
Computational Costs versus enefit s of Control Reasoning1

Alan Garvey, Craig Cornelius, and Barbara Hayes-Roth
Knowledge Systems Laboratory

Stanford University

‘This research was supported by the following grants: NIH
Grant RR-00785; NIH Grant RR-00711; Boeing Grant W266875;
NASA/Ames Grant NCC 2-274; DARPA Contract N00039-83-C-
0136; ONR Contract N00014-86-K-0652. We thank Micheal Hewett,
M. Vaughan Johnson Jr., Robert Schulman and Jeff Harvey for their
work on BBl. We thank Russ Altman, Jim Brinkley, Bruce Duncan,
Olivier Lichtarge, John Brugge, and Oleg Jardetzky for their work on
PROTEAN. Special thanks to Bruce Buchanan and Ed Feigenbaum
for sponsoring the work within the Knowledge Systems Laboratory.

110 Automated Reasoning

ments of objects to satisfy constraints, which is layered upon
the BBl blackboard control architecture[Hayes-Roth, 19851.

A. The BBP Blackboard Control Archi-
tecture

The BBl blackboard control architecture provides a uniform
mechanism for reasoning about problems and problem-solving
actions. Functionally independent knowledge sources (KSs) co-
operate to solve problems by recording and modifying solution
elements in a global data structure, the bbackboaTd. Domain
KSs solve domain problems on the domain blackboard. Con-
trol KSs construct control plans for the system’s own actions
on the control blackboard. All KSs, when triggered, generate
knowledge source activation records (KSARs) that compete for
scheduling priority.

The BBl execution cycle has three steps: (a) The inter-
preter executes the action of the scheduled KSAR, thereby
changing the blackboard. (b) T ‘he agenda-manager adds
KSARs to the agenda for all KSs triggered by the blackboard
changes and rates each one against the current control plan. (c)
The scheduler chooses the highest-rated KSAR to execute its
action next. If it schedules a control KSAR, that KSAR may
change the criteria used to rate pending KSARs on subsequent
cycles.

Given this architecture, an application system can exploit
the full power of the blackboard architecture to construct and
follow control plans for its own actions in real time. For exam-
ple, it can incrementally refine a general strategy as a sequence
of specific objectives. It can pursue multiple plans simulta-
neously. It can integrate opportunistic, goal-driven, and data-
driven objectives in its plans[Johnson and Hayes-Roth, 19861. It
can modify, interrupt, depart from, resume, or abandon plans.

B. The ACCQRD Framework
ACCORD provides a domain-independent framework for per-
forming arrangement-assembly tasks. Within ACCORD, a
problem-solver defines several partial arrangements, each com-
prising some of the objects and constraints specified in a prob-
lem. It declares one object the anchor and positions other
objects (anchorees) relative to it. It reduces the family of legal
positions for each anchoree by anchoring it with constraints to
the anchor and yoking it with constraints to other anchorees.
Eventually, the problem solver integrates multiple partial ar-
rangements with constraints among their constituent objects.

To support arrangement assembly, ACCORD provides:
(a) a skeletal concept network in which to define domain-
specific objects and constraints; (b) a vocabulary of partial
arrangements (e.g., anchor, anchoree); (c) a type hierarchy of

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

assembly actions, events, and states (e.g., do-anchor is-a do-
position action); (c) linguistic templates for instantiating ac-
tions, events, and states (e.g., Do-anchor anchoree to anchor
in partial-arrangement with constraints).

ACCORD enables an application system to reason about
its problem-solving actions and control plans in an inter-
pretable, English-like representation. For example, PROTEAN
represents one of its actions as:

Do-Anchor Helix-l-l to Helix-2-l in PA1 with NOE6.

It represents one of its control decisions as:

Do-Position Long Helix in PA1 with Strong Con-
straint.

BBl determines that the action matches the control decision
because:

Do-Anchor is-a Do-Position action.
Helix-l-l is Long.
Helix-l-l is-a Helix.
PA1 is PAl.
NOE6 is Strong.
NOE6 is-a Constraint.

