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ments of objects to satisfy constraints, which is layered upon 
the BBl blackboard control architecture[Hayes-Roth, 19851. 

A. The BBP Blackboard Control Archi- 
tecture 

The BBl blackboard control architecture provides a uniform 
mechanism for reasoning about problems and problem-solving 
actions. Functionally independent knowledge sources (KSs) co- 
operate to solve problems by recording and modifying solution 
elements in a global data structure, the bbackboaTd. Domain 
KSs solve domain problems on the domain blackboard. Con- 
trol KSs construct control plans for the system’s own actions 
on the control blackboard. All KSs, when triggered, generate 
knowledge source activation records (KSARs) that compete for 
scheduling priority. 

The BBl execution cycle has three steps: (a) The inter- 
preter executes the action of the scheduled KSAR, thereby 
changing the blackboard. (b) T ‘he agenda-manager adds 
KSARs to the agenda for all KSs triggered by the blackboard 
changes and rates each one against the current control plan. (c) 
The scheduler chooses the highest-rated KSAR to execute its 
action next. If it schedules a control KSAR, that KSAR may 
change the criteria used to rate pending KSARs on subsequent 
cycles. 

Given this architecture, an application system can exploit 
the full power of the blackboard architecture to construct and 
follow control plans for its own actions in real time. For exam- 
ple, it can incrementally refine a general strategy as a sequence 
of specific objectives. It can pursue multiple plans simulta- 
neously. It can integrate opportunistic, goal-driven, and data- 
driven objectives in its plans[Johnson and Hayes-Roth, 19861. It 
can modify, interrupt, depart from, resume, or abandon plans. 

B. The ACCQRD Framework 
ACCORD provides a domain-independent framework for per- 
forming arrangement-assembly tasks. Within ACCORD, a 
problem-solver defines several partial arrangements, each com- 
prising some of the objects and constraints specified in a prob- 
lem. It declares one object the anchor and positions other 
objects (anchorees) relative to it. It reduces the family of legal 
positions for each anchoree by anchoring it with constraints to 
the anchor and yoking it with constraints to other anchorees. 
Eventually, the problem solver integrates multiple partial ar- 
rangements with constraints among their constituent objects. 

To support arrangement assembly, ACCORD provides: 
(a) a skeletal concept network in which to define domain- 
specific objects and constraints; (b) a vocabulary of partial 
arrangements (e.g., anchor, anchoree); (c) a type hierarchy of 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



assembly actions, events, and states (e.g., do-anchor is-a do- 
position action); (c) linguistic templates for instantiating ac- 
tions, events, and states (e.g., Do-anchor anchoree to anchor 
in partial-arrangement with constraints). 

ACCORD enables an application system to reason about 
its problem-solving actions and control plans in an inter- 
pretable, English-like representation. For example, PROTEAN 
represents one of its actions as: 

Do-Anchor Helix-l-l to Helix-2-l in PA1 with NOE6. 

It represents one of its control decisions as: 

Do-Position Long Helix in PA1 with Strong Con- 
straint. 

BBl determines that the action matches the control decision 
because: 

Do-Anchor is-a Do-Position action. 
Helix-l-l is Long. 
Helix-l-l is-a Helix. 
PA1 is PAl. 
NOE6 is Strong. 
NOE6 is-a Constraint. 

Finally, BBl translates the action into its executable language 
of blackboard modifications. 

TEAN System 
1. Knowledge 

PROTEAN attempts to identify the three-dimensional 
conformations of proteins based on a variety of constraints, us- 
ing four kinds of knowledge. It instantiates ACCORD’s concept 
network with biochemistry objects (e.g., Helix is-a Object) and 
constraints (e.g., NOE is-a Constraint). It specifies domain 
KSs that generate feasible problem-solving actions. For exam- 
ple, one KS specifies: 

Trigger: Did-Position Anchoree (The-Object) 
in PA (The-PA) 

Context: For The-Partner in: 
Includes The-PA Anchoree (The-Partner) 
Constrains The-Object The-Partner 

with Constraints (The-Constraints) 
Action: Do-Yoke The-Object with The-Partner 

in The-PA with The-Constraints 

It specifies a geometry system (GS) [Brinkley et al., 19861 (dis- 
cussed below) that performs the numerical operations underly- 
ing certain actions. It specifies control KSs that generate the 
control plan in Figure 1 (discussed below). 

