
A Model of Two-Player Evaluation Functions1

Bruce Abramson and Richard E. Kor@

Abstract
We present a model of heuristic evaluation functions
for two-player games. The basis of the proposal is
that an estimate of the expected-outcome of a game
situation, assuming random play from that point on,
is an effective heuristic function. The model is sup-
ported by three distinct sets of experiments. The
first set, run on small, exhaustively searched game-
trees, shows that the quality of decisions made on
the basis of exact values for the expected-outcome
is quite good. The second set shows that in large
games, estimates of the expected-outcome derived by
randomly sampling terminal positions produce rea-
sonable play. Finally, the third set shows that the
model can be used to automatically learn efficient and
effective evaluation functions in a game-independent
manner.

I. Introduction: The Problem
Heuristic search theorists have studied static evaluation
functions in two settings: single-agent puzzles and dual-

agent games. In single-agent domains, the task is typically
to find a lowest cost path from the initial state to a goal
state. The role of the heuristic evaluation function is to
estimate the cost of the cheapest such path. This provides
a rigorous definition of single-player evaluators, offers an
absolute measure of heuristic quality (its accuracy as an
estimator), allows any two functions to be compared (the
more accurate estimator is the better heuristic), and has
spawned a large body of results that relate evaluator accu-
racy to both solution quality and algorithmic complexity
of heuristic searches.

Unfortunately, the meaning of heuristic evaluation
functions for two-player games is not as well understood.
Two-player evaluators are typically described as estimates
of the “worth” [Nilsson, 19801, “merit”, “strength” [Pearl,
19841, “quality”[W ins t on, 19771, or “promise”[Rich, 19831

‘This research was supported in part by NSF Grant IST 85-15302,
an NSF Presidential Young Investigator Award, an IBM Faculty De-
velopment Award, and a grant from Delco Systems Operations.

2Department of Computer Science, Columbia University, and
Computer Science Department, University of California at Los
Angeles

3Computer Science Department, University of California at Los
Angeles

of a position for one player or the other. The literature
is uniformly vague in its interpretation of game evaluation
functions. One popular school of thought contends that a
static evaluator should estimate a node’s actual minimax
value, or the value that would be returned by searching
forward from the given position all the way to the termi-
nal nodes of the tree, labelling the leaves with their actual
outcomes, and then minimaxing the leaf values back up to
the original node. Under this definition, the best heuristic
is the function that most accurately approximates the min-
imax value over all possible game positions. The difficulty
with this proposal is that it provides no way of judging the
quality of a heuristic, comparing two different evaluators,
or learning a heuristic function, because actual minimax
values can only be computed by exhaustively searching the
entire game tree below the given node. In real games, this
is a computationally intractable task for all but end-game
positions.

Alternatively, the quality of a heuristic can be defined
operationally by the quality of play that it produces. This
definition allows any two heuristic functions to be com-
pared by playing them against each other. There are two
major drawbacks to this approach. First, it compares en-
tire control strategies, not just evaluation functions. The
quality of a program’s play can be affected by a number of
factors, including backup techniques (minimax is not nec-
essarily optimal when the values are only estimates), and
lookahead depth (the relative performance of two functions
may be different at different depths), as well as evaluator
strength. Second, comparitive studies fail to provide an
absolute measure of the quality of a heuristic function.

We introduce a new model of two-player evaluators
that resolves all of these difficulties. The expected-outcome
model, described in section 2, provides a rigorous defini-
tion of an evaluator’s objective, an absolute standard for
gauging its accuracy, and a viable method for performing
a priori comparisons. Section 3 outlines a series of experi-
ments that shows that, at least in its most basic form, the
model leads to reasonable play in real games. Some con-
clusions and directions for future research are then given
in section 4.