Finally, BBl translates the action into its executable language
of blackboard modifications.

TEAN System
1. Knowledge

PROTEAN attempts to identify the three-dimensional
conformations of proteins based on a variety of constraints, us-
ing four kinds of knowledge. It instantiates ACCORD’s concept
network with biochemistry objects (e.g., Helix is-a Object) and
constraints (e.g., NOE is-a Constraint). It specifies domain
KSs that generate feasible problem-solving actions. For exam-
ple, one KS specifies:

Trigger: Did-Position Anchoree (The-Object)
in PA (The-PA)

Context: For The-Partner in:
Includes The-PA Anchoree (The-Partner)
Constrains The-Object The-Partner

with Constraints (The-Constraints)
Action: Do-Yoke The-Object with The-Partner

in The-PA with The-Constraints

It specifies a geometry system (GS) [Brinkley et al., 19861 (dis-
cussed below) that performs the numerical operations underly-
ing certain actions. It specifies control KSs that generate the
control plan in Figure 1 (discussed below).

2. Geometry System

PROTEAN’s GS performs two operations. To support an-
choring actions, the GS searches space, generating all possible
locations for an anchoree (at some resolution) that satisfy the
anchoring constraints. Since six parameters specify the posi-
tion and orientation of an object in space, both the computa-
tion time to search space and the number of locations returned
increase roughly as the sixth power of the sampling resolution.
PROTEAN determines resolution by instructing the GS to: (a)
begin searching at low resolution; and (b) repeat the search
at progressively higher resolutions until it returns a threshold
number of locations. To support yoking and other positioning
actions, the GS prunes locations, testing each location against

Level
of
Ab-

strac-
tion

I StrategyA
v

I
SSl ,, ss2 8, ss3

II II v

I I F6
I

I I F7
I I

El
v

I I

Problem-solving Cycle

StrategyA: Assemble One Partial-Arrangement

Sub-Sbategyl (SSI 1: Define one Partial-Arrangement

Sub-Strategy2 (SS2): Position Structured-Secondary-Structure

Sub-Strategy3 (SS3): Position Secondary-Structure

FOCUS1 &I): Create Anyname

Focus2 (F2): Include Secondary-Structure in PA1

Focus3 (F3): Orient PA1 about long contraining constrained
Structured-Secondary-Structure

Focus4 (F4): Anchor {Ol) Structured-Secondary-Structure
to Helixl-l in PA1 with {C) Constraint-Set

Focus5 (F5): Yoke several{cG) Structured-Secondary-Structure
in PA1 with {C) Constraint-Set

Focus6 (F6): Anchor {02) Random-Coil to Helixl-l in PA1
with {c) Constraint-Set

Focus7 (r-7): Yoke several{o3) Secondary-Structure in PA1
with {c] Constraint-Set

Focus8 (F3): Restrict Secondary-Structure in PA1
with Constraint-Set

Figure 1: Basic PROTEAN Control Plan

the specified constraints and returning all locations that satisfy
them. Since yoking compares each pair of locations for two pre-
viously anchored objects, yoking time increases as the twelfth
power of the resolution.

3. Control Plan
PROTEAN’s strategy (see Figure 1) comprises a sequence

of three sub-strategies, each comprising a sequence or set of foci.
(The next section explains the bracketed characters in Figure
1.) During SSl, PROTEAN creates a partial-arrangement, in-
cludes objects in it, and orients it around a particular anchor.
During SS2, PROTEAN positions structured objects (alpha-
he&es and beta-strands) by anchoring and yoking them. During
SS3, PROTEAN positions all objects (including non-structured
coils) by anchoring and yoking them. Whenever PROTEAN
generates an intractably large number of locations for an an-
choree, it introduces an opportunistic focus (e.g., F8) to restrict
(statistically sample) the locations.

