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ABSTRACT 

The WATSON automatic programming system 
computes formal behavior specifications for process- 
control software from informal “scenarios”: traces of 
typical system operation. It first generalizes scenarios 
into stimulus-response rules, then modifies and augments 
these rules to repair inconsistency and incompleteness. It 
finally produces a formal specification for the class of 
computations which implement that scenario and which 
are also compatible with a set of “domain axioms”. A 
particular automaton from that class is constructed as an 
executable prototype for the specification. 

WATSON’s inference engine combines theorem 
proving in a very weak temporal logic with faster and 
stronger, but approximate, model-based reasoning. The 
use of models and of closed-world reasoning over 
“snapshots” of an evolving knowledge base leads to an 
interesting special case of non-monotonic reasoning. 

The WATSON’ system addresses an important 
issue in applying AI to the early stages of software 
synthesis: converting informal, incomplete requirements 
into formal specifications that are consistent, complete 
(for a given level of abstraction), and executable. For ten 
years AI research has attempted this task [Balzer 771, but 
the problem’s difficulty is exacerbated by the many 
possible types of imprecision in natural language 
specifications, as well as by the lack of a suitable corpus 
of formalized background knowledge for most application 
domains. 

We have restricted ourselves to a single common 
style of informal specification: the “scenario”. Scenarios 
are abstracted traces of system behavior for particular 
stimuli, requiring very modest natural-language 

1. named for Alexander G. Bell’s laboratory assistant, not the 
fictitious M.D. 

technology to interpret. We have also selected a domain 
-- the design of telephone services -- in which most 
“common-sense” notions of proper system behavior can be 
axiomatized in a logic formalism with very weak temporal 
inference capabilities [DeTreville 841. The resulting 
domain axioms, together with the small signaling 
“vocabulary” of telephones, makes exhaustive reasoning* 
more tractable. These restrictions were justified, allowing 
us to concentrate on two specific issues: 

a. gaining leverage from domain knowledge in 
generalizing scenarios, and 

b. engineering fast hybrid 
interactive environments. 

reasoning systems, for 

In the next section, we summarize WATSON. We 
then demonstrate how it exploits domain knowledge using 
a simple case study, examine its hybrid inference engine, 
compare it to other research, and, finally, outline our 
future plans for the system. 

Figure 1 summarizes WATSON. Scenarios are 
parsed and generalized into logic rules. These scenarios 
and rules describe agents (finite-state process 
abstractions), sequences of stimuli, and assertions about 
the world whose truth values change dynamically. 
Omissions and informality in the original scenario may 
lead to over-generalized, under-generalized, or missing 
rules. 

After constructing partial, underconstrained 
models for each type of agent mentioned in the scenario, 
WATSON interactively refines the rules and models. It 
repairs rule contradictions, eliminates unreachable or 
dead-end model states, infers missing rules,%nd ascertains 
that all stimuli are handled in every state of the world. 
To complete information missing from its domain 
knowledge, WATSON asks the user true-false questions 
about short hypothetical scenarios. The user is never 
asked to envision multiple situations at once. 

Finally, WATSON performs an exhaustive 
consistency test on its refined set of rules. This proves 
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that the refined rules prohibit transitions from consistent 
to inconsistent world-states for all input stimuli. If these 
rules are later embedded in a larger set of rules (i.e., one 
describing more telephone services), and the larger set of 
rules passes the consistency test, then the original 
scenarios will still work. There are many possible 
computations (i.e., agent models) that could implement a 
given set of scenarios, but the refined rules form a 
model-independent verification condition for all such 
computations.2 

Different finite-state models for the same rules 
may require different numbers of state transitions to 
implement any given rule subset. WATSON computes a 
minimal (fewest states and transitions) model for the 
specification, which is useful for early acceptance testing, 
either by software simulation or by use of a special test- 
bed with actual telephone equipment. 

To highlight how WATSON converts scenarios 
into a coherent system definition, we begin by analyzing 
the structure of a scenario, noting its ambiguities and 
omissions. Next we examine the telephony domain 
axioms, which provide the backdrop for all our 
interpretations. Finally we consider one particular 
anomaly fixed by WATSON. 

2. For a more complete discussion of the final consistency test, the 
generalizer, detailed models used in the hybrid reasoner, and more 
case studies see [Kelly 871. 