90 Automated Reasoning

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

II. Expected-Outcome: The values can be approximated by random sampling. Along

el

In a broad sense, the purpose of an evaluation function in
a two-player domain is to indicate whether a given node
on the search frontier will result in a victory. The stan-
dard assumption, forwarded by proponents of approximat-
ing minimax values, has been that this corresponds to an
estimate of the outcome that would be arrived at by perfect
play. Our new model is based on a different set of assump-

tions. We view the actual outcome of a game as a random
variable and investigate what the game’s payoff would be,
given random play by both sides. Although the assump-
tion of random play seems unrealistic, it is important to
recall that in a two-player game, evaluation functions are
normally applied only at the frontier of the search. By
definition, the frontier is the limit beyond which the pro-
gram cannot gather any further data about the game tree,
and in the absence of any other information, random play
is the only practical assumption. Furthermore, there is a
common belief that any player, including a random one,
should find it easier to win from a “strong” position than
from a “weak” one. Thus, a technique for determining
strong positions for a random player may help indicate

strong positions for a perfect one, as well. In any event,
our approach stands in stark contrast to the usual one,
and the question of its utility is primarily empirical, not
intuitive.

Any effective evaluator designed under our assump-
Cons should indicate the expected value of the outcome
variable, or the ezpected-o&come of the given position.

with their many advantages, of course, expected values
(and other statistical parameters) do bear a serious onus:
they can be very misleading when population sizes &re rel-
atively small. Thus, care must be taken not to rely too
heavily on expected-outcome values in end-game play.

Most interesting games generate trees that are too

complex and irregular to be discussed analytically. Al-
though it is possible to show that on trees with uniform
branching factors and depths expected-outcome functions
make optimal decisions, when the uniformity disappears,
the guaranteed optimality is lost. Since the ultimate cri-
terion by which an evaluator is judged is its performance
in actual competition, we ran three sets of experiments
to verify both the rationality of our assumptions and the
strength of our model in real games. In the first set, we
generated the complete game-trees of tic-tat-toe and 4by-
4 Othello, calculated the exact numbers of wins, losses,
and draws beneath every position, and compared the ex-
act expected-outcome function with a well-known standa’rd
evaluator for the same game. We found that the quality
of the decisions made by expected-outcome was superior
to that of the standard evaluators. While these results
are encouraging, they are limited to games that are small
enough to be searched exhaustively. In the second set of
experiments, we used the full 8-by-8 game of Othelld. Since
this game is too large for exact values to be calculated, we
estimated expected-outcome by averaging the values of a
randomly sampled subset of the terminal positions beneath
the given node. This estimated expected-outcome evalua-
tion was pitted directly (no lookahead) against a standard
evaluator, with the result that expected-outcome signifi-’
cantly outplayed the standard. Unfortunately, the cost of
implementing the random sampler was prohibitive. In the
final set, we attempted to produce an eficient estimator by
performing a regression analysis on the expected-outcome
estimates returned by the sampler, to automatically learn
the coefficients in a polynomial evaluator for Othello. Once
again, the results were positive: the learned coefficients
played as well as a set of coefficients that had been de-

signed by an expert, even though the learning procedure
had no information about the game other than the rules
and the values of terminal positions. Taken as a whole,
this series of experiments offers strong empirical support
for the expected-outcome model.

Definition: Expected-Outcome Values
The expected-outcome value of a game-tree node, G,

is given by a player’s expected payoff over an infinite num-
ber of random completions of a game beginning at G, or

leaf=1

where k is the number of leaves in the subtree, Vl,,f is
a leaf’s value, and Pleaf is the probability that it will be
reached, given random play. It is important to note that
Pleaf is not necessarily equal to i. The probability that a
leaf will be reached is one over the product of its ancestors’
branching factors; a node with no siblings is twice as likely
to be reached as a node with one sibling. Leaves are only
equiprobable in trees in which all nodes of equal depth are
constrained to have identical branching factors, thereby
making all paths equally likely.

