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Abstract 

A method is presented to express and use syn- 
tactic analogies between proofs in interactive thee- 
rem proving and proof checking. Up to now, very 
few papers have addressed instances of this pro- 
blem. The paradigm of “proposition as types” is 
adopted and proofs are represented as terms. The 
proposed method is to transform a known proof 
of a theorem into what might become a proof of 
an %Imlogous” -according to the user- propo- 
sition, namely the one to be proved. This trans- 
formation is expressed by means of second order 
pattern matching (this may be seen as a genersli- 
sation of rewriting rules), thus allowing the use of 
variable function symbols. For the moment, it is 
up to the user to discover the transformation rule, 
and the paper deals only with the problem of ma- 
naging it. We explain the proposed analogy treat- 
ment with a fully developed running example. 

In looking for a proof of a theorem it is very helpful to 
find “analogies” with proofs of already proved theorems 
in order to guide the discovery of the new proof. 

A typical example which can be found in mathemati- 
cal texts is the statement “this theorem can be proved as 
the previous one”. This sentence stands for a proof which 
is analogous to the designated one. But much more “ana- 
logy information” may be conveyed by the text. Actually, 
a larger amount of information seems to be needed if me- 
chanization is considered. 

Many questions are raised by these simple intuitive 
observations, the more important are: 

1. What does “analogy” mean in this context? 

2. How to formalize in some way this analogy (espe- 
cially in mechanized theorem proving or proof che- 
cking)? 

3. What is the proof representation adapted to this 
notion of analogy? 
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4. At which level of abstraction is analogy useful and 
manageable? 

5. Are we interested in syntactic, or semantic analo- 
gies or both? 

6. Are there tools adapted to the handling of this no- 
tion of analogy? 

7. Is it interesting to modify (or &end) these tools in 
order to make them more powerful for the treat- 
ment of analogy understood with the adopted mea- 
ning? 

In this paper an attempt is made to partially answer 
of these questions: 

Obviously, we cannot answer the first question in 
any general way, but we propose some kind of “syn- 
tactic analogy” and we leave (by now) to the user 
the task of discovering “analogies”. A high level 
language and some flexibility to formalize (with 
constraints) these analogies in a nondeterministic 
way are offered to him. 

, 
The user must formalize the analogies as second 
order transformation rules corresponding to the 
transformation from a proof to what is considered 
(by the user) as an analogous one. 

We may consider as analogous proofs in a large 
spectra with two ends: proofs are analogous just 
because they are proofs or just because they are 
the same. But these kinds of analogy -too much 
or not enough general- are useless. The adopted 
analogy must therefore not reach one or the other of 
these ends. We have chosen to emphasize analogies 
on the proofs structure. 

We have decided to adopt the so-called Uproposition 
as types” paradigm, and thus represent a proof as 
a term the type of which is the proposition being 
proved. 

We consider that a second order pattern matching 
algorithm is a good tool to be used in a first ap- 
proach to syntactical analogy. 

Only syntuctic analogies are manageable with the 
chosen tool. 
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e Some modification of Huet’s second order pattern 
matching is currently studied. 

To our knowledge analogy has been considered in 
theorem proving in very few papers (see for example the 
pioneer work [Kling, 19711 and also [Plaisted, 1981] for 
the use of abstraction in the resolution method) and we 
do not know about papers treating analogy in a “proof as 
term” approach, which is the one chosen in the present 
work. In [Constable et al, 19851 it is suggested that 

<< one can imagine writing very general 
Yransformation tactics” (for details see [Cons- 
table et al, 19851) to construct proofs by ana- 
logy to existing proofs >> 

but no indication is given about how to tackle this pro- 
blem. 

The structure of the paper is as follows: 
In section 2 we present some generalities about ana- 

logy and explain why we have chosen second order trans- 
formation rules. In section 3 we expose the notion of 
proof as term and introduce the example which we fully 
develop in section 4 to set out our method. Section 5 
basically evokes some problems raised by the chosen ap- 
proach. 

II Some Remarks About 
Analogies Between 

The following diagram shows how analogy is treated: 

proof -schema1 
transformation rule 

* proof-schema2 
A 

S:set of substitutions 
(yield by Znd 
order pattern matching 
algorithm) 

‘1 
proof 1 proposed-proofs = 

(known proof) {a(proof ,schema2) 10 E S) 

In principle, analogies between proofs may be stated a 
posteriori in the metalanguage (using a (meta-)sentence 
expressing that a transformed term obtained from proof1 
is itself a proof). This sentence can be proved in the 
metalanguage. But, in everyday mathematics analogies 
are used in a nonformal manner. When a mathematician 
wants to formally use a proof transformation, he does 
metareasoning and not analogical reasoning. Moreover 
analogy is intrinsicaZZy an uncertain way of reasoning, 
which, if used, must be checked. 

