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Abstract 
This article discusses the need for multiple experts to 
work together to develop knowledge representation 
systems for intelligent tutors. Three case studies are 
examined in which the need for a pragmatic approach 
to the problem of knowledge acquisition has become 
apparent. Example methodologies for building tools 
for the knowledge acquisition phase are described in- 
cluding specific tasks and criteria that might be used 
to transfer expertise from several experts to an intel- 
ligent tutoring system. 

I. A Community Memory 
Building intelligent tutoring systems requires community 
knowledge, i.e., multiple experts working together to en- 
code individual expertise in an intelligent tutor. This 
knowledge acquisition phase might span months or years. 
Thus, we need a framework to simplify changing knowl- 
edge in the tutors as well as a suite of programming tools 
for browsing and summarizing knowledge, for tracing and 
explaining the student model, and for tracking reasoning 
about teaching strategies. In short, tools and methodolo- 
gies are needed that can be used specifically for knowledge 
acquisition activities within an intelligent tutor. In this 
paper we share our experience of building three intelligent 
tutors and describe the criteria for, and in some cases, the 
emerging tools used within this acquisition process. 

The concept of a community memory for intelligent 
tutors reflects the fact that knowledge of tutoring is often 
distributed, incomplete, and acquired incrementally [Bo- 
brow, Mittal and Stefik, 19861 and thus requires contri- 
butions from several experts. This is especially true in 
tutoring systems because the domain expert, cognitive sci- 
entist, and teaching expert are typically not the same per- 
son. Given multiple experts who contribute to building 
the system and the need for a large amount of testing and 
modification to fine tune the tutor, completion of a tutor 
can not be the “final” step in development of a single sys- 
tem, but rather must be a forcing function between the 

lThis work was supp orted in part, by the Air Force Systems Com- 
mand, Rome Air Development Center, Griffiss AFB, New York, 
13441 and the Air Force Office of Scientific Research, Bolling AFB, 
DC 20332 under contract No. F30602-85-C-0008. This contract sup- 
ports the Northeast Artificial Intelligence Consortium (NAIC). Par- 
tial support also from URI University Research Initiative Contract 
No. N00014-86-K-0764. 

completion of one system and the beginning of another. A 
completed knowledge base provides grit for our collective 
grinder, forcing us to further clarify and amplify teaching 
and learning knowledge and to improve communication be- 
tween those experts who contribute to it. 

Articulating and incorporating communal knowledge 
into a tutor reveals a great deal about each area of ex- 
pertise and about the tools used by the experts to per- 
form problem solving in the domain. For example, build- 
ing the boiler tutor described in Section 2.1 indicated sev- 
eral weaknesses in the tools available to industrial boiler 
operators. We therefore developed simulation tools, in- 
cluding abstract meters and trends (Figure 1) that might 
ultimately be integrated into the equipment used by boiler 
operators. Similarly, in building a geometry tutor [An- 
derson, Boyle, and Yost, I.9851 provided an environment 
that would be a valuable aid to motivated learners, even 
without help from any on-line tutor. Anderson introduced 
visualization and forward and backward reasoning tem- 
plates that would facilitate geometry problem-solving in- 
dependent of teaching media. 

In the next section, we briefly describe our three in- 
telligent tutors and in Section III indicate some method- 
ologies for how knowledge can be acquired from multiple 
experts to build additional tutors. 

‘Heaclhing Coq3lex Industrial 
S 

The first tutor to be discussed is fully implemented, tested, 
and now used for training in nearly 60 industrial sites 
across America. The Recovery Boiler Tutor, RBT2, is 
described elsewhere [Woolf, Blegen, Jansen and Verloop, 
19861, and will only be summarized here. It provides mul- 
tiple explanations and tutoring facilities tempered to the 
individual user, a control room operator. The tutor is 
based on a mathematically accurate formulation of the 
boiler and provides an interactive simulation, (Figure 1) 
complete with help, hints, explanations, and tutoring. 