Ignoring the issue of plausibility for a moment, this
model has a number of attractive features. First, it is pre-
cise. Second, it provides an absolute measure of heuristic
quality, (namely the accuracy with which it estimates the
expected value), hence a means of directly comparing two
heuristic functions. Finally, and most importantly, it pro-
vides a practical means of devising heuristics - expected

0 porting E-vi

One of the most attractive features of expected-outcome
is its domain-independence. The model’s reliance on noth-
ing more than a game’s rules and outcomes indicates that
it should be equally applicable to all two-player games.
In addition to being a source of great strength, however,
this generality also makes the model somewhat difficult
to test thoroughly. Different implementations on differ-
ent games are quite likely to yield different results. This
section describes a series of experiments that demonstrate

Abramson and Kopf 91

the utility of expected-outcome to at least one class of
games, those with finite-depth trees and outcomes drawn
from (win, loss, draw}. The requirement of finite-depth
trees simply means that the game will eventually termi-
nate. Without this rule, a chess game could, at least in
theory, continue indefinitely. Variants of two games that
meet both requirements, tic-tat-toe and Othello, were se-
lected for testing. Tic-tat-toe is a game that should be
familiar to everyone; Othello, although of growing popu-
larity, may not be. The standard game is played on an
8-by-8 board. The playing pieces are discs which are white
on one side and black on the other. Each player, in turn,
fills a legal vacant square with a disc showing his own color.
Whenever the newly placed disc completes a sandwich con-
sisting of an unbroken straight line of hostile discs between
two friendly ones, the entire opposing line is captured and
flipped to the color of the current mover. A move is legal
if and only if at least one disc is captured. When neither
player can move, the one with the most discs is declared
the winner. (For a more detailed description, see [Frey,
19801 [Maggs, 19791 [Rosenbloom, 19821).

A. Decision Quality
The fist step in determining a model’s theoretical accu-
racy is investigating its decision quality, or the frequency
with which it recommends correct moves. In the case of
expected-outcome, the question is how often the move with
the largest (or smallest, as appropriate) percentage of win
leaves beneath it is, in fact, optimal. Since optimal moves
are defined by complete minimax searches, (searches that
extend to the leaves), their calculation is contingent upon
knowledge of the entire subtree beneath them. Thus, for
this first set of experiments, fairly small games had to be
chosen. Moreover, in order to compare the decision quality
of expected-outcome with that of a more standard func-
tion, popular games (or variations thereof) were needed.
Four games that met both requirements were studied, al-
though only two of them, 3-by-3 tic-tat-toe and 4-by-4
Othello, have game-trees that are small enough to generate
entirely. The other two, 4-by-4 tic-tat-toe and 6-by-6 Oth-
ello, were chosen because they are small enough for large
portions of their trees to be examined, yet large enough to
offer more interesting testbeds than their smaller cousins.

For each game studied, every node in the tree (beneath
the initial configuration) was considered by four functions:
complete-minimax, expected-outcome, a previously stud-
ied standard, and worst-possible-choice. The decisions rec-
ommended by these evaluators were compared with the op-
timal move, or the move recommended by minimax, and a
record was kept of their performance. Minimax, by defini-
tion, never made an error, and worst-possible-choice erred
whenever possible. Expected-outcome, unlike complete-
minimax, did not back up any of the values that it found
at the leaves; its decisions were based strictly on evalua-
tions of a node’s successors. Finally, the standard evalu-
ators were taken from published literature and calculated
using only static information: the open-lines-advantage for

tic-tat-toe [Nilsson, 19801, and a weighted-squares function
for Othello based on the one in [Maggs, 19791. Open-lines-
advantage is known to be a powerful evaluator; weighted-
squares is less so. Nevertheless, its study does have sci-
entific merit. Weighted-squares were the first reasonable
expert-designed Othello functions, and the more sophis-
ticated championship-level evaluators became possible in

large part due to the feedback provided by their perfor-
mance [Rosenbloom, 19821. Since the purpose of these

experiments was not to develop a powerful performance-
oriented Othello program, but rather to test the decision
quality of a new model of evaluation functions, a useful
comparison can be provided by any well thought out game-
specific function, albeit less-than-best.