2. Geometry System 

PROTEAN’s GS performs two operations. To support an- 
choring actions, the GS searches space, generating all possible 
locations for an anchoree (at some resolution) that satisfy the 
anchoring constraints. Since six parameters specify the posi- 
tion and orientation of an object in space, both the computa- 
tion time to search space and the number of locations returned 
increase roughly as the sixth power of the sampling resolution. 
PROTEAN determines resolution by instructing the GS to: (a) 
begin searching at low resolution; and (b) repeat the search 
at progressively higher resolutions until it returns a threshold 
number of locations. To support yoking and other positioning 
actions, the GS prunes locations, testing each location against 
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Problem-solving Cycle 

StrategyA: Assemble One Partial-Arrangement 

Sub-Sbategyl (SSI 1: Define one Partial-Arrangement 

Sub-Strategy2 (SS2): Position Structured-Secondary-Structure 

Sub-Strategy3 (SS3): Position Secondary-Structure 

FOCUS1 &I): Create Anyname 

Focus2 (F2): Include Secondary-Structure in PA1 

Focus3 (F3): Orient PA1 about long contraining constrained 
Structured-Secondary-Structure 

Focus4 (F4): Anchor {Ol) Structured-Secondary-Structure 
to Helixl-l in PA1 with {C) Constraint-Set 

Focus5 (F5): Yoke several{cG) Structured-Secondary-Structure 
in PA1 with {C) Constraint-Set 

Focus6 (F6): Anchor {02) Random-Coil to Helixl-l in PA1 
with {c) Constraint-Set 

Focus7 (r-7): Yoke several{o3) Secondary-Structure in PA1 
with {c] Constraint-Set 

Focus8 (F3): Restrict Secondary-Structure in PA1 
with Constraint-Set 

Figure 1: Basic PROTEAN Control Plan 

the specified constraints and returning all locations that satisfy 
them. Since yoking compares each pair of locations for two pre- 
viously anchored objects, yoking time increases as the twelfth 
power of the resolution. 

3. Control Plan 
PROTEAN’s strategy (see Figure 1) comprises a sequence 

of three sub-strategies, each comprising a sequence or set of foci. 
(The next section explains the bracketed characters in Figure 
1.) During SSl, PROTEAN creates a partial-arrangement, in- 
cludes objects in it, and orients it around a particular anchor. 
During SS2, PROTEAN positions structured objects (alpha- 
he&es and beta-strands) by anchoring and yoking them. During 
SS3, PROTEAN positions all objects (including non-structured 
coils) by anchoring and yoking them. Whenever PROTEAN 
generates an intractably large number of locations for an an- 
choree, it introduces an opportunistic focus (e.g., F8) to restrict 
(statistically sample) the locations. 

PROTEAN generated the control plan in Figure 1 for the 
lac-repressor headpiece protein at low resolution. For other 
proteins or resolutions, sub-strategies and foci appear and ter- 
minate on different cycles. 
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III. Experimental Manipulations 

A. Control Knowledge 
We studied four variations on PROTEAN’s basic control plan. 
Strategy A generated the plan in Figure 1. Strategy B intro- 
duced the constraint modifier strong at points indicated by c. 
Strategy C introduced object modifiers as follows: long, infEe%- 
ible, constrained, and constraining at 01, constraining at 02, 
and long, inflexible, constraining, and recently-reduced at 03. 
Strategy D introduced all modifiers. For example, here are the 
four versions of Focus 7: 

Strategy A: Yoke several Secondary-Structure in PA1 with 
Constraint-Set. 

Strategy B: Yoke several Secondary-Structure in PA1 with 
Strong Constraint-Set. 

Strategy C: Yoke several Long Inflexible Constraining 
Recently-Reduced Secondary-Structure in PA1 with 
Constraint-Set. 

Strategy D: Yoke several Long Inflexible Constraining 
Recently-Reduced Secondary-Structure in PA1 with 
Strong Constraint-Set. 