A. Scenarios, Episode ~Wach’eS, ad 

A single scenario defining a simplified version of 
66pIain old telephone service”, or P TS3, is given below: 

First, Joe is on-hook, 
and Joe goes OH-hook, 

then Joe starts getting dial-tone. 
Next, Joe dials Bob; 

then Bob starts ringing 
and Joe starts calling Bob 

and Joe starts getting ringback. 
Next, Bob goes OH-hook, 

then Joe gets conrmected to Bob. 
Next, Joe goes on-hook, 

then Joe stops being connected to Bob. 

Joe and Bob are agents of the same type, whose 
implementations must be isomorphic. The stimuli that 
drive the scenario are “going-on-hook”, “going-off-hook”, 
and “dialing”; in our simplified telephone domain, these 
are the only ways in which a telephone user can possibly 
affect a telephone instrument.4 Seven different predicates 
(e.g., “on- hook”, “get-dial-tone”, “connected”) are used in 
the preceding scenario to describe the changing state of 
the world. Assertions constructed using these predicates 
appear in two different tenses in the scenario: a present 
tense (“Joe is on-hook”) and an immediate-future tense 
denoting immanent change in the truth-value of the 
assertion (“Bob starts ringing”), presumably occurring 
before the next stimulus. A 2-tense logic is thus a 
natural formalism for capturing this scenario. 

1. Episodic Strut 

The scenario is understood as a sequence of four 
sequential episodes, each consisting of three parts: 

e antecedents, assertions known to be true of the agents 
before a stimulus, 

8 a stimarlus, which may have implicit persistent side- 
effects’, and 

0 explicit consequenta, or changes in the truth-values of 
selected assertions after the stimulus. The 
consequents of one episode implicitly determine the 
antecedents of the next. 

3. “On-hook” refers to when the telephone handset is resting in its 
cradle, i.e., “hung-up”. “Off-hook” is the opposite state. When 
“on-hook”, the phone is disconnected, except for its ringing 
circuit. “Ringback” is the sound that a caller hears when a called 
party rings. 

4. We omit the stimulus of momentarily “flashing” the phone 
switch-hook, which is usually recognized by switching systems as 
different from hanging up and then going off-hook again. 

5. For example after “Joe goes off-hook”, we should know implicitly 
that Joe is no longer on-hook. But the momentary stimulus 
“dials” has no persistent side-effects on the state of the world. 
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Each episode represents a single stimulus-response 
(S-R) cycle for the system, and is mapped into a set of 
logic rules, one rule per each consequent. The 
antecedents of the episode appear in the present tense and 
the consequents appear in the immediate-future tense, 
using the modal operators BEGINS and ENDS. The 
following six rules, numbered by episode, implement the 
scenario: 

R 1.1: ‘p’x [on-hook (x) i\ EVENT (goes-of-hook (x)) 
> BEGINS (dial -tone (x)) 1 

R 2.1: vx,y [dial-tone(x) A EVENT (dials (x,y)) 
I BEGINS (calling (x, y 1) 1 

R 2.2: vx [3yhdiaZ-tone (x) A EVENT (dials (x,y))l 
> BEGINS (ringback Lx)) I 

R 2.3: vx,y [dial-tone (x) A EVENT (dials (x,y)) 
2 BEGINS (ringing <y > 11 

R 3.1: vx,y [caZZing <y,x> A riPtgback (Y> A ringing(x) 
/\ EVENT (goes-ofl-hook (x)1 

1 BEGINS (connected (y,x))l 
R 4.1: // x,y [connected (x,y) A EVENT (goes-on-hook (x)) 1 

> ENDS (connected (x,y)) 

aiies 

One must distinguish between the level of 
abstraction of the scenario (e.g., dialing is considered an 
atomic operation) and its informality. WATSON does 
not change a scenario’s abstraction level, but rather 
corrects some of the following anomalies due to 
informality, e.g.: 

Antecedents may omitted from 
over-generalized rules, such as R2.3. 

episodes, causing 

e Consequents may be missing from episodes, leading to 
missing rules; for instance, it is not stated that Bob 
stops ringing when he goes off-hook. 

in an episode, @ Irrelevant 
leading to 

antecedents may be included 
under-generalized rules. 