The results of these experiments were rather inter-
esting and quite positive. Without going into detail,
their most significant feature was the evaluators’ relative
error-frequency - in tic-tat-toe, expected-outcome made
roughly one-sixth as many errors as open-lines-advantage,
and in Othello about one-third as many as weighted
squares. The b asic point made by these experiments is
that in all cases tested, expected-outcome not only made
fewer errors than the standard functions, but chose the
optimal move with relatively high frequency. This indi-
cates that guiding play in the direction of maximum win
percentage constitutes a reasonable heuristic. Thus, the
expected-outcome model has passed the first test: exact
values generally lead to good moves.

B. Random Sampling Strategies
According to the the decision quality results, if complete
information is available, moving in the direction of max-
imum win percentage is frequently beneficial. Unfortu-
nately, these are precisely the cases in which optimal moves
can always be made. Since probabilistic (and for that
matter, heuristic) models are only interesting when knowl-
edge is incomplete, some method of estimating expected-
outcome values based on partial information is needed.
The obvious technique is random sampling. Expected-
outcome values, by their very definition, represent the
means of leaf-value distributions. In the second set of ex-
periments, a sampler-based estimate of expected-outcome
was pitted against a weighted-squares function in several
matches of (8-by-8) Othello. These experiments, like those
which investigated decision quality, were designed as pure
tests of evaluator strength - neither player used any looka-
head. The aim of these tests, then, was to show that
sampler-based functions can compete favorably with those
designed by experts, at least in terms of their quality of
play. As far as efficiency goes, there is no comparison.
The sampler was fairly cautious in its detection of con-
vergence to a value; many samples were taken, and as a
result, the sampling player frequently required as much as
an hour to make a single move 4. The static function,

4Convergence was detected by first sampling N leaves and de-
veloping an estimate, then sampling an additional N and finding

92 Automated Reasoning

on the other hand, never required more than two seconds.
The time invested, however, was quite worthwhile: in a
50-game match, the sampler crushed its weighted-squares
opponent, 48-2.

Veteran 0 the110 players may feel that the number of
victories alone is insufficient to accurately gauge the rela-
tive strength of two players. Perhaps of even greater sig-
nificance is the margin of victory - the single most im-
portant feature in determining a player’s USOA (United
States Othello Association) rating [Richards, 19811. Over
the course of 50 games, the weighted-squares total of 894
discs was 1,079 shy of the 1,973 racked up by the sampler.
A statistical analysis of the disc differentials indicates that
the sampler should be rated roughly 200 points, or one
player class, ahead of the weighted-squares player.

These studies show that, efficency considerations
aside, sampler-based functions can compete admirably. It
is important, however, to keep the results in their proper
perspective. As a demonstration of the world’s best Oth-
ello evaluator, they are woefully inadequate - the absence
of lookahead makes the games unrealistic, the difference in
computation times skews the results, and the competition
is not as strong as it could be. Their sole purpose was
to establish estimated expected-outcome as a function at
least on par with those designed by experts, and the data
clearly substantiates the claim. Expected-outcome func-
tions, then, do appear to make useful decisions in interest-
ing settings. Given no expert information, the ability to
evaluate only leaves, and a good deal of computation time,
they were able to play better than a function that had been

hand-crafted by an expert. Thus the second challenge has
been met, as well: in the absence of perfect information,
an expected-outcome estimator made reasonably good de-
cisions.