Modifiers increase the precision with which the strategy 
discriminates among competing actions. For example, sen- 
tence A gives equal ratings to all actions that yoke secondary- 
structures in partial-arrangement PA1 with any constraints, 
while sentence B gives higher ratings to actions that use strong 
constraints. 

Domain experts recommend these particular modifiers to 
favor positioning actions that rapidly reduce the number of lo- 
cations for each object. While these modifiers don’t affect PRO- 
TEAN’s ultimate solution, they should reduce the number of 
positioning actions it performs and the cost of later actions. 
On the other hand, they should increase the cost of each rat- 
ing action. The question is: Does the benefit of performing 
fewer, more effective positioning actions outweigh the cost of 
identifying those actions? 

l3. Proteins 
We compared PROTEAN’s four strategies on each of two pro- 
teins: the lac-repressor headpiece and myoglobin. They differ 
on: size (51 amino acids vs. 153), number of structured objects 
(3 versus 5), number of NOE constraints (17 vs. 21), sequence 
of amino acids, and pattern of constraints. 

IV. nalysis 

Total Symbolic Reasoning Time = 
F(Total Number of Cycles 

& Number of KSARs per Cycle 
& Identities of KSARs per Cycle) 

Total Rating Time = 
F(Tota1 Number of Cycles 

& Number of KSARs per Cycle 
& Rating Time per KSAR) 

Total GS Time = F (GS Operations Perf armed 
& Threshold) 

We assess the effects of each knowledge strategy by com- 
paring it to strategy A as follows: 

1. 

2. 

3. 

4. 

A. 

Does the control knowledge affect the identities or number 
of actions PROTEAN schedules? 

Do differences in scheduling decisions affect the efficiency 
(total GS time or total symbolic reasoning time) of PRO- 
TEAN’s problem solving? 

Does the control knowledge affect the cost (rating time per 
KSAR) of PROTEAN’s scheduling decisions? 

Do the combined effects produce a net computational ef- 
ficiency (total time) in PROTEAN’s performance? 

V. Results 
Results for the Lac-Repressor 
piece 

Table 1 shows PROTEAN’s performance on the lac-repressor 
headpiece. Notice that the cost of control knowledge is negligi- 
ble (.05-.64 second increase in rating time per KSAR) compared 
to total time (1587-5171 seconds). It does not significantly af- 
fect PROTEAN’s overall efficiency. 

The top panel of Table 1 shows the complete results. As 
indicated by total time, Strategy B produced a net efficiency 
compared to Strategy A. Strategy B reduced PROTEAN’s to- 
tal number of actions by nine, thereby reducing both GS and 
symbolic reasoning times. These effects outweighed the small 
increase in rating time. By contrast, Strategy C produced a net 
inefficiency. It reduced the number of actions by one, slightly 
reducing GS time. But increased symbolic reasoning and rat- 
ing times outweighed this savings. Strategy D, which included 
all modifiers, combined Strategy B’s reductions in GS and sym- 
bolic reasoning times with Strategy C’s increase in rating times, 
producing an intermediate net efficiency. 

The middle panel of Table 1 shows the results for sub- 
strategy SS2. Here PROTEAN anchored and yoked two he- 
lices relative to a third, performing exactly the same actions (in 
slightly different orders) under all four strategies. As a conse- 
quence, the knowledge strategies did not affect GS or symbolic 
reasoning times, but did slightly increase rating times. The 
strategies did not significantly affect total times. 

The bottom panel of Table 1 shows the results for sub- 
strategy SS3. Here PROTEAN anchored the four coils and 
yoked all of the anchorees to one another. These results par- 
allel and actually determine the complete results in the top 
panel of Table 1. Strategy B reduced PROTEAN’s total num- 
ber of actions by nine, thereby reducing GS and symbolic rea- 
soning times. While slightly increasing ratings times, Strategy 
B produced a net efficiency. Strategy C reduced the number 
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A. B. C. D. 
No Constraint Object All 