PROTEAN generated the control plan in Figure 1 for the
lac-repressor headpiece protein at low resolution. For other
proteins or resolutions, sub-strategies and foci appear and ter-
minate on different cycles.

Garvey, Cornelius, and Hayes-Roth 111

III. Experimental Manipulations

A. Control Knowledge
We studied four variations on PROTEAN’s basic control plan.
Strategy A generated the plan in Figure 1. Strategy B intro-
duced the constraint modifier strong at points indicated by c.
Strategy C introduced object modifiers as follows: long, infEe%-
ible, constrained, and constraining at 01, constraining at 02,
and long, inflexible, constraining, and recently-reduced at 03.
Strategy D introduced all modifiers. For example, here are the
four versions of Focus 7:

Strategy A: Yoke several Secondary-Structure in PA1 with
Constraint-Set.

Strategy B: Yoke several Secondary-Structure in PA1 with
Strong Constraint-Set.

Strategy C: Yoke several Long Inflexible Constraining
Recently-Reduced Secondary-Structure in PA1 with
Constraint-Set.

Strategy D: Yoke several Long Inflexible Constraining
Recently-Reduced Secondary-Structure in PA1 with
Strong Constraint-Set.

Modifiers increase the precision with which the strategy
discriminates among competing actions. For example, sen-
tence A gives equal ratings to all actions that yoke secondary-
structures in partial-arrangement PA1 with any constraints,
while sentence B gives higher ratings to actions that use strong
constraints.

Domain experts recommend these particular modifiers to
favor positioning actions that rapidly reduce the number of lo-
cations for each object. While these modifiers don’t affect PRO-
TEAN’s ultimate solution, they should reduce the number of
positioning actions it performs and the cost of later actions.
On the other hand, they should increase the cost of each rat-
ing action. The question is: Does the benefit of performing
fewer, more effective positioning actions outweigh the cost of
identifying those actions?

l3. Proteins
We compared PROTEAN’s four strategies on each of two pro-
teins: the lac-repressor headpiece and myoglobin. They differ
on: size (51 amino acids vs. 153), number of structured objects
(3 versus 5), number of NOE constraints (17 vs. 21), sequence
of amino acids, and pattern of constraints.

IV. nalysis

Total Symbolic Reasoning Time =
F(Total Number of Cycles

& Number of KSARs per Cycle
& Identities of KSARs per Cycle)

Total Rating Time =
F(Tota1 Number of Cycles

& Number of KSARs per Cycle
& Rating Time per KSAR)

Total GS Time = F (GS Operations Perf armed
& Threshold)

We assess the effects of each knowledge strategy by com-
paring it to strategy A as follows:

1.

2.

3.

4.

A.

Does the control knowledge affect the identities or number
of actions PROTEAN schedules?

Do differences in scheduling decisions affect the efficiency
(total GS time or total symbolic reasoning time) of PRO-
TEAN’s problem solving?

Does the control knowledge affect the cost (rating time per
KSAR) of PROTEAN’s scheduling decisions?

Do the combined effects produce a net computational ef-
ficiency (total time) in PROTEAN’s performance?

V. Results
Results for the Lac-Repressor
piece

Table 1 shows PROTEAN’s performance on the lac-repressor
headpiece. Notice that the cost of control knowledge is negligi-
ble (.05-.64 second increase in rating time per KSAR) compared
to total time (1587-5171 seconds). It does not significantly af-
fect PROTEAN’s overall efficiency.

The top panel of Table 1 shows the complete results. As
indicated by total time, Strategy B produced a net efficiency
compared to Strategy A. Strategy B reduced PROTEAN’s to-
tal number of actions by nine, thereby reducing both GS and
symbolic reasoning times. These effects outweighed the small
increase in rating time. By contrast, Strategy C produced a net
inefficiency. It reduced the number of actions by one, slightly
reducing GS time. But increased symbolic reasoning and rat-
ing times outweighed this savings. Strategy D, which included
all modifiers, combined Strategy B’s reductions in GS and sym-
bolic reasoning times with Strategy C’s increase in rating times,
producing an intermediate net efficiency.