2RBT was built, by J. H. Jansen Co., Inc., Steam and Power 
Engineers, Woodinville (Seattle) Washington and sponsored by The 
American Paper Institute, a non-profit trade institution for the pulp, 
paper, and paperboard industry in the United States, Energy Mate- 
rials Department, 260 Madison Ave., New York, NY, 10016. 
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Figure 1: Several Views of the Recovery Boiler Tutor 

The tutor challenges operators to solve boiler emer- 
gencies while monitoring their actions and advising them 
about the optimality of their solutions. The tutor recog- 
nizes less than optimal and clearly irrelevant actions and 
modifies its response accordingly. Operators can continue 
their freewheeling or purposeful problem-solving behavior 
while the tutor offers help, hints, explanations, and tutor- 
ing advice when needed or when requested. Operators gain 
experience in recognizing the impact of their actions on the 
simulated boiler and to react before the tutor advises them 
regarding potential problems. 

Meters, as shown on the left side of screens in Figure 1, 
record the state of the boiler using synthetic measures for 
safety, emissions, efics’ency, and reliability of the boiler. 
The meter readings are calculated from complex mathe- 
matical formulas that would rarely (if ever) be used by 
operators to evaluate the boiler. The meters have already 
proved effective as training aids in industrial training sites 
and could possibly be incorporated into actual control pan- 
els. 

Operators have reported using the system as much as 
70 hours in three months to practice solving emergencies. 
They handle the simulation with extreme care, behaving 
as they might if they were in actual control of the pulp mill 
panel, slowly changing parameters, checking each action, 
and examining several meter readings before moving on to 
the next action. 

* Caleb for Teaching a Second kan- 
liwage 

Our second intelligent tutor teaches languages based on a 
powerful pedagogy called the “silent way”-a method de- 
veloped by Caleb Gattegno. The system uses non-verbal 

communications within a controlled environment to teach 
Spanish [Cunningham, 19861. It uses graphical Cuisenaire 
rods3, to generate linguistic situations in which the rod 
plays various roles. For example, it is used as an object 
to be given or taken by a student, or it is used to brush 
teeth. As a new rod is presented, the student theorizes 
about what situation is encountered and types the appro- 
priate phrase below the picture. In the case illustrated at 
the top of Figure 2 the tutor presents a rod in the center 
box. The student responds by typing the word for the new 
piece at the cursor. In the bottom figure, the tutor cor- 
rects a student who places an adjective before rather than 
after a noun. In this exercise, students might have classi- 
fied the word “blanca” as an adjective referring to the size 
of the rod before knowing its meaning. The tutor does not 
clarify student% conjectures. Students can later change a 
hypothetical definition if in fact the new word turns out 
to define the color of the rod. Meanwhile, they will have 
learned to write the word, spell it, and place it correctly 
in a sentence. 

6. ESE for Teaching 
A third tutor is now in the early implementation stage. 
It is part of a program to develop interactive and mon- 
itored simulations to teach physics at the high school or 
college level.4 Qne of these tutors teaches the second law 

Soriginally developed by Gattegno for teaching arithmetic 

*These tutors are being built by the Exploring Systems Earth 
(ESE) consortium, a group of three universities working together 
to develop intelligent tutors. The schools include the University of 
Massachusetts, San Francisco State University, and the University of 
Hawaii. 
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Figure 2: Caleb: A System for Teaching Second Languages 

of thermodynamics5 and provides a rich environment at 
the atomic level through which the principles of equilib- 
rium, entropy, and thermal diffusion can be observed and 
tested [Atkins, 19821. Students are shown (and are able 
to construct) collections of atoms that transfer heat to 
other atoms through random collision (see Figure 3). They 
can create areas of high-energy atoms, indicated by dark 
squares, along with variously shaped regions within which 
the high energy atoms can be monitored. Concepts such 
as temperature, energy density, and thermal equilibrium 
can be plotted against each other and against time. 

The tutor uses all student activities - including ques- 
tions, responses, and requests - to formulate its next teach- 
ing goal and activity. It uses student actions to determine 
whether to show an extreme or near-miss example, whether 
to give an analogy or whether to ask a question. To refine 
the tutor’s response, we are now studying student miscon- 
ceptions and common errors in learning thermodynamics 
and statistics. 