The transformation rule heritates this intrinsic (and 
hazardous) uncertainty (it can denotes something which 
is not always true). In some way, the non-unicity of the 
solutions of the matching, as explained below, brings a 
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part of this uncertainty. 
Three questions arise naturally: 
o Why natural deduction oriented? 

e Why proof as term? 

e Why second order pattern matching? 

It is a well known fact that natural deduction is a 
good formalization of mathematical reasoning (see for ex. 
[Gentzen, 19691) and the representation of proofs as terms 
reflects the abstract proof structure (see for ex.[Constable 
et al, 19851, [C onstable et al, 19861, [deBruijn, 19891, [Mil- 
ler and Felty, 1986]). We have thus adopted this para- 
digm in our approach. 

Proof-representing terms are built from functional 
constant symbols denoting inference rules and first-order 
constants denoting axioms. 

Having first-order variables in terms allows represen- 
tation of partial proofs, which means proofs “contai- 
ning” unproved lemmas (see [Gordon et d, 19791, [Milner, 
19851). 

That is, these first-order variables range over proof 
terms. A further generalization will allow us to use va- 
riables to denote inference rules or composition of infe- 
rence rules (considered as functions). This is obviously 
not possible if we restrict ourselves to first order terms, 

where function symbols are all constants. 

III 

We adopt the set of inference rules found in [Miller and 
Felty, 19861 which is a slightly modified version of Gent- 
Zen’s LK system (Gentzen, 19691. We list below only the 
ones we use in the following example. 

andl 

I'-,O,A B,A+A. 
A =+ B,l-‘,A --) O,AampJ imps 

some-r 

r axiom 

These inference rules considered as functional constants 
have polymorphic types. We write t : T to say that t 
is a well-formed proof term and T is a ground type (i.e. 
a sequent) which is an instance of the principal type of 
t. Actually, it does not say more than: t is a proof of 
2’. Well-formedness and type inferencing on terms in po- 
lymorphic signatures are quite difficult problems and we 
shall not discuss them here. In the following we shall as- 
sume available a decision procedure for the correctness of 
such an expression t : 2’. 

In the following, we use a second order pattern mat- 
ching algorithm from [Huet and Lang, 19781. This al- 



gorithm receives on input a subset of second order X- 
calculus which is enough here, and computes a complete 
and minimal set of unifiers. See [Huet and Lang, 19781 
for details. 

We are now going to develop an example (from [Mil- 
ler and Felty, 19861) to set out the different steps of the 
proposed method. The starting point is a proof of the se- 
quent segl: + (p(u) V q(b)) A Vx(p(x) =+ q(x)) =S 3xq(x) 

The proof, which we shall call proofl, is: 

QW --) 44 
some-r 

p(u) * p(u) q(u) 4 3xq(x) q(b) -+ q(b) 
4mpl some3 

P(49PW * t?(a) -+ 3??(x) q(b) 4 3x&) 
all1 t hinl 

P(u)Yx(P(x)*q(x))-+3xq(x) q(Wx(p(x)=+q(x)Wxq(x) 

-_ - P(Q) v q(b),vx(P(x) * a(4) + 344 

undl 
(PM v !#)) A Vx(p(x) =+ q(x)) + 3xq(x) 

imp3 
--) b(Q) v !m A Vx(p(x) * q(x)) =+ 3xq(x) 

proof1 is represented by the term: 
imp~(undl(orl(uZll(impl(uxiom(p(u)), 

somes(uxiom(q(u))))), 
thinl(some_r(uxiom(q(b))))))) 

We thus have l- proof1 : seql. 

Let us now try to prove the following sequent: 
se@: -+ (P(a) V r(b)) A VX(P(X) =+ +))A 

Vx(q(x) * r(x)) * 3xr(x) 

Of course, one can prove it without any knowledge 
about the proof of seql, but it may be easier to use some 
information carried by pr00f1. Moreover, we think that 
the human reader, having read and understood the proof 
of seql, cannot try to prove seq2 without using proof 1, 

at least unconsciously. 
The usual way to use a proof is to have it as a subterm 

of the proof we are looking for. In our example, we can 
see that it is certainly possible here also using the lemma: 
+ V~(P(X) * q(x))Avx(q(x) * r(x)) =$ vx(~(x) =+ r(x)) 

ut this actually implies some metalevel reasoning 
(one can replace a subformula by an equivalent one, etc.), 
and all the process of proving metatheorems and using 
them is a quite difficult and long task. We shall not 
always want or be able to find and prove general results 
during the mathematical work. 