C. earning ExpectecL0utcor-m Fuuc-
tions

Like most products, evaluation functions incur costs in two
phases of their existence, design and implementation. The
inefficiency of sampler-based functions is accrued during
implementation; their design is simple and cheap, because
an effective sampler need only understand the game’s rules
and be able to identify leaves. Static evaluators, on the
other hand, rely on detailed game-specific analyses, fre-
quently at the cost of many man-hours and/or machine-
hours. To help reduce these design costs, a variety of auto-
matic tools that improve static evaluators have been devel-
oped, the simplest of which attempt to determine the rela-
tive significance of several given game features. Techniques
of this sort are called parameter learning [Samuel, 19631
[Samuel, 19671 [Christensen and Korf, 19861, and should

be applicable to learning the relationship between game
features and expected-outcome values. While this reliance
on predetermined game features will inevitably limit con-
formity to the model’s ideal, scoring polynomials, are the
backbone of most competitive game programs, and if done
properly, the learned functions should combine the statis-
tical precision and uncomplicated design of sampler-based
functions with the implementation efficiency of static eval-
uators. The next set of experiments involved learning
static expected-outcome estimators of just this sort.

To find a member of the weighted-squares family that
estimates the expected-outcome value, a regression proce-
dure was used to learn coefficients for the features iden-
tified by the original, expert-designed function. Since the
exact expected-outcome value is not computable in inter-
esting games, an estimated value had to be used as the
regression’s dependent variable. Thus, the value that was
approximated was not the actual expected-outcome, but
rather the estimate generated by the random sampler de-
scribed in the previous section. The output of the regres-
sion led directly to the development of static estimators of
the desired form. In addition, the statistical measures of
relationship between the independent and dependent vari-
ables indicated that the selected game features are rea-
sonable, albeit imprecise, estimators of expected-outcome.
This is directly analogous to the assertion that weighted-

squares functions can play up to a certain level, but for
championship play, additional factors must be considered
[Rosenbloom, 19821.

For the third, and final set of experiments, four mem-
bers of the weighted-squares family of Othello evaluators
were studied, two of expert design ’ and two learned by
regression analysis. These evaluators differ only in the
coefficients assigned to each of the game features. To
ascertain the relative strength of the coefficient sets, a
tournament was played. Unlike the functions studied in
the decision quality and random sampling experiments,
all four weighted-squares evaluators are efficiently calcu-
lable. This allowed the ban on lookahead to be lifted and
more realistic games to be studied. The rules of the tour-
nament were simple. Every pair of functions met in one
match, which consisted of 100 games each with lookahead
length fixed at 0, 1, 2, and 3. Between games, the players
swapped colors. Over the course of 400 games, no evabu-
ator was able to demonstrate substantial superiority over
any other. Not only were the scores of all matches fairly
close, but the disc differential statistics were, as well. An
analysis of the victory margins shows that with probabil-
ity .975, no two of the functions would be rated more than
35 USOA points apart. Since roughly 290 points (actu-
ally, 207 [Richards, 1981]), are necessary to differentiate
between player classes, the rating spread is rather insignif-

another estimate. If the discrepancy between them was within the
tolerable error bounds, the estimate was accepted. Otherwise, an-
other 2N were sampled, and so on, until convergence was detected.
For the sampler used in these experiments, the original sample size
was iV = 16 leaves, and the maximum needed was 1024.

5The first expert function was taken directly from [Maggs>1979],
while the second, which was also used in the previous section’s ran-
dom sampling experiments, modified the first to account for my per-
sonal experience.

Abramson and Korf 93

icant - it should be
sent ially equivalent.

clear that all four functions are es-

In addition to offering a method of comparing eval-
uator strength, disc differentials suggest another applica-
tion of expected-outcome: assign each node a value equal
to the expected disc-differential of the leaves beneath it.
A fifth weighted-squares function was learned to estimate
the expected-outcome of this multi-valued leaf distribu-
tion (all outcomes in the range [-64,641 are possible), and
entered into the tournament. Its performance was notice-
ably stronger than that of the other functions, although
not overwhelmingly so, with victory margins between 39
and 145, and ratings 25 to 85 points above its competitors.

