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Abstract 
Extending functional Lisp with McCarthy’s non- 
deterministic operator AHFJ yields a language which 
can concisely express search problems. Dependency- 
directed backtracking is a powerful search strategy. 
We describe a non-deterministic Lisp dialect called 
SCHEMER and show that it can provide automatic 
dependency-directed backtracking. The resulting 
language provides a convenient interface to this ef- 
ficient backtracking strategy. 

Many problems in Artificial Intelligence involve 
search. SCHEMER is a Lisp-like language with non- 
determinism which provides a natural way to express 
sea.rch problems. Dependency-directed backtracking is a 
powerful strategy for solving search problems. We de- 
scribe how to use dependency-directed backtracking to in- 
terpret SCHEMER. This provides SCHEMER programs 
with the benefits of dependency-directed backtracking au- 
tomatically. 

We begin by describing the SCHEMER language. We 
next provide an overview of dependency-directed back- 
tracking and list its requirements. We then show how to 
meet these requirements in interpreting SCHEMER. Fi- 
nally, we argue that SCHEMER with automatic depen- 
dency-directed backtracking would be a useful tool for Ar- 
tificial Intelligence by comparing it with current methods 
for obtaining dependency-directed backtracking. 

I. SCHEMER is Scheme with AMB 

SCHEMER consists of functional Scheme [Rees e-t al. 19861 
plus McCarthy’s ambiguous operator AMB [McCarthy 19631 
and the special form (FAIL). AMB takes two arguments and 
non-deterministically returns the value of one of them. 
Selecting the arguments of the AMB's in an expression 
determines a possible execution. Each SCHEMER ex- 
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pression is thus associated with a set of possible values. 
In the program below, the expression (ANY-NUMBER) non- 
deterministically returns some whole number. 

(DEFINE (ANY-NUMBER) 
(AMB 0 (l+ (ANY-NUMBER)))) 

Similarly, (ANY-PRIME) non-deterministically returns some 
prime number. 

(DEFINE (ANY-PRIME) 
(LET ((NUMBER (ANY-NUMBER))) 

(IF (PRIME? NUMBER) 
NUMBER 
(FAIL)))) 

ANY-PRIME eliminates certain possible values by evaluating 
(FAIL). The expression (FAIL) has no possible values. 

A mathematically precise semantics for SCHEMER is 
beyond the scope of this paper - there are several possi- 
ble semantics that differ in technical detail [Clinger 1982, 
Zabih et nl. 19871. Under all these semantics, however, the 
expression (FAIL) can be used to eliminate possible val- 
ues; finding a possible value for a SCHEMER expression 
requires finding an execution that doesn’t evaluate (FAIL). 

For a given expression there may be a very large num- 
ber of different ways of choosing the values of AMB expres- 
sions. If there are 12 independent binary choices in the 
computation then there are 2* different combinations of 
choices, and thus 2* different executions. In certain ex- 
pressions most combinations of choices result in failure. 
Finding one or more possible values for a SCHEMER ex- 
pression requires searching the various possible combina- 
tions of choices. 

Interpreting SCHEMER thus requires search. The 
semantics of the language do not specify a search strat- 
egy. Correct interpreters with different strategies will pro- 
duce the same possible values for an expression, and can 
differ only in efficiency. It is straightforward to write 3. 
SCHEMER interpreter that searches all possible esecu- 
tions in a brute force manner by backtracking to the most, 
recent non-exhausted choice in the event of a failure. Such 
an interpreter would use simple “chronological” backtra.ck- 
ing. 

We describe a more sophisticated SCHEMER inter- 
preter that automatically incorporates dependency anal- 
ysis and dependency-directed backtracking. This inter- 
preter, originally described in [Za.bih 198’71, allows pro- 
grammers to gain the efficiency benefits of dependency- 
directed backtracking automatically for SCHEMER code. 
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Figure 1: A search tree. Failures are labeled “f”. Figure 2: The search tree after labeling and dependency 
analysis. Capital letters are labels. The dependency set 
for the leftmost failure is also shown. 

II. Dependency-Directed Backtracking 

Dependency-directed backtracking is a. general search 
stra.tegy invented by Stallman and Sussman [Stallman and 
Sussman 19771. It can best be understood as a technique 
for pruning search trees. Consider an arbitrary search tree 
generated by some particular search. Such a tree is shown 
in Figure 1. The leaves of the tree labeled with the letter 
“f” represent sea.rch paths which lead to failure. Depen- 
dency-directed backtracking can be used to prune such a 
sea.rch tree, by detecting unsearched fragments of the tree 
which cannot contain solutions. 

been assigned the dependency set {C,E). This means that 
the failure was “caused” by the labels C and E. More 
specifically, it means that every leaf node which is beneath 
both a node labeled C and a node labeled E is guaranteed 
to be a failure. For example in a graph coloring problem 
C may represent the statement that p is colored red and 
E may represent the statement that m  is colored red, and 
we may know that no solution can color both p and m red. 
Such a set of labels is called a nogood. 