III. Tools for Knowlledge 
Acquisition 

Given the complex heterogeneous nature of the knowledge 
required to build each of these systems, we need method- 
ologies and tools to transfer teaching and learning knowl- 
edge from human experts to systems under construction. 
Few such tools exist. 

6The second law states that heat cannot be absorbed from a reser- 
voir and completely converted into mechanical work. 

Figure 3: Systems Moving Towards Equilibrium 

Expert system shells contain a framework for building 
knowledge bases about concepts and rules and for mak- 
ing inferences about them. However, they are limited as 
specific tools for designing and storing tutoring knowledge. 
They are frequently based on production rules and are lim- 
ited in representing history and dependency of the tutor- 
ing interaction. Also, they inadequately represent tutoring 
and misconception knowledge such as how to reason about 
teaching strategies, how to update and assess student mod- 
els, how to select a path through domain concepts, and 
how to remediate for misconceptions. In this section, we 
describe the criteria for developing tools specific to this 
knowledge acquisition process. 

A. Environment Expert 
The first expert needed to build an intelligent tutor is the 
environmental expert. This person often uses a majority 
of system memory [Bobrow, Mittal and Stefik, 19861 to 
provide an envelope within which students and system in- 
teract. The environment provides specific tools and opera- 
tors for solving domain problems or for performing domain 
activities. 

Environmental, teaching, cognitive, and domain ex- 
pert contributions interact strongly with each other- 
especially those from the environmental expert. For ex- 
ample, a system that asks students to record entrance and 
exit angles for light in an optics experiment, assumes that 
the environment supplies such measuring devices. 

The following criteria for developing a tutoring envi- 
ronment have begun to emerge: 

1) Environments should be intuitive, obvious, and fun. 
Student energy should be spent learning the material, not 
learning how to use the environment [Cunningham, 19861. 
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For example, to indicate errors, express feelings or con- 
vey meaning, the second-language tutor%, visual activities 
mimic the human Silent Way teachek gestures,facial ex- 
pressions, and rods. 

2) Environments should record not only what students 
do, but what they did, intended to do, might have forgot- 
ten to do, or were unable to do [Burton, in press]. Envi- 
ronments should provide a “wide bandwidth” within which 
multiple student activities can be entered and analyzed. 
For example, the Pascal tutor developed by Johnson and 
Soloway (19841 processed and analyzed an entire student 
program before offering advice. 

3) Environments should be motivated by teaching and 
cognitive knowledge about how experts perform tasks and 
the nature of those tasks. For example, Anderson [1981] 
performed extensive research with geometry students be- 
fore developing his geometry tutor interface, and Woolf et 
al. [1986] incorporated knowledge from experts with more 
than 30 years experience working with boiler operations 
before building the RBT interface. 

4) Environments must maintain physical fidelityG 
[Hollan, Hutchins and Weitzman, 19841. The RBT tutor 
presents a mathematically exact duplicate of the industrial 
process. It models and updates over 100 parameters every 
two seconds. Visual components of the industrial process 

and reports are such as alarm boards, control panels, dials, 
duplicated from the actual control room. 

5) Environments should be responsive, permissive, 
consistent [Apple, 1985]. They should target applica- and 

tions based on skills that people already have, such as mov- 
ing icons, rather than forcing people to learn new skills. 
By responsive, we mean that student actions should have 
direct results-that students need not perform rigid sets 
of actions in rigid and unspecific order to achieve goals. 
By permissive, we mean that students may do anything 
reasonable and that multiple ways should exist for tak- 
ing action. By consistent, we mean that moving from one - 
application to another, (for example, from editing text to 
developing graphics), should not require learning new in- 
terfaces. All tools should be based on similar interface de- 
vices, such as pull-down menus or single and double mouse 
clicks. 