Modifiers Modifiers Modifiers Modifiers 
Costs During All Sub-strategies 

Total Time 4881 4265 5171 4281 
Number of Cycles 87 78 86 78 
GS Time 3322 2858 3294 2864 
Symbolic 
Reasoning Time” 1381 1240 1561 1191 

Average KSAR 
0.35 0.41 0.87 0.93 

Costs During Sub-strategy 2 
2266 2271 2270 2268 

Rating Time 

Total Time 
Number of Cycles 
GS Time 
Symbolic 
Reasoning Time” 

Average KSAR 

7 7 7 7 
2186 2186 2186 2186 

71 73 70 68 

Rating Time 0.35 0.40 0.85 0.91 
Costs During Sub-strategy 3 

Total Time 2215 1587 2518 1635 
Number of Cycles 
GS Time 
Symbolic 
Reasoning Time” 

Average KSAR 

37 28 36 28 
1136 666 1108 678 

928 768 1123 761 

Rating Time 0.34 0.41 0.89 0.95 

A. B. C. D. 
No Constraint Object All 

Modifiers Modifiers Modifiers Modifiers 
Costs During All Sub-strategies 

” Total Time 13930” 11985 12460 11816 
Number of Cycles 116 104 111 103 
GS Time 7278 6898 6275 6304 
Symbolic 
Reasoning Time” 6018 4506 5500 4795 

Average KSAR 
Rating Time 0.35 0.42 1.45 1.51 

Costs During Sub-strategy 2 
Total Time 5062 5327 5410 5100 
Number of Cycles 22 21 23 20 
GS Time 4383 4699 4595 4453 
Symbolic 
Reasoning Timea 602 559 687 524 

Average KSAR 
Rating Time 0.35 0.41 1.70 1.74 

Costs During Sub-strategy 3 
Total Time 7536 5413 5869 5467 
Number of Cycles 43 32 37 32 
GS Time 2895 2199 1680 1851 
Symbolic 
Reasoning Time0 4121 2735 3665 3056 

Average KSAR 
Rsiting Time 0.35 0.42 1.20 1.28 

AU times are in seconds. AU times are in seconds. 

=This is all symbolic computing time, except rating time. OThis is all symbolic computing time, except rating time. 

Table 1: Computational Costs of Four Strategies for As- 
sembling the Lac-Repressor Headpiece 

Table 2: Computational Costs of Four Strategies for As- 
sembling Myoglobin 

of actions by one, slightly decreasing GS time, but increasing 
symbolic reasoning time. Increasing rating times as well, Strat- 

cies in total time for all three knowledge strategies. We are 

egy C produced a net inefficiency. Strategy D combined these 
conducting experiments that combine control knowledge of the 

effects to produce an intermediate net efficiency. 
cost of positioning actions with current control knowledge of 
their effectiveness. 

* esults for Myoglobin 
Table 2 shows PROTEAN’s performance on myoglobin. Again, 
the cost of control knowledge is negligible (.07-1.39 seconds in- 
crease in rating time per KSAR) compared to total time (5062- 
13930 seconds). It does not significantly affect PROTEAN’s 
overall efficiency. 

The top panel of Table 2 shows the complete results. As 
indicated by total time, all three knowledge strategies reduced 
the number of actions PROTEAN performed, reducing both 
GS and symbolic reasoning times. These effects outweighed in- 
creases in rating times, producing a net advantage in efficiency. 
As for the lac-repressor headpiece, Strategy B’s constraint mod- 
ifiers were more effective than Strategy C’s object modifiers. 
Here, however, Strategy D’s combined modifiers produced the 
greatest efficiency. 

The middle panel of Table 2 shows the results for sub- 
strategy SS2. Here PROTEAN positioned five structured 
objects. All three knowledge strategies produced about the 
same number of actions, but increased GS time. PROTEAN’s 
scheduling records show that PROTEAN performed several 
specific yoking actions earlier under the knowledge strategies 
than it did under Strategy A. At the earlier times, these partic- 
ular actions required more expensive GS operations than they 
required later in problem solving, but did not reduce the total 
number of actions required to solve the problem. These costs, 
combined with increased ratings times, produced net inefficien- 

The bottom panel of Table 2 shows the results for sub- 
strategy SS3. Here PROTEAN positioned the five structured 
objects and four coils. All three knowledge strategies reduced 
the number of actions PROTEAN performed, substantially re- 
ducing GS and symbolic reasoning times. These savings out- 
weighed the increased cost of rating, producing a net efficiency 
in total time. 

c. 