Dependency-directed backtracking requires that two 
additional pieces of information be added to the tree. First, 
the non-root nodes must be assigned labels. Second; each 
failing leaf node must be associated with a subset of the 
set of labels that appear above that leaf. For reasons to 
be explained, the process of assigning sets of labels to fail- 
ing leaf nodes is called dependency analysis. Carrying out 
labeling and dependency analysis on the tree of Figure 1 
could result in Figure 2. 

Nogoods can be used to prune fragments of the search 
tree. In the above tree the nogood {C,E} prunes the first 
and second leaf nodes (counting from the left) as well as 
leaf nodes nine and ten. These represent about a quarter 
of the entire search tree. If the nogood had contained 
the single label C, about half of the tree would have been 
pruned by this one nogood. In general, the smaller the 
number of labels in a nogood, the larger the fragment of 
the search tree pruned by that nogood. 

Each lab21 represents a statement that is known to 
be true of all leaf nodes beneath the labeled node. For 
example, suppose that the above tree represents the search 
for a coloring of a graph such that adjacent vertices have 
distinct colors, and suppose that n is a vertex in the graph. 
In this case the la.bel A might represent the statement that 
n is assigned the color red. All candidate colorings under 
the search node labeled A would color n red. 

More formally, let N be a nogood, i.e. a set of la- 
bels. We say that N prunes 3 given node if every la- 
bel in N appears above that leaf node in the search tree. 
Dependency-directed backtracking maintains a set of no- 
goods, and never looks at nodes that are pruned by a no- 
good in this set. When the search process examines a leaf 
node that turns out to be a failure, dependency analysis is 
used to generate a new nogood; this is added to the set of 
nogoods and the process continues. 

The leftmost leaf node in the tree of Figure 2 has A particular method of node la.beling and dependency 
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analysis is called sound if the nogoods associated with fail- 
ure nodes only prune failure nodes; solution nodes should 
never be pruned. ‘When computation is required to deter- 
mine failure, dependencies must be maintained in a way 
tha.t ensures soundness. If a label contributes to n f~‘7rl- 
ure, but the contribution is overlooked, solutions can be 
missed. For example, if dependency anaiysis on the ieft- 
most failure in Figure 2 overlooked the contribution of C, 

a nogood consisting of just (E) would be created, which 
would discard the only solution. 

The next two sections describe techniques for 
automatic node labeling and dependency analysis in 
SCHEMER. The automatic dependency-directed back- 
tracking provided by these techniques makes it possible 
for programmers to take advantage of dependency-directed 
tree-pruning without the necessity of writing their own 
code for Sear& nQd_P !&?&nP a.nfl d~ncnrkncv anaiy&: o ---- -‘-r-------J 

II. Node %a 

Finding one or more of the possible values for a given 

SCHEMER expression involves searching the possible ex- 
ecutions for one which does not require evaluating (FAIL). 
The search has an associated binary search tree; each 
branch in the search tree corresponds to selecting either 
the first or second argument as the value of a particular 
ANB expression. 

Recall that a label on a node in a search tree represents 
a statement that is true of all candidate solutions under 
that nnde Tn SCTTFMFT? w-arch tree?s the la.hds renrewnt J---r2 -_---. -__ LJ--l’-.---‘-“L-- ---- I---L .t--- -----L --r---L--l 
statements of the form “AM3-37 chooses its first argument” 
where AHB-37 refers to a particular AMEl  expression. For 
this to work properly, we need to identify particular AHB 
expressions within a given SCHEMER expression; each A M B  
expression must be given a unique name. 

Figure 3 shows an expression in which each APIA has 
been given a unique name. The corresponding search tree 
is also shown. Tlle non-root nodes have been iabeied with 
ctatpmentc nhnllt nnrtirlllnr AMU’s rhnncincr their left. nr Y.,IyUV~I.VI.“Y  W...I lY y-‘“‘“‘.s’ a..- 1 .3’“““.“b .,1*--a 1-a.. -- 

right arguments, and dependency analysis has been per- 
formed on the leftmost failure. The label m-37-~, for 
example, represents the statement that the AMFI expres- 
cinn 8~1-27 rhnnax ita fipct fl&‘,\ nrallment while the label “IVLI c..- “C “IlV”““” IV” I.L”U \“a.“, .a’~““‘“““, . . llll” Vll” lUVVl 

APfB-37-R represents the statement that Am-37 chooses its 
second (right) argument. In this tree the failure of the 
leftmost node is caused by the fact that AHEl-39 chose its 
first argument. The nogood consisting of the single label 
AHB-39-L prunes the first, third and fifth leaf nodes. 