No one environment is appropriate for every domain. 
We must study each domain to determine how experts 
function in that domain, how novices might behave dif- 
ferently, and how novices can be helped to attain expert 
behavior. 

. Teaching Expert 
Acquiring sufficient and correct teaching expertise is a long 
term problem for builders of tutoring systems-in part, 
because sophisticated knowledge about learning, teach- 
ing, and domain knowledge remains an active area of re- 
search in most domains. Teaching expertise includes de- 

cision logic and rules that guide the tutor’s intervention 
with the student. Tools to facilitate teasing apart and en- 
coding teaching knowledge are just beginning to emerge. 
For example, we have developed a framework for manag- 
ing discourse in an intelligent tutor [Woolf and Murray, 
19871 that reasons dynamically about discourse, student 
response, and tutor moves. 

The framework (Figure 4) reasons about which ped- 
agogical response to produce and which alternative dis- 
course move to make. It custom-tailors the tutor’s re- 
sponse in the form of examples, analogies, and simulations. 
Discourse schemas, or collections of activities and response 
profiles, are responsible for actually generating system ac- 
tions and for interpreting student behavior. The number 
and type of schemas used is dependent on context. 

We used empirical criteria to define discourse schemas: 
tutoring responses were analyzed from empirical studies of 
teaching and learning and from general rules of discourse 
structure[Grosz and Sidner]. 

The framework is flexible and domain-independent; it 
is designed to be rebuilt - decision points and machine 
actions are modifiable for fine-tuning system response. 

We are now using this framework to improve the 
physics tutor’s response to idiosyncratic student behav- 
ior. Response decisions and machine actions, explicitly 
represented in the system, can be modified through a ed- 
itor. Appropriate machine response can be assessed con- 
tinuously and improved. In the long term, we intend to 
make this reasoning process available to human teachers, 
who can then modify the tutor for use in a classroom. 

No single teaching strategy is appropriate for every 
domain. For example, Anderson et al. [1985] built ge- 
ometry and Lisp tutors that responded immediately to in- 
correct student answers. These authors argued that im- 
mediate computer feedback was needed to avoid fruitless 
student effort. 

This pedagogy was opposite to that used by Cunning- 
ham [ 19861 and Woolf et al. [1986]. These latter tutor’s 
advice was passive, not intrusive. The strategy was to sub- 
ordinate teaching to learning, and to allow students to ex- 
periment while developing hypotheses about the domain. 
The tutors guided their students toward developing their 
own intuitions, but did not correct them so long as their 
performance appeared to be attaining a precise goal. 

In industrial settings, particularly, trainees must learn 
to generate multiple hypotheses and to evaluate their own 
performance based on how their actions affect the indus- 
trial process. For example, no human tutor is available 
during normal boiler operation. 

C. Cognitive Expert 
At present, the role of the cognitive scientist is incom- 
pletely understood; in part, this expert seeks to discover 
how people learn and teach in a given domain. For ex- 
ample, cognitive science research in thermodynamics will 
enable systems to recognize common errors, tease apart 
probable misconceptions, and provide effective remedia- sFidelity measures how closely simulated environments match the 

real world. High fidelity identifies a system as almost indistinguish- 
able from the real world. 
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Figure 4: A Framework for Managing Tutoring Discourse 

tion. Cognitive science research provides the tutor with a 
basis for selecting instructional strategies. The importance 
of addressing common errors and misconceptions in physics 
is well documented, and the tutor’s intelligence hinges on 
making that knowledge explicit. 

We want a tutoring system to help students generate 
those hypotheses that are necessary precursors to expand- 
ing their intuition, and developing their own models of the 
physical world discover and “listen to” their own scientific 
intuitions. To do this, we rely on work done by cognitive 
scientists who study how students reason about qualitative 
processes, how teachers impart propaedeutic principles (or 
the knowledge needed for learning some art or science) 
[Halff, in press], and what tools are being used by experts 
working in the field. 

For example, the cognitive science experiments that 
must be performed to build our thermodynamics tutor in- 
clude (1) investigation of real-world tools currently used by 
physicists, (2) examination of studies that focus on cogni- 
tive processes used by novices and experts, and (3) com- 
parison of novice with expert understanding of thermody- 
namics. 