0 Causal links among antecedents and consequents are 
not always made explicit. Coincidence and causality 
may be confused. 

Specifications for a particular agent type are split over 
several agents (Joe and Bob), and are not harmonized. 
For example, both Rl .l and R3.1 have to do with 
telephones going off-hook: Joe in Rl .l and Bob in 
R3.1. 

The “common-sense” domain axioms describing 
telephone services combine several different sorts of 
mformation: 

1. Axioms and axiom schemas that embed temporal 
reasoning with 2-tense logic into standard first-order 
logic (FOL) resolution, for example: 

0 \dA E ASSERTIONS [[A 1 -BEGINS(A)] 
A [-A 1 -ENDS (A)]], 

8 serialization axioms for stimuli. 

2. Declarations for telephone terminology: 

@ types of agents, 

@ stimuli and their side-effects, 

0 predicates 
assertions. 

and argument types for constructing 

3. Hardware constraints on telephone devices: 

telephones must be on-hook or off-hook, but not 
both. 

telephones can’t ring when off-hook, and can’t 
dial or accept audio services (like dial-tone, busy 
signal, or ringback) while on-hook. 

“X dials Y” is a null operation unless X has 
dial-tone. 

4. Etiquette rules for telephone services: 

e telephones 
time. 

Q) telephones should 
someone is calling. 

receive at most one audio service at a 

not start to ring unless 

While this body of knowledge appears complex, it 
can be written down compactly (about a dozen axiom 
schemas, excluding declarations) and in a scenario- 
independent form. This means not writing FOL axioms 
directly, but inferring default terminology declarations 
from the scenario itself (as in [Goldman 7711, and using 
second-order schema notation extensively. 

C. Csnsistelocy and Co al ysis 

1. Types of Correction Atiem 

WATSON applies four main corrections to sets of 
rules: 

a. Repairing ineomistemt rules. Rules contradict if 
they have the same stimulus, their antecedents are 
compatible, but their consequents are incompatible. 
The correction usually involves strengthening the 
antecedents of one or more of the contradictory 
rules. 

b. IFtishing incompkte episodes by adding new r 
For instance, in the second episode of the POTS 
scenario, no rule ends Joe’s dial-tone, yet it clearly 
must end. 
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c. Ehninatiug unreachable “states”. Some 
combinations of assertions may be consistent with 
the domain axioms but never happen in any 
scenario. For instance, Joe may call Bob and not 
get a ringback (i.e., if he gets a busy-signal 
instead), but our scenario does not show this. 
WATSON will solicit a new scenario that accesses 
such stat!es, or modify existing rules. 

d. Ensuring all stimuli are handled in afl states. 
Suppose Joe hangs up during dial-tone. The 
domain axioms completely determine which “state” 
Joe would then be in (on-hook but not ringing). So, 
WATSON can build this entire episode from first 
principles. In more complex cases, WATSON 
cannot determine the exact outcome, and must get 
help from the user, either by proposing several 
alternatives or asking for a new scenario. 

The procedure is similar for each of these four 
oases. First the rules and agent models are used to detect 
potential problems. Then a heuristic search is performed 
for a “simplest” workable fix. Next, the fix is explained 
to the user, who is asked for approval. Finally, the rules 
and models are updated. 

2. Example: Fixing the Inconsistency of RI. 1 and 
R3.1 

Consider the contradiction between Rl .l and R3.1. 
After detecting the inconsistency, WATSON notes that 
the antecedents of R1.l are strictly more general than 
those of R3.1. WATSON attempts to strengthen the 
antecedents of R1.l until the antecedents of the two rules 
become incompatible. The most obvious way, by finding 
all antecedents of R3.1 not in Rl .l, negating them, and 
conjoining them to Rl .l, produces something correct but 
verbose: 

R l.la: tjx Ion-hook (X1 
A [ -vinging (xl 

V [ Vy [vaZZing(y,x) 
V -ringback (y)lll 

A EVENT (goes~o~~hook (x))l 
3 BEGINS (dial -tone (x)1 1. 