The choices in a SCHEMER expression must be 
named before searching for possible values. If the nam- 
:,, :, -1--A -1....:,- &I-- ^^^-_ L - m^^^^^ &I--,. :- A--,-- -c 111g IS UUllt: uurIIll; Cllt: searc11 yruLe:as, bIleI-e 1s uan(;er Ul 
giving the same A~BB expression different names in different 
regions of the search tree. This problem can be avoided 
by naming all the choices in the expression before starting 
the search process. 

For 
TTnffi,rt,,natel.r th;c ;c nrrt PP PDC., PO ;t ,;crht CP~P- “nIL”IuuInuY.dIJ Vlll.2 1.2 ,,“V CA.2 bu.JJ w 1” llll&ll” U\rLll,. 

example consider the expression (ANY-WMBER) defined 

(LET ‘;! ;A+!EJ-31 3 (Am-38 4 5))) ,. “..\ 
(1 (Al’lB-3Y e, 111) 

(IF (= Y  6) (FAIL) (+ X  Y>)> 

f 1: f 12 

Figure 3: A SCHEMER expression with named choices 
and its labeled search tree. 

previously. 
(DEFINE (AMY-NUHE!ER) 

(AMFI 0 (I+ (ANY-NWTBER)))) 

I-SC, nhnxm AWU nvr\rr\no;r\., n.,nmrr+ ai-ml.. l..,, :,.l,,t:fi,.A III-C a”““6 nrru ~*y’cxml”” cIa*lll”I, 31111yly UC IUC;‘IClIICU as, 

say, AkIB-52, because it is being used to make several dif- 
ferent choices in different recursive calls to the procedure 
AMY-WUMBER.  

Tt :, ..--Zl.1, I.-...-..-.. c,. <c..,...:_.rln LL-  ---..--:-.- --ll- 
lb 13 pu331u1c, 1IUWtTVtx) LU UllW 111u lone 1-ecu1-s1ve Calls 

in the above expression and then to name each choice in- 
dependently. The resulting expression is called a named 
choice expression. The following infinite named choice es- 
--_-,-I-- :- LL- ---. .,L press1011 IS LII~ rebulc of iinroiiing ihe above definition. 

(A.W-52 0 
Cl+ (APB-53 0 

(l+ (AMEI-54 0 
(1+ . . .>)>>)) 

In the above expression each distinct choice has been givc‘ll 
a distinct ~7 sme. Infinite expressions such as this one can he 
represented by lazy S-expressions. Lazy S-expressions are 
?n~lc\~pr\,,a tr\ ct~~~m~ rAh,lar\n ?nrl C,,nnrv(~~ lc1Qc;l. iazv cblbQI”~“U.3 U” OUILccI,,D LIL “LI.3”II a.11u kJuuJJl,lcLll I J”“, ) 

S-expressions delay the computation of their parts until 
those parts must be computed. When a portion of a lazy 
S-expression is computed, the result is saved. 

I-, c...,-l cl., -,,,:11, ..,l..-- ,A- @~U37R6K’D -_----- 
IV 111lU bllC yuasl”lc V&lUG3 Ul a  lJ~,nr>lViJsln tx 

Y 
res- 

sion, the expression is first converted to a named choice 
expression by giving all AMEI expressions names. In practice 
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the result is a lazy S-expression whose parts are computed A set of assumptions about the choices in a named 

on demand and then saved. Conceptually, however, the choice expression E will assign E a value. The value 
entire named choice expression is created, and all choices is computed by replacing all the named choices by their 

are named, before the search process begins. The search first or second arguments, depending upon the assump- 

process then evaluates the resulting named choice expres- tion about that choice. The resulting expression contains 

sion. Nodes in the search tree are given labels of the form no choices at all, and either fails or has a unique possible 

AMP52-L which means that AMB expression 52 chooses its value. b 

first (left) argument. As the search for possible values of a named choice 

Producing a named choice expression from a regu- 
lar SCHEMER expression turns out to be difficult. @- 
substitution followed by textual naming of AMB’S is suffi- 
cient for the examples we have mentioned, but does not 
preserve the semantics of SCHEMER. This is because sub- 
stitution can result in multiple choices where there should 
be only one. Consider the procedure below. 