Our goal here is to draw closer to informal remarks 
we can make after a quick analysis of proofl. 

1. The last three rules are imp-r(undl(orJ.. .))). 
They are used to connect and transform the p(a) 
case and the q(6) case into the right sequent seql. 
The only change to prove seq2 will be to add 
an andl rule to “connect” the extra hypothesis 
v+lk4 =+ r(x))- 
On the right hand side of the tree, there is a “quick” 
reasoning on q(b), which we call g, followed by an 
application of the thinning. To prove seq2, we shall 
have to add one thinning. 

On the left hand side of the tree, we can find the 
same quick reasoning g, but this time applied to 
q(u). Then follows something, say k, to get the 
p(u) case. 

At this point of analysis of prooj2, or, we could better 
say, at this level of analogy between proof1 and proofa, 
we can write a transformation rule: 
f (o447M4h WnJbMW))H) - 

f (undl(orl(k’(g(r(u))),i(thinl(ths’nl(g(r(b))))))))) 
where f 9 g, i, k and k’ are second order variables with 

types: 

Of course, one can be more precise in giving a type 
to these variables, depending on the polymorphic pos- 
sibilities. As above, we do not discuss this topic. Mo- 
reover Huet’s second order pattern matching runs on a 
slightly restricted second order X-calculus with simple 
types (sorts) (see [Huet and Lang, 19781 and also [Bundy, 
19831). We thus cannot (for the moment) use the poly- 
morphic type discipline in the pattern matching, the only 
consequence of which is to bring more unifiers, the extra 
ones being useless. 

There are some remarks to do concerning this trans- 
format ion rule: 

8 We have introduced the variables f and i because 
we are not only interested in the analogy between 
proof 1 and proof 2 (the proof of seq2 we are looking 
for), but we have in mind a more general analogy. 

Q, The variable k’ only appears in the right hand side 
of the rule, and thus it cannot be instantiated by 
any unifier resulting from the matching with the left 
hand side. Therefore, this transformation rule does 
not bring proof terms, but proof schemas. The free 
variables appearing in them are to be instantiated 
by a theorem prover (the type of these instancia- 
tions is known given the sequent to be proved by 
the schema. Instantiating a first order variable is 
to prove a lemma, instantiating a second order va- 
riable is to find a deduction). 
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The pattern matching applied to proof1 with the left 
hand side of the rule gives a set of 14 unifiers (we have im- 
plemented Huet’s matching algorithm in Common-Lisp 
running on SUN), and thus we obtain 14 terms by ap- 
plying these unifiers to the right hand side. We do not 
list them allAas most of them are to be deleted by the 
type inferencing process (gi& seq2). 

In this example, the only remaining term is: 
imp_r(andl(andJ(orl(k’(some~(uxiom(r(a)))), 

thinl(thinl(some2=(uxiom(r(b)))))))) 
and k’ must be instantiated with the type: 

l-u -+3xrx 
p(u),Vx(p(x) =s q(x)),Vx(q(x) * r(x)) -+ 3xr(x] 

This is of course possible using the unifier : 
< k’; Xx.uZZl(impl(uxiom(p(u)), 

dZJ(impJ(uxiom(q(a)), 5)))) > 
where x is a first order variable of type r(u) -+ 3xq(x). 

This gives proof2 of type seq2. Furthermore, we can 
apply the transformation rule to proof2 to find a proof 
of seq3, that is: 
+ [(p(a) ” s(b)) A Vx(p(x) * q(x))A 

Vx(q(x) 3 r(x)) A Vx(r(x) * s(x))] * 3xs(x) 
For that purpose, the rule must be slightly modified: 

replacing q by r and r by s. The result of the pattern 
matching is a set of 21 unifiers, and at the end we obtain 
the term 
imp~(undl(undl(undl(orl(k’(some~(uxiom(s(u)))), 

thinl(thinl(thinl(somej(aziom(s(b)))))))))))) 
and to get proof 3, k’ is replaced by 
Xx.uZlJ(impl(uxiom(p(u)), 

dZJ(impJ(uxiom(q(u)), 
uW(impJ(uxciom(r(u)), x)))))) 

This is the more general analogy we were talking about. 
Now that we feel more comfortable with the problem 

of expressing analogies with transformation rules, we may 
refine the analogy between proof 1 and proof 2 to get a 
better transformation rule, i.e. such that there will be no 
free variables to be instantiated by a theorem prover. 

The troublesome fact in the previous analogy lies in 
the third point, where we didn’t try to look into the “so- 
mething” to get the p(u) case. But with a further analysis 
of the proof, we can see how it works. This “something” 
is built from a repetition of “something else”, say h, on 
p(u), then on q(u) and so on.. . 