WATSON searches for simpler versions that are 
“negligibly” stronger then R 1.1 a. Considering rules 
involving only a single negated antecedent from R3.1, it 
finds the following candidates which are simpler than 
R 1.1 a, but stronger by varying amounts: 

R l.lb: VX Ion-hook (x1 A try [-ringback (y)l 
n EVENT (goes-off-hook (x)) 

3 BEGINS (dial -tone (x)) I 
R 1.1~: k/x [on-hook(x) A Vy I~caZZing(y,x)l 

A EVENT (goes-ofl-hook (x)) 
3 BEGINS (dial -tone (x)) I 

R l.ld: Vx [on-hook(x) A -ringing(x) 
A EVENT (goes-ofl-hook (xl) 

I) BEGINS (dial -tone (x)) I 

It heuristically ranks Rl .ld as the simplest, since it 
doesn’t introduce new variables to Rl .l. It then tries to 
show that Rl . Id is “virtually” as general as Rl . la by 
establishing 

CWR F vx [ringing (x) 
I 3 [calling <y,x> A ringback <y> II, 

where CWR is an expanded set of “closed world rules” 
constructed on the fly from the scenario rules to support 
reasoning both forward and backward in time over a 
single S-R cycle. These contain an implicit assumption 
that the presently known rules are the only rules. Since 
according to the known rules there is no way for a phone 
to ring without another phone initiating a call and getting 
ringback, this proof succeeds, leading to a conclusion that 
Rl.ld is safe to use. 

At this point, WATSON knows it has a 
“maximally simple” acceptable solution. It now asks the 
user for approval before replacing Rl . 1 with Rl . Id. It 
paraphrases Rl . 1 and R3.1 back into “scenario-ese”, 
describes the contradiction, and asks for permission to 
replace Rl . 1 with Rl . Id. If WATSON had found two 
equally desirable solutions, the user would be asked to 
make the choice. 

D. Saamnmary of the POTS Case Study 

The simplified POTS scenario requires fourteen 
rules to pass the final consistency check. WATSON can 
obtain these by rewriting three of the original six and 
generating the remaining eight from first principles. Four 
of these eight are required to complete unfinished 
episodes, and the other four handle telephones that hang 
up midway through the scenario (unanticipated stimuli). 
This requires 5 minutes of machine time on a Symbolics 
3600 -workstation, 96% of which is spent proving 
theorems. Our home-brew theorem prover runs faster 
than similar resolution engines (i.e., full FOL, breadth- 
first or depth-first clause selection) that we have used in 
the past, but the response time still taxes user patience. 
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monotonicity. Similar problems arise in WATSON’s 2- 
tense logic and extended models. For example, if a new 
scenario provided a rule that would allow a telephone to 
ring without some other phone calling it and receiving a 
ringback (say, a line-test feature), that would invalidate 
the assumption by which we chose Rl.ld as the best 
replacement for R 1.1. 

easming 

Not only is theorem proving slow, but WATSON’s 
temporal reasoning is confined to a single stimulus- 
response cycle of the system. This weak logic was 
necessitated by exponential blowups when using more 
powerful, episode-chaining logics (e.g., situation calculi) 
with the initially under-constrained scenario rules. Our 
solution integrates model-based reasoning into 
WATSON’s inference methods. 

WATSON’s most important models are the 
minimal (fewest states) automatons required to 
implement each type of agent. Each state corresponds to 
a particular assignment of truth-values to every known 
assertion about the agent. State transitions are governed 
by the logical rules generalized from the scenario. These 
automatons are initially fragmentary and 
underconstrained, but evolve into connected, deterministic 
state transition graphs as WATSON edits the rules. The 
models are stored in a form that facilitates their use even 
when incomplete. They consist of a list of states telling 
what assertions hold in each state, a list of constraints on 
the possible states of agents both before and after each 
episode, and groupings of rules according to which state 
transitions they influence. 

Model-based reasoning increases both the strength 
and speed of WATSON’s reasoning. Of the queries 
posed during the correction/completion stage, about 20% 
require reasoning over multiple episodes, which cannot be 
done by theorem proving in 2-tense logic, but can be 
answered in the model. Another 65% are fully 
instantiated queries asking whether some property P holds 
in some model; for these, querying the model is typically 
50 times faster using the theorem prover. The major 
caveat is incompleteness: a query might fail in 
WATSON’s minimal model, and still hold in some other 
model. Fortunately, many important properties, such as 
graph connectivity, hold in minimal models or not at all. 
In other cases, models can at least filter the set of 
theorems to be proved. Still, care is needed when 
interpreting the results of model-based reasoning. In 
WATSON, such circumspection is presently hard-coded, 
but explicit automated meta-reasoning about model 
limitations is on our future research agenda. 