(DEFINE (BETA) 

expression proceeds, assumptions are made about the var- 
ious choices in the expression. When a value for an ex- 
pression (or subexpression) is found dependency analysis 
is performed to determine the assumptions about choices 
which lead to this particular value. 

((LAMBDA (X) (+ X X>) (AMB 1 2))) 

The possible values of (BETA) should be 2 and 4. Perform- 
ing /3-substitution produces an expression with possible 
values 2, 3 and 4. 

Recall that the job of dependency analysis is to 
provide a set of labels that constitute a nogood. In 
SCHEMER, the labels are assumptions such as AMB-57-L. 
A justification for a value of a named choice expression is a 
set of such assumptions which ensures that the expression 
has that value. A justification for the value of failure will 
therefore be a valid nogood. 

It turns out that it is possible to unwind a SCHEMER 
expression completely so that the resulting named choice 
expression has the same possible values as the original ex- 
pression. The basic trick is to interleave /Y-substitution 
and textual choice-naming. However, there are several sub- 
tleties involved, and the solution is too complex to describe 
in the space available. Interested readers are referred to 
[Zabih et al. 1987], which contains a complete description 
of the problem and its solution. Unwinding SCHEMER ex- 
pressions without violating the semantics of the language 
was the major technical contribution of [Zabih 19871. For 
our present purposes it is only important that a solution 
exists. 

The justification for a value of a named choice expres- 
sion can be defined recursively in terms of the justifications 
for its subexpressions. 

If the expression is a constant or failure, the justifica- 
tion for its value is empty. 

If the expression is a choice (AKB-n El E, 1, then the 
justification for its value is the assumption AMB-n-L or 
AMB-n-R, added to the justification for the value of El 
or E,- , respectively. 

IV. Dependency Analysis 

Since SCHEMER expressions can be converted to named 
choice expressions, the problem of finding possible values 
for SCHEMER expressions is reduced to the problem of 
finding possible values for named choice expressions. It 
is possible to give a simple recursive definition for named 
choice expressions. 

If the predicate of a conditional expression fails, then 
the entire conditional fails, and the justification for 
this failure is equal to the justification for the failure 
of the predicate. If the predicate does not fail then the 
justification for the value of the conditional is the the 
union of the justification for the value of the predicate 
and the justification for the value of whichever branch 
is taken. 

A named choice expression is one of the following, 
where &‘s denote named choice expressions. 

l A constant 

If any argument to a primitive application fails then 
the application itself fails, and the justification for this 
failure equals the justification for the failure of the ar- 
gument. If no argument fails, the justification for the 
value of the application is the union of the justifica- 
tions for the arguments. 

l Failure 

l A named AMB expression of the form (AHB-n El E,) 

l A conditional (IF Epred EcmJeq Eatter) 

l A primitive application (P El Es), where P is a 
Scheme primitive such as + 

Justifications are calculated incrementally as the search 
progresses. When the search produces a leaf node, which 
is a value for the named choice expression, a justification 
for that value is also produced. If the value is ~~;!llre: then 
the justification will be recorded as a nogood. 

A given named choice such as AMB-52 may appear in sev- 
eral different places in a given named choice expression. 
We require that when this happens the arguments to the 
AMB-52 are the same in all cases. Named choice expressions 
need not be finite; they are produced top down in a lazy 
manner. 

The search process maintains a list of nogoods, ini- 
tially empty. Whenever the search discovers a failure, de- 
pendency analysis produces a nogood, i.e. a set of assump- 
tions that ensures that the named choice expression fails. 
This new nogood is added to the list. The search process 
discards portions of the search tree that are pruned by any 
of the nogoods. 
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Automatic dependency-directed backtracking in the 
SCHEMER interpreter, as described above, is a special 
case of the general dependency-directed backt,racking pro- 
cedure mentioned earlier. This interpreter makes it pos- 
sible to gain the efficiency of dependency-directed back- 
tracking automatically while writing search programs in 
SCHEMER. A more detailed description of the above pro- 
cess can be found in [Zabih et al. 19871. 

v. Comparison with 

a fair amount of work on non-chronological backtrack- 
ing strategies within the Prolog community [Bruynooghe 
and Pereira 19841. While it is likely that much of our 
framework for providing dependency-directed backtrack- 
ing could be applied to Prolog, we have not yet done 
so. Complicating matters are several differences between 
SCHEMER and the “functional” subset of Prolog (i.e. 
pure horn clause logic). For example, SCHEMER has clo- 
sures while Prolog, which uses unification to implement 
parameter passing, potentially has data flowing both into 
and out of each parameter. 