The middle panel of Table 1 shows the results for sub-
strategy SS2. Here PROTEAN anchored and yoked two he-
lices relative to a third, performing exactly the same actions (in
slightly different orders) under all four strategies. As a conse-
quence, the knowledge strategies did not affect GS or symbolic
reasoning times, but did slightly increase rating times. The
strategies did not significantly affect total times.

The bottom panel of Table 1 shows the results for sub-
strategy SS3. Here PROTEAN anchored the four coils and
yoked all of the anchorees to one another. These results par-
allel and actually determine the complete results in the top
panel of Table 1. Strategy B reduced PROTEAN’s total num-
ber of actions by nine, thereby reducing GS and symbolic rea-
soning times. While slightly increasing ratings times, Strategy
B produced a net efficiency. Strategy C reduced the number

112 Automated Reasoning

A. B. C. D.
No Constraint Object All

Modifiers Modifiers Modifiers Modifiers
Costs During All Sub-strategies

Total Time 4881 4265 5171 4281
Number of Cycles 87 78 86 78
GS Time 3322 2858 3294 2864
Symbolic
Reasoning Time” 1381 1240 1561 1191

Average KSAR
0.35 0.41 0.87 0.93

Costs During Sub-strategy 2
2266 2271 2270 2268

Rating Time

Total Time
Number of Cycles
GS Time
Symbolic
Reasoning Time”

Average KSAR

7 7 7 7
2186 2186 2186 2186

71 73 70 68

Rating Time 0.35 0.40 0.85 0.91
Costs During Sub-strategy 3

Total Time 2215 1587 2518 1635
Number of Cycles
GS Time
Symbolic
Reasoning Time”

Average KSAR

37 28 36 28
1136 666 1108 678

928 768 1123 761

Rating Time 0.34 0.41 0.89 0.95

A. B. C. D.
No Constraint Object All

Modifiers Modifiers Modifiers Modifiers
Costs During All Sub-strategies

” Total Time 13930” 11985 12460 11816
Number of Cycles 116 104 111 103
GS Time 7278 6898 6275 6304
Symbolic
Reasoning Time” 6018 4506 5500 4795

Average KSAR
Rating Time 0.35 0.42 1.45 1.51

Costs During Sub-strategy 2
Total Time 5062 5327 5410 5100
Number of Cycles 22 21 23 20
GS Time 4383 4699 4595 4453
Symbolic
Reasoning Timea 602 559 687 524

Average KSAR
Rating Time 0.35 0.41 1.70 1.74

Costs During Sub-strategy 3
Total Time 7536 5413 5869 5467
Number of Cycles 43 32 37 32
GS Time 2895 2199 1680 1851
Symbolic
Reasoning Time0 4121 2735 3665 3056

Average KSAR
Rsiting Time 0.35 0.42 1.20 1.28

AU times are in seconds. AU times are in seconds.

=This is all symbolic computing time, except rating time. OThis is all symbolic computing time, except rating time.

Table 1: Computational Costs of Four Strategies for As-
sembling the Lac-Repressor Headpiece

Table 2: Computational Costs of Four Strategies for As-
sembling Myoglobin

of actions by one, slightly decreasing GS time, but increasing
symbolic reasoning time. Increasing rating times as well, Strat-

cies in total time for all three knowledge strategies. We are

egy C produced a net inefficiency. Strategy D combined these
conducting experiments that combine control knowledge of the

effects to produce an intermediate net efficiency.
cost of positioning actions with current control knowledge of
their effectiveness.

* esults for Myoglobin
Table 2 shows PROTEAN’s performance on myoglobin. Again,
the cost of control knowledge is negligible (.07-1.39 seconds in-
crease in rating time per KSAR) compared to total time (5062-
13930 seconds). It does not significantly affect PROTEAN’s
overall efficiency.