Table 3 shows PROTEAN’s performance on the lac-repressor 
headpiece during sub-strategy SS3 under all four strategies at 
each of three resolutions. Because higher resolutions entail 
more expensive GS computations, the knowledge strategies pro- 
duce larger net efficiencies. Thus, maximum savings in total 
time range from 628 seconds at low resolution to 1771 seconds 
at medium resolution to 4110 seconds at high resolution. 

Table 3 also shows an interaction between strategy and 
resolution. Strategies B and D produced essentially the same 
effects at all resolutions. They reduced the number of actions 
PROTEAN performed, thereby reducing GS and symbolic rea- 
soning times. In all cases, these savings outweighed the in- 
creased rating times, producing net efficiencies in total time. 
By contrast, Strategy C produced different effects at different 
resolutions. At low resolution, Strategy C reduced the num- 
ber of actions by only one, slightly reduced GS time, increased 
symbolic reasoning time, and increased rating time. It pro- 
duced a net inefficiency in total time. At medium and high 
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A. B. C. D. 
No Constraint Object All 

Modifiers Modifiers Modifiers Modifiers 
Costs During Sub-strategy 3 at Low Resolution 

Total Time 2215 1587 2518 1635 
Number of Cycles 37 28 36 28 
GS Time 1136 666 1108 678 
Symbolic 
Reasoning Time= 928 768 1123 761 

Average KSAR 
Rat&g Time 0.34 0.41 0.89 0.95 

Costs During Sub-strateEy 3 at Medium Resolution 
- -- Total Time 5268 3831 4059 

Number of Cycles 37 31 32 
GS Time 4191 2718 3140 
Symbolic 
Reasoning Time” 917 895 766 

Average KSAR 
Rating Time 0.34 0.41 0.89 

Costs During Sub-strategy 3 at High Resolution 
Total Time 9956 7729 5846 
Number of Cycles 38 33 29 
GS Time 8794 6746 4819 
Symbolic 
Reasoning Time= 997 840 847 

Average KSAR 
Rating Time 0.34 0.41 0.89 

3497 
28 

2550 

759 

0.95 

5925 
28 

4939 

790 

0.95 

All times are in seconds. 

aThis is all symbolic computing time, except rating time. 

Table 3: Computational Costs of Sub-strategy 3 at Three 
Resolutions for Four Strategies for the Lac-Repressor 
Headpiece 

resolution, Strategy C reduced the number of actions by five 
and nine, thereby substantially reducing GS and symbolic rea- 
soning times. These savings outweighed increased rating time, 
producing a net efficiency in total time. Although we do not 
fully understand the GS properties that lead to this interac- 
tion, we have a hypothesis. Strategy C includes the only mod- 
ifier, recently-reduced, that is sensitive to intermediate solution 
states. Perhaps the GS produces results that differentially sat- 
isfy this modifier at different resolutions. We are investigating 
this hypothesis. 

D. Effects sf Control on Symbolic Rea- 
soning Per Se 

PROTEAN differs from many knowledge-based systems in its 
dependence upon expensive computations performed by the 
geometry system. As discussed above, the three knowledge 
strategies produce substantial efficiencies in PROTEAN’s per- 
formance largely by producing savings on GS computations. 
However, the knowledge strategies produce net efficiencies in 
performance independent of the cost of GS computations. Ta- 
ble 4 shows net symbolic reasoning time (total time - GS time) 
for all cases in which the knowledge strategies produced a net 
overall efficiency. In all cases but one, the knowledge strate- 
gies produced more efficient symbolic reasoning per se, simply 
because they allowed PROTEAN to solve problems in fewer 
problem-solving cycles. 