SCHEMER is interesting because it provides automatic 
backtracking, without specifying a backtracking strategy, 
in a language that is almost Scheme. It can thus give the 
user dependency-directed backtracking in a highly t’rans- 
parent manner. Previously available methods for obtaining 
dependency-directed backtracking include the direct use of 
a ??uth Maintenance System (or TMS) [Doyle 19791, de- 
Kleer’s consumer architecture [deKleer 19863 and the lan- 
guage AMORD [deKleer et al. 1978). These methods, how- 
ever, require the user to explicitly use dependency-directed 
backtracking or to write in an unconventional language. 
They also necessitate special programming techniques, be- 
cause of the way they use the underlying TMS. 

The closest language to SCHEMER is Dependency- 
Directed Lisp (DDL), a Lisp-based language invented by 
Chapman to implement TWEAK [Chapman 19851. This is 
not surprising, since SCI-IEMER is based on DDL. There 
are two differences between DDL and SCHEMER that are 
worth describing. 

In particular, these methods force the user to provide 
node labeling and dependency analysis. Deciding which 
facts in the search problem should be assigned TMS nodes 
corresponds to node labeling. Providing the TMS with 
logical implications, so that it can determine the labels 
responsible for failures, corresponds to dependency anal- 
ysis. If these implications are not carefully designed it is 
possible to overlook the contributions of some labels; this 
can result in unsound nogoods which prune solutions, as 
mentioned earlier. 

First, DDL used a weaker dependency-directed back- 
tracking strategy than SCHEMER does. DDL would nevei 
use a nogood more than once. This was because DDL la- 
bels never appeared more than once in the search tree. As 
a result DDL considers parts of the tree containing only 
failures, which SCHEMER would prune. This in turn was 
due to the difficulty of devising a choice-naming scheme 
that produces repeated labels without destroying the se- 
mantics of the language. 

Using a TMS directly does not provide a separate lan- 
guage layer at all. It is easy for the problem solver to 
neglect to inform the TMS of the labels responsible for 
some decision, leading to unsound nogoods. This is also 
inconvenient; the user must intersperse code to solve the 
search problem with calls to the TMS to ensure dependen- 
cy-directed backtracking. SCHEMER, on the other hand, 
enforces a clean separation between the code that defines 
the search problem, which the user writes in SCHEMER, 
and the code that implements the search strategy, which 
the interpreter provides transparently. 

In addition, DDL had side-effects. Side-effects com- 
plicate dependency analysis by introducing too many de- 
pendencies. In SCBEMER, justifications can be computed 
incrementally. When the variable x is bound to the value 
of (FOO) , all the choices that affect the value of X can be col- 
lected incrementally in the process of evaluating the body 
of FOO, and no other choice can affect the value of X. In the 
code below, the AHB shown is never part of the justification 
for the value of X. 

(LET ((X (FOO))) 
(LET ((Y (AMB (F) (Gl))) 

(BAR x Y>)) 

In the presence of side-effects it is hard to prove that the 
value of x does not depend on whether Y *is (~1 or (G). 
This is because (G), for example, could side-effect data 
shared with X. This makes it difficult to design a method 
for dependency analysis which is sound in the presence of 
side-effects. Our ( not very determined) attempts to design 
such a method for dependency analysis have produced such 

- AMORD provides a language layer, as does the con- 
sumer architecture (to a lesser extent). The language is 
rule-based, though, and thus lacks a single locus of con- 
trol. Such an approach is well-suited to problems that 
can be easily expressed with rules and a global database of 
assertions. On the other hand, it is difficult to use on prob- 
lems that are not easily converted into rule-based form. A 
major advantage of SCHEMER is that it allows the user 
to express search problems without forcing him to think in 
terms of a. rule-set and a global data&se. 

large nogoods that pruning never occurs. 

VI. chnelusions 
We have shown that SCHEMER, a non-deterministic lan- 
guage based on Lisp, can elegantly express search prob- 
lems, and that it can provide automatic dependency- 
directed backtracking. The resulting interpreter allows 
users to gain the benefits of this backtracking stra eF;.y t 
while writing in a remarkably conventional language. Ge 
suspect that many search programs could benefit from de- 

Prolog [Warren et al. 19771 is defined to provide depth- pendency-directed backtracking if it were only more acces- 
first chronological backtracking. However, there has been sible. It is our hope that SCHEMER will make depenclen- 
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