The top panel of Table 2 shows the complete results. As
indicated by total time, all three knowledge strategies reduced
the number of actions PROTEAN performed, reducing both
GS and symbolic reasoning times. These effects outweighed in-
creases in rating times, producing a net advantage in efficiency.
As for the lac-repressor headpiece, Strategy B’s constraint mod-
ifiers were more effective than Strategy C’s object modifiers.
Here, however, Strategy D’s combined modifiers produced the
greatest efficiency.

The middle panel of Table 2 shows the results for sub-
strategy SS2. Here PROTEAN positioned five structured
objects. All three knowledge strategies produced about the
same number of actions, but increased GS time. PROTEAN’s
scheduling records show that PROTEAN performed several
specific yoking actions earlier under the knowledge strategies
than it did under Strategy A. At the earlier times, these partic-
ular actions required more expensive GS operations than they
required later in problem solving, but did not reduce the total
number of actions required to solve the problem. These costs,
combined with increased ratings times, produced net inefficien-

The bottom panel of Table 2 shows the results for sub-
strategy SS3. Here PROTEAN positioned the five structured
objects and four coils. All three knowledge strategies reduced
the number of actions PROTEAN performed, substantially re-
ducing GS and symbolic reasoning times. These savings out-
weighed the increased cost of rating, producing a net efficiency
in total time.

c.

Table 3 shows PROTEAN’s performance on the lac-repressor
headpiece during sub-strategy SS3 under all four strategies at
each of three resolutions. Because higher resolutions entail
more expensive GS computations, the knowledge strategies pro-
duce larger net efficiencies. Thus, maximum savings in total
time range from 628 seconds at low resolution to 1771 seconds
at medium resolution to 4110 seconds at high resolution.

Table 3 also shows an interaction between strategy and
resolution. Strategies B and D produced essentially the same
effects at all resolutions. They reduced the number of actions
PROTEAN performed, thereby reducing GS and symbolic rea-
soning times. In all cases, these savings outweighed the in-
creased rating times, producing net efficiencies in total time.
By contrast, Strategy C produced different effects at different
resolutions. At low resolution, Strategy C reduced the num-
ber of actions by only one, slightly reduced GS time, increased
symbolic reasoning time, and increased rating time. It pro-
duced a net inefficiency in total time. At medium and high

Garvey, Cornelius, and Hayes-Roth 113

A. B. C. D.
No Constraint Object All

Modifiers Modifiers Modifiers Modifiers
Costs During Sub-strategy 3 at Low Resolution

Total Time 2215 1587 2518 1635
Number of Cycles 37 28 36 28
GS Time 1136 666 1108 678
Symbolic
Reasoning Time= 928 768 1123 761

Average KSAR
Rat&g Time 0.34 0.41 0.89 0.95

Costs During Sub-strateEy 3 at Medium Resolution
- -- Total Time 5268 3831 4059

Number of Cycles 37 31 32
GS Time 4191 2718 3140
Symbolic
Reasoning Time” 917 895 766

Average KSAR
Rating Time 0.34 0.41 0.89

Costs During Sub-strategy 3 at High Resolution
Total Time 9956 7729 5846
Number of Cycles 38 33 29
GS Time 8794 6746 4819
Symbolic
Reasoning Time= 997 840 847

Average KSAR
Rating Time 0.34 0.41 0.89

3497
28

2550

759

0.95

5925
28

4939

790

0.95

All times are in seconds.

aThis is all symbolic computing time, except rating time.

Table 3: Computational Costs of Sub-strategy 3 at Three
Resolutions for Four Strategies for the Lac-Repressor
Headpiece

resolution, Strategy C reduced the number of actions by five
and nine, thereby substantially reducing GS and symbolic rea-
soning times. These savings outweighed increased rating time,
producing a net efficiency in total time. Although we do not
fully understand the GS properties that lead to this interac-
tion, we have a hypothesis. Strategy C includes the only mod-
ifier, recently-reduced, that is sensitive to intermediate solution
states. Perhaps the GS produces results that differentially sat-
isfy this modifier at different resolutions. We are investigating
this hypothesis.