RBT articulates cognitive knowledge by explicitly 
recording student attempts to solve emergencies. It shows 
students their false paths and gives reasons behind par- 
ticular rule-of-thumb knowledge used to solve problems. 
RBT also provides students with various examples from 
which they can explore problem-solving activities-perhaps 
in time showing students their own underlying cognitive 
processes. By using such knowledge, a tutor can begin to 
help students learn how to learn. 

. Domain Expert 
An in-house domain expert is critical to building an intel- 
ligent tutoring system. By “in-house”, we mean that the 
domain expert must join the project team for anywhere 
from six months to several years while domain knowledge 
is being acquired. Any less commitment than that of full- 

fledged team member suggests a less than adequate trans- 
fer of domain knowledge. 

In the tutors described above, the domain experts 
were (and are) integral to the programming effort. The 
programmer, project manager, and director of RBT were 
themselves chemical engineers. More than 30 years of the- 
oretical and practical knowledge about boiler design and 
teaching strategies were incorporated into the system. De- 
velopment time for this project would have been much 
longer than 18 months if these experts had not previously 
identified the boiler’s chemical, physical, and thermody- 
namic characteristics and collected examples of successful 
teaching activities. 

The second language tutor was developed by a person 
who holds a graduate degree in teaching English as a sec- 
ond language and has spent more than 7 years using the 
Silent Way to teach intensive English courses to foreigners 
living in America and to teach Nepali to American Peace 
Corps volunteers living in Nepal. 

Based on the numerous expert systems projects, the 
following criteria for acquiring domain knowledge are well 
understood: 

1) Domain experts should be true experts-if possible, 
the best in the field [Bobrow, Mittal and Stefik, 19861. 

2) Domain experts are expensive. Gaining the at- 
tention of knowledgeable people is expensive and time 
consuming. However, the willingness and availability of 
such experts to participate is critical to the knowledge- 
engineering process. Assigning the task to a person of 
lesser ability (or worse, to persons with “time on their 
hands”) might doom a project to failure. 

3) Individual domain experts may have incomplete 
knowledge or conceptual vacuums; therefore multiple ex- 
perts are needed for testing and modifying domain knowl- 
edge throughout the tutor’s life. 

4) Similarly, domain knowledge can be overly dis- 
tributed and spread so diffusely among different experts as 
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to leave severely restricted any system that uses only a sin- 
gle expert [Bobrow, Mittal and Stefik, 1986). Thus domain 
knowledge must be acquired incrementally and must be 
prototyped, refined, augmented and reimplemented. The 
time needed to build a tutoring system “should be mea- 
sured in years, not months, and in tens of worker-years, 
not worker-months” [Bobrow, Mittal and Stefik, 19861. 

5) Domain knowledge as found in textbooks is in- 
complete and idealixed[Bobrow, Mittal and Stefik, 19861. 
Textbooks rarely contain the commonsense knowledge-the 
know-how used by expert tutors or professionals in the 
field-to help choose another teaching strategy or solve dif- 
ficult problems. Books tend to present clean, uncompli- 
cated concepts and results. To teach or solve real-world 
problems, tutors must know messy but necessary details of 
real or perceived links between concepts and unpublished 
rules of teaching and learning. 

Communities of experts are needed to provide a focus for 
articulating distributed knowledge in an intelligent tutor. 
The resultant machine tutor should include recent as well 
as historical research about thinking, teaching, and learn- 
ing in the domain. Evaluating such an articulation would, 
in itself, contribute to education-and ultimately to com- 
munication between experts. 

Compiling diverse research results from environmen- 
tal, teaching, cognitive, and domain experts is currently 
hampered by lack of explicit tools to help authors trans- 
fer their knowledge to a system. Based on criteria set 
out above, we intend to continue to develop and inte- 
grate knowledge acquisition tools to facilitate assimilation 
of teaching and learning knowledge into intelligent tutors. 
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