Thus, the coefficients learned by the regression anal-
ysis procedure are at least as good as those designed by
experts. Of course, it is possible to contend that a func-
tion’s strength is derived primarily from its feature set,
not its coefficient set. If this is true, any two members of
the same family should perform comparably, and it’s not
surprising that the new functions competed favorably with
the old. To dissipate any doubts that may arise along these
lines, some further family members were generated. Each
of the four evaluators in the initial tournament played an
additional match against a weighted-squares cousin with
a randomly generated set of coefficients. All four random
functions were demolished - they rarely won at all, and
would be rated at least a player class behind the four that
had been intelligently designed. With its strong showing in
the tournament, the expected-outcome model has met the
third challenge: an effeciently calculable estimator played
fairly well.

IV. Conclusions

Our proposed model of two-player evaluation functions,
the expected-outcome model, suggests new directions for
rethinking virtually every element of game programming.
For example, in addition to the obvious benefits of a rig-
orous and practical definition for evaluators, the model
implies a significantly different approach to the program-
ming of two-player games. The standard Shannon Type-
A program does a full-width search to a fixed depth and
then estimates the values of the nodes at that depth [Shan-
non, 19501. The program in the second set of experiments
(random sampling) does a full-depth search but only of a
subset of the nodes. In a Shannon type-A strategy, un-
certainty comes from the estimates of the positions at the
search horizon,‘whereas in our model, uncertainty is due
to sampling error. Furthermore, the new model avoids one
of the major disadvantages of all previous approaches, the
need for a game-specific evaluation function based on a set
of handcrafted, carefully tuned, ad hoc features. In sharp
contrast to this reliance on outside expertise, the expected-
outcome model requires only well-defined leaf values, the
rules of the game, and a game-independent sampling strat-

egy.
It is, of course, unreasonable to expect the initial

94 Automated Reasoning

implementation of any new model, regardless of inher-
ent merit, to match the achievements of thirty-five years
of progressive research. Whether expected-outcome will
eventually replace minimax as the standard model for
game design, or simply augment it by providing a degree
of precision to some of its more ambiguous components,
remains to be seen. What this paper has shown is that the
estimation of expected-outcome functions defines a viable,
domain-independent role for two-player evaluation func-
tions. We believe that the new model warrants the serious
further study that is currently in progress.

Acknowledgements
We would like to thank Othar Hansson, Andrew

Mayer, Dana Nau, and Judea Pearl for providing us with
helpful discussions and suggestions.

References
[Christensen and Korf, 19861 Jens

Christensen and Richard Korf. A unified theory of
heuristic evaluation functions and its application to
learning. In Proceedings of the fifth National Confer-
ence on Artificial Intelligence, 1986.

[Frey, 19801 Peter W. Frey. Machine Othello. Personal
Computing, :89-90, 1980.

[Maggs, 19791 Peter B. Maggs. Programming strategies in
the game of reversi. BYTE, 4:66-79, 1979.

[Nilsson, 19801 Nils J. Nilsson. Principles of Artificial In-
telligence. Tioga Publishing Company, 1980.

[Pearl, 19841 Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison
Wesley, 1984.

[Rich, 19831 El aine Rich. Artificial Intelligence. McGraw
Hill, 1983.

[Richards, 19811 R. Richards. The revised usoa rating sys-
tem. Othello Quarterly, 3(1):18-23, 1981.

[Rosenbloom, 19821 Paul S. Rosenbloom. A world-

championship-level Othello program. Artificial Intel-
ligence, 19:279-320, 1982.

[Samuel, 19631 A.L. Samuel. Some studies in machine
learning using the game of checkers. In E. Feigenbaum
and J. Feldman, editors, Computers and Thought,
McGraw-Hill, 1963.

[Samuel, 19671 A.L. Samuel. Some studies in machine

learning using the game of checkers ii - recent
progress. IBM J. Res. Bev., 11:601-617, 1967.

[Shannon, 19501 Claude E. Shannon. Programming a

computer for playing chess. 1Philosoyh4cal Magazine,
41:256-275, 1950.

[Winston, 19771 P.H. Winston. Artificial Intelligence. Ad-
dison Wesley, 1977.