D. Effects sf Control on Symbolic Rea-
soning Per Se

PROTEAN differs from many knowledge-based systems in its
dependence upon expensive computations performed by the
geometry system. As discussed above, the three knowledge
strategies produce substantial efficiencies in PROTEAN’s per-
formance largely by producing savings on GS computations.
However, the knowledge strategies produce net efficiencies in
performance independent of the cost of GS computations. Ta-
ble 4 shows net symbolic reasoning time (total time - GS time)
for all cases in which the knowledge strategies produced a net
overall efficiency. In all cases but one, the knowledge strate-
gies produced more efficient symbolic reasoning per se, simply
because they allowed PROTEAN to solve problems in fewer
problem-solving cycles.

A. B. C. D.
No Constraint Object All

Modifiers Modifiers Modifiers Modifiers
Lac-Repressor at Low Resolution

Net, Symbolic
Reasoning Time 1559 1407 - 1417

Lac-Repressor at Medium Resolution
Net Symbolic
Reasoning Time 1539 1540 1335 1402

Lac-Repressor at High Resolution
Net Symbolic
Reasoning Time 1622 1416 1470 1447

Myoglobin at Low Resolution
Net Symbolic
Reasoning Time 6652 5087 6185 5512

All times are in seconds.

Table 4: Net Symbolic Reasoning Time for Cases where
Knowledge Strategies Produced Net Efficiency

E. Effects of Control on Identified Pro-
tein Structures

The four strategies examined in these experiments had no ef-
fect on the protein structures PROTEAN identified. At a given
level of resolution, it identified exactly the same structure for
the lac-repressor under all four strategies. Similarly, it iden-
tified exactly the same structure for myoglobin under all four
strategies.

VI. Implications
Our results confirm that intelligent control reasoning can induce
computational efficiency in AI systems. In particular, we found
that:

Control knowledge, including object and constraint mod-
ifiers, reduces total problem-solving time by reducing the
number of actions performed, GS time, and symbolic rea-
soning time.

The cost of using control knowledge-rating actions against
modifiers-is negligible compared to total problem-solving
time.

Control knowledge is most effective when the scheduler
chooses among many possible actions and its choices alter
the number or cost of subsequent actions.

Constraint modifiers usually reduce GS time more effec-
tively than object modifiers.

Sometimes the most effective actions entail disproportion-
ately expensive GS operations.

Control knowledge produces larger savings at higher GS
resolutions.

Modifiers that measure intermediate solution states may
operate more effectively at higher GS resolutions.

We plan to incorporate these results into PROTEAN’s
knowledge base, so that it can decide which modifiers to use
in particular problem-solving situations.

We conjecture that PROTEAN’s control knowledge would
have similar effects in other “arrangement-assembly systems.”
For example, the SIGHTPLAN system[Tommelein et QZ., 19871
designs construction site layouts by assembling arrangements of

114 Automated Reasoning

construction areas and equipment in a two-dimensional spatial
context. Since SIGHTPLAN also is implemented in BB*, we
can easily determine whether object and constraint modifiers
analogous to those defined for PROTEAN have similar effects
on its efficiency.

Speculating more broadly, we conjecture that control
knowledge of the sort used in these experiments (modifiers in-
serted into focus decisions) would improve the efficiency of any
application in which: (a) actions require expensive computa-
tions; and (b) h c oice of actions affects the number or cost of
subsequent actions.

The experiments illustrate a method for analyzing the util-
ity of control knowledge. Here we introduced modifiers to
the strategic parameters of a basic control plan. In new ex-
periments, we manipulate the structure of the control plan
itself. The BB* environment facilitates these experiments.
BBl provides tools for building control plans of any hierarchi-
cal/heterarchical complexity. ACCORD provides a language
for representing and reasoning about plans. Both BBl and
ACCORD permit modular variations on the form and content
of control plans.

