
rings(Lleft-Lright, Rleft-Rright)) 

where the variable names should be self-explanatory. (Note: 
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Note that as in the previous section, the leader process 
can detect that the current phase has quiesced exactly when all 
its four rings are shorted. With this new protocol, however, it 
is possible that the four rings are never shorted: this happens 
exactly when, as a result of placing this queen, some row or 
column which does not yet have a queen has no more cells 
left. This results in the current context being deadlocked and 
consequently abandoned by the problem-solver. 

2. EWy deltectio~m of deterlminacy 
We leave as an exercise for the reader the problem of 

programming a protocol such that if in the current phase a cell 
is detected as being the only one in a row or column, that cell 
is forced to have a queen (in the current phase). 

ext queen wiselly. 
In the previous sections, the decision of which cell next decides 
to have a queen is still non-deterministic: any cell that is not 
yet dominated may so decide. We now sketch how the same 
techniques may be used to implement heuristics for making 
this control decision. 

Recall that the problem was formulated by having a ce 11 
constraint for every square on the chess-hoard. We now add 
an extra constraint enable, one for each row in the chess 
board. Each enable constraint is linked into the horizontal 
ring for that row, and all the enable constraints are con- 
nected together in another ring. Conceptually, a token will 
flow down the links of this privilege ring, which will ensure 
mutual exclusion, i.e. sequentialisation of each phase. A cell 
can decide that it has a queen only if the enable process on 
its horizontal ring has the token. When this cell detects the 
end of its quiescence phase, the token is passed on to the next 
enable contraint in the privilege ring. This simple protocol 
results in the queens being placed in row-major order. 

Consider now the implementation of a heuristic (which is 
quite useful for the N-queens problem) that in each phase only 
a cell with the highest weight can decide to place a queen: 
the weight of a cell is the number of other cells this cell can 
dominate if it had a queen. It is straightforward to associate 
with each ring a count of the number of elements in the ring, 
to have each cell compute its weight from the counts of the 
rings incident on it and to add to the cells a network of max 
devices which select in each phase the cell with the highest 
weight. This cell then becomes the leader for the next phase, 
and continues the cycle of waiting for local propagation to 
terminate (achieved by means of the end goal) enabling the 
selection phase for determining the next leader, and passing 
control to it. 

ark er 
We very briefly consider other related work. More details may 
be found in [Saraswat, forthcoming]. 

CP differs from other CLP languages such as G 
ParIog in using atomic commitment, together with unifica- 
tion (as opposed to matching) during process execution. This 
ability seems fundamental to obtain the dynamic dataflow that 

characterises constraint-based computation. Concurrent Pro- 
log is also based on unification, but it introduces a problem- 
atic capability annotation which does not seem to be directly 
relevant to modelling constraints. An alternative viewpoint re- 
lated to constraints may be found in [Lassez and Jaffar, 19871. 
The techniques in [van Hentemyck and Dincbas, 19861 seem 
to be easily representable, and are naturally generalised, in 
our framework. CP avoids the combination of chronological 
backtracking and pre-determined order for instantiating prob- 
lem variables that plague the use of Prolog as a language for 
constraint-based computation ([deIUeer, 19861). By making 
sure that the opportunity is available to propagate all the con- 
sequences of a choice to all the constraints before making the 
next choice, we ensure that it is possible to write programs 
such that when a contradiction is discovered, the last choice 
made contributes to the contradiction. 

Problem solvers based on reason-maintenance systems 
have recently been studied (e.g. [deKleer, 19861, [McDermott, 
19831). In such systems, as computation progresses, the prob- 
lem solver informs the RMS of the assumptions it makes and 
of the justifications that it discovers. The (well-known) prob- 
lem here is that may be quite difficult for the problem-solver 
to determine which dependencies to capture in its justification 
of an inference and also quite difficult for the problem-solver 
to exercise control. 

I am grateful to Jon Doyle for extensive discussions, to Guy 
Steele and to many others at CMU and CGI (particularly Gary 
Kahn, Dave Homig and Mark Fox) who have discussed this 
work with me. 

Saraswat 57 



References 

[Bruynooghe and Pereira, 19851 M. Bruynooghe and L.M. 
Pereira. Deduction revision by intelligent backtracking. 
In J.A. Campbell, editor, Implementations of Prolog, El- 
lis Horwood, 1985. 

[deIUeer, 19861 J. deKleer. An assumption based TMS. Ar- 
tifical Intelligence, 28:127-162, 1986. 

[Lassez and Jaffar, 19871 J-.L. Lassez and J. Jaffar. Con- 
straint logic programming. In Proceedings of the 
SIGACT-SIGPLAN Symposium on Principles of Program- 
ming Languages, ACM, January 1987. 

[Lauriere, 19781 J.-L. Lauriere. A language and a program for 
stating and solving combinatorial problems. AZ, 10:29- 
127, 1978. 

[McDermott, 19831 D. McDermott. Contexts and data- 
dependencies: a synthesis. IEEE Trans. on Pattern- 
directed Inference and Machine Intelligence, 5(3), 1983. 

[Saraswat, 1987a] V.A. Saraswat. Detecting distributed termi- 
nation efficiently: the short-circuit technique in FCP(A 
, I). February 1987. To be submitted 

[Saraswat, 1987c] V.A. Saraswat. The concurrent logic pro- 
gramming language CP: definition and operational se- 
mantics. In Proceedings of the SIGACT-SIGPLAN Sym- 
posium on Principles of Programming Languages, ACM, 
January 1987. 

[Saraswat, forthcoming] V.A. Saraswat. Concurrent Logic 
Programming Languages. PhD. thesis, Carnegie-Mellon 
University, forthcoming. 

[Shapiro, 19861 E.Y. Shapiro. Concurrent Prolog: a progress 
report. IEEE Computer, ~~4-58, August 1986. 

[Steele, 19801 G.L. Steele. The definition and implementa- 
tion of a computer programming language based on Con- 
straints. PhD thesis, M.I.T, 1980. 

[van Hentenryck and Dincbas, 19861 P. van Hentenryck and 
M. Dincbas. Domains in logic programming. In Pro- 
ceedings of the AA.&, pages 759-765, 1986. 

5% Al Architectures 