There is still some fuzzyness remaining in that des- 
cription. If we want, we surely could be more precise, and 
so on until we would find (alone.. .) the searched proof. 
We will rather let the computer do these last steps by its 
own, and thus we don’t mind that “something else”. Let 
us write the transformation rule expressing this level of 
analogy: 
f (orJ(W(p(4 dqW))h i(thinJ(ddb)))))) _+ 

f (undJ(orJ(k(h(p(a), h(qb),g(rb))))), 
i(thinJ(thinJ(g(r(b)))))))) 

In this rule, all the free variables in the right hand 

side are free in the left hand side. That is what we were 
looking for, but does it work, does it actually build the 
searched proof? 

The only way to know is to try! The pattern matching 
with proof 1 computes 64 unifiers. In the 64 terms then 
obtained we can find proof2. The corresponding unifier 
is: 

((g lambda (x9 (some-r (axiom x99) 
(i lambda (x9 x9 
(h lambda (x y9 (all-1 (imp-1 (axiom x9 y>)> 
(k lambda (x9 x9 
(f lambda (x9 (imp-r (and-1 x9 9 9) 

Therefore, this analogy is correct to get a proof of seq2 
from proof 1. Moreover, we can say it is complete as 
it doesn’t leave anything to prove. Only proof checking 
(type inferencing) is needed here. 

As in the previous analogy, this one can be used to 
solve some other problems, at least the demonstration 
of seq3. The pattern matching with proof2 using the 
rule where we have replaced p, q and r by q, r and s 
respectively, brings 148 unifiers, among which we find 
the right one to get proof3: 

((g lambda (x9 (some-r (axiom x999 
(h lambda (x y) (all-1 (imp-1 (axiom x9 ~999 
(i lambda (x9 (thin-1 x99 
(k lambda (x9 (all-1 (imp-1 (axiom (p a)> x99) 
(f lambda (x9 (imp-r (and-1 (and-1 x9>>)) 

We now set out in an algorithmic way the proposed 
method: 

1. the user already has I- proof 1 : thml and he has a 
formula (or sequent) thm2 he wants to prove, which 
he thinks is a problem analogous to the solved one. 

2. he writes a (or uses an already written) transfor- 
mation rule proof -schema1 --+ proof-schema2 
containing first or second order variables. 

3. the matching is done between proof -schema1 
proof 1, computing a finite set S of unifiers. 

and 

4. the corresponding instances of proof schema2 a.re 
computed. let T = {a(proof,schemu2))a E S}. 

5. -The proof checking is attempted on every element 
of 2’. We then get T’ = {t E TI I- t : thm2). 

6. if the terms in T’ have free variables, a theorem 
prover tries to instantiate them all in every t in T’. 
We then have 
T” = {atlt E T’ A ot is ground A I- at : thm2) 
(equal to T’ if there is no free variables in 7”). 

7. if T” is empty, the analogy fails. Otherwise it suc- 
ceeds and we can choose for example the shortest 
proof in T” if there are several. 

At any step from 3 to 6 a failure 
of the computed set) can be added. 

test (on emptiness 
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We have presented a method which we consider to be a 
first step towards a partial solution of the problem: 

“How to formulize a notion as powerful and 
frequently employed in humun mathematical 
reasoning as proof analogy 7” 

Many problems strongly related to the principal subject 
of the present work have not been treated here. We are 
now working on them in order to have a deeper grasp of 
the ideas evoked in this paper. The problems are essen- 
tially those mentioned in 6,7 in the Introduction and they 
are: 

BD Some possible modifications of Huet’s matching al- 
gorithm: 

- Try to take into account full types (to make 
types represent sequents). It will drastically 
diminish the number of unifiers, thus increa- 
sing the efficiency of the algorithm. 

- Maybe eliminate from the result the constant 
functions (i.e. Xx.t, where x does not appear 
in t) which are not, a priori, useful in analogy. 
We do not necessarily need a complete set of 
unifiers. 

- The matching algorithm works on A-terms. 
We only use a subset of this. 

Can we have 
the language 

more powerful expressing facilities 
to write transformation rules? 

in 

Q Is it possible to help the user to improve a firstly 
wrong or not quite interesting transformation rule, 
exploiting failures of the matching algorithm? More 
generally, is it possible to automatically build and 
use these rules ? 

Is it possible to incorporate the kind of analogy pre- 
sented in this paper to help (and hopefully guide) 
the “transformation tactics” presented in works as 
those of Constable et al. ([Constable et al, 19851, 
[Constable et al, 1986])? 

We thank Ph. Schnoebelen for useful comments on an 
earlier draft of this paper. 
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