In our investigation of control reasoning, we also need to
assess costs and benefits at the architectural level. Could an-
other architecture exploit the necessary control knowledge more
efficiently than BBl? How do alternative architectures compare
on: ease of system development, clarity of knowledge represen-
tation, support for explanation capabilities, and support for
learning capabilities. We are conducting experiments that ad-
dress these questions.

Finally, our experience in conducting these experiments
argues strongly for experimental investigation of theoretical as-
sertions. Although we thoroughly understand the operation of
BBl, ACCORD, PROTEAN, and GS, we could not reliably
predict important details of their performance. For example:
(a) we mistakenly expected increases in rating time to substan-
tially limit the net advantages of control knowledge; and (b)
we still do not fully understand why Strategy C produced net
inefficiency at low resolution, but net efficiency at medium and
high resolution. Given the inherent complexity of contempo-
rary AI systems and the weakness and potential bias of human
efforts to anticipate their behavior, experimental methods must
play a key role in our research.

eferences
[Brinkley et ab., 19861 J. Brinkley, 6. Cornelius, R. Altman, B.

Hayes-Roth, 0. Lichtarge, B. Buchanan, and 0. Jardetzky.
Application of Con&a&t Satisfaction Techniques to the
Determination of Protein Tertiary Structure. Technical
Report, Stanford University, 1986.

[Durfee and Lesser, 19861 E.H. Durfee and V.R. Lesser. Incre-
mental planning to control a blackboard-based problem
solver. Proceedings of the Fifth National Conference on
Artificial Intelligence, $8-64, 1986.

[Erman et al., 19811 L.D. Erman, P.E. London, and S.F.
Fickas. The design and an example use of Hearsay-III.
Proceedings of the Seventh International Joint Conference
on Arti;ficial Intelligence, :409-415, 1981.

[Genesereth and Smith, 19821 M.R. Geneseret h
and D.E. Smith. Meta-level architecture. Technical Re-
port HPP-81-6, Stanford University, 1982.

[Hayes-Roth, 19851 B. Hayes-Roth. A blackboard architecture
for control. Artificial Intelligence Journal, 26~251-321,
1985.

[Hayes-Roth et al., 1986a] B. Hayes-Roth, A. Garvey, M.V.
Johnson, and M. Hewett. A Layered Environment for Rea-
soning about Action. Technical Report KSL-86-38, Stan-
ford University, 1986.

[Hayes-Roth et aZ., 1986b] B. Hayes-Roth, B.G. Buchanan, 0.
Lichtarge, M. Hewett, R. Altman, J. Brinkley, C. Cor-
nelius, B. Duncan, and 0. Jardetzky. PROTEAN: Deriv-
ing protein structure from constraints. Proceedings of the
AAAI, 1986.

[Hayes-Roth and Lesser, 19771 F. Hayes-Roth and V.R. Lesser.
Focus of attention in the Hearsay-II speech understanding
system. Proceedings of the Fifth International Joint Con-
ference on Artificial Intelligence, ~27-35, 1977.

[Johnson and Hayes-Roth, 19861 M.V. Johnson and B. Hayes-
Roth. Integrating Diverse Reasoning Methods in the BBl
Blackboard Control Architecture. Technical Report KSL-
86-76, Stanford University, 1986.

[Smith and Genesereth, 19851 D.E. Smith and M.R. Gene-
sereth. Ordering conjunctive queries. Artificial Intelli-
gence, 25:171-215, 1985.

[Tommelein et al., 19871 I.D. Tommelein, R.E. Levitt, and B.
Hayes-Roth. Using expert systems for the layout of tem-
porary facilities on construction sites. CIB W-65 Sym-
posium, Organization and Management of Construction,
Berkshire, U. K, 1987.

Garvey, Cornelius, and Hayes-Roth 115