A. B. C. D. 
No Constraint Object All 

Modifiers Modifiers Modifiers Modifiers 
Lac-Repressor at Low Resolution 

Net, Symbolic 
Reasoning Time 1559 1407 - 1417 

Lac-Repressor at Medium Resolution 
Net Symbolic 
Reasoning Time 1539 1540 1335 1402 

Lac-Repressor at High Resolution 
Net Symbolic 
Reasoning Time 1622 1416 1470 1447 

Myoglobin at Low Resolution 
Net Symbolic 
Reasoning Time 6652 5087 6185 5512 

All times are in seconds. 

Table 4: Net Symbolic Reasoning Time for Cases where 
Knowledge Strategies Produced Net Efficiency 

E. Effects of Control on Identified Pro- 
tein Structures 

The four strategies examined in these experiments had no ef- 
fect on the protein structures PROTEAN identified. At a given 
level of resolution, it identified exactly the same structure for 
the lac-repressor under all four strategies. Similarly, it iden- 
tified exactly the same structure for myoglobin under all four 
strategies. 

VI. Implications 
Our results confirm that intelligent control reasoning can induce 
computational efficiency in AI systems. In particular, we found 
that: 

Control knowledge, including object and constraint mod- 
ifiers, reduces total problem-solving time by reducing the 
number of actions performed, GS time, and symbolic rea- 
soning time. 

The cost of using control knowledge-rating actions against 
modifiers-is negligible compared to total problem-solving 
time. 

Control knowledge is most effective when the scheduler 
chooses among many possible actions and its choices alter 
the number or cost of subsequent actions. 

Constraint modifiers usually reduce GS time more effec- 
tively than object modifiers. 

Sometimes the most effective actions entail disproportion- 
ately expensive GS operations. 

Control knowledge produces larger savings at higher GS 
resolutions. 

Modifiers that measure intermediate solution states may 
operate more effectively at higher GS resolutions. 

We plan to incorporate these results into PROTEAN’s 
knowledge base, so that it can decide which modifiers to use 
in particular problem-solving situations. 

We conjecture that PROTEAN’s control knowledge would 
have similar effects in other “arrangement-assembly systems.” 
For example, the SIGHTPLAN system[Tommelein et QZ., 19871 
designs construction site layouts by assembling arrangements of 
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construction areas and equipment in a two-dimensional spatial 
context. Since SIGHTPLAN also is implemented in BB*, we 
can easily determine whether object and constraint modifiers 
analogous to those defined for PROTEAN have similar effects 
on its efficiency. 

Speculating more broadly, we conjecture that control 
knowledge of the sort used in these experiments (modifiers in- 
serted into focus decisions) would improve the efficiency of any 
application in which: (a) actions require expensive computa- 
tions; and (b) h c oice of actions affects the number or cost of 
subsequent actions. 

The experiments illustrate a method for analyzing the util- 
ity of control knowledge. Here we introduced modifiers to 
the strategic parameters of a basic control plan. In new ex- 
periments, we manipulate the structure of the control plan 
itself. The BB* environment facilitates these experiments. 
BBl provides tools for building control plans of any hierarchi- 
cal/heterarchical complexity. ACCORD provides a language 
for representing and reasoning about plans. Both BBl and 
ACCORD permit modular variations on the form and content 
of control plans. 

In our investigation of control reasoning, we also need to 
assess costs and benefits at the architectural level. Could an- 
other architecture exploit the necessary control knowledge more 
efficiently than BBl? How do alternative architectures compare 
on: ease of system development, clarity of knowledge represen- 
tation, support for explanation capabilities, and support for 
learning capabilities. We are conducting experiments that ad- 
dress these questions. 

Finally, our experience in conducting these experiments 
argues strongly for experimental investigation of theoretical as- 
sertions. Although we thoroughly understand the operation of 
BBl, ACCORD, PROTEAN, and GS, we could not reliably 
predict important details of their performance. For example: 
(a) we mistakenly expected increases in rating time to substan- 
tially limit the net advantages of control knowledge; and (b) 
we still do not fully understand why Strategy C produced net 
inefficiency at low resolution, but net efficiency at medium and 
high resolution. Given the inherent complexity of contempo- 
rary AI systems and the weakness and potential bias of human 
efforts to anticipate their behavior, experimental methods must 
play a key role in our research. 
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