WATSON’s non-monotonicity is nevertheless 
simpler than the general case. Most treatments of non- 
monotonicity assume retractions are forced 
asynchronously by evidence external to the system (new 
data). WATSON’s problems all arise from internal 
decisions to apply closed-world reasoning. Thus, non- 
monotonicity can be minimized (but not eliminated) by 
careful static ordering of process steps, and by exploiting 
meta-knowledge about which model properties are stable. 
For instance, once WATSON has eliminated all 
unreachable states, it is safe to assume that no presently 
known state will ever become unreachable. The burden of 
this meta-reasoning should also be transferred eventually 
from WATSON’s designers to WATSON. 

For those relatively few determinations vulnerable 
to later retraction, WATSON applies brute force -- re- 
validating them all after every rule and model update. 
Fortunately, the speed of model-based reasoning reduces 
this overhead. Furthermore, WATSON batches 
unrelated rule updates together to minimize the frequency 
of update cycles. The POTS scenario, for example, can 
be processed in only four update-revalidate cycles. 

The general goals of WATSON recall the SAFE 
project at ISI ([Balzer 771, [Goldman 771). SAFE 
attempted to understand an English prose description of a 
process, inferring the relevant entities mentioned in the 
process and their key relationships. It then generated an 
algorithm to implement the process. Of the six types of 
specification ambiguity corrected by SAFE, four of them, 
accounting for 88% of those corrections, were artifacts of 
using fairly unconstrained natural language input. 
Conversely, the scenario ambiguities corrected by 
WATSON did not arise in the SAFE case studies, 
because SAFE’s initial specifications were more expansive 
(100-200 words). 

onstonicity 
. Acquiring Programs from Examples 

There are well-known relationships between 
reasoning with a minimum Herbrand model and theorem 
proving with a closed-world assumption in ordinary first- 
order logic. Either one of these techniques, when applied 
to an evolving knowledge base, opens the door to non- 

Several approaches have been used to “learn” 
programs based on sample traces: the pattern-matching 
approaches of Biermann & Krishnawamy [Biermann 761 
and Bauer [Bauer 791, the language recognizer generators 
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of Angluin [Angluin 781 and Berwick [Berwick 861, and 
Andreae’s NODDY system [Andreae 851. Of the three, 
the work of Andreae is much the closest to the spirit of 
WATSON by its use of explicit domain knowledge. The 
other approaches attempt domain-independence, entailing 
that their input examples must be either numerous or 
meticulously annotated. 
its domain kndwl d t 

NODDY, like WATSON, uses 
e ge o constrain the generality of the 

programs it writes, much like the function of negative 
examples in an example-based learning system. NODDY 
writes robot programs, and its domain knowledge is solid 
geometry. 

One distinctive feature of WATSON, compared 
with other systems, is its handling of multi-agent 
interactions; the others are restricted to single-agent 
worlds. Another difference is that WATSON produces a 
specification for a class of computations, not just a single 
program. The final implementation, adapted to a 
particular machine architecture, may have much more 
internal complexity than WATSON’s minimal model. 
The rules form an model-independent post-hoc 
verification criterion, and guidance for further 
transformational development. 

VI. STATUS AN LAN3 

WATSON evolved from PHOAN [DeTreville 841, 
which provided its axiomatization style, exhaustive 
consistency test, and FSA synthesis procedure. PHQAN 
successfully programmed POTS service for an 
experimental ethernet-based telephone switch 
[DeTreville 831. By argument from parentage, we 
conclude that the same hardware should execute 
WATSON’s code, but this has not yet been verified. 

Our WATSQN prototype can handle the POTS 
scenario and several extensions, such as busy-signals, 
billing, and multi-call contention. We are extending it to 
cover the “toy telephone” suite of telephone services 
defined in [IEEE 831. An important feature of 
WATSON is its ability to detect unforeseen interactions 
among different services. The “toy telephone” domain 
contains several examples of such interactions. 

We have previously noted ongoing research issues 
in meta-reasoning about model errors and non- 
monotonicity. We would also like to generalize the style 
of scenario WATSON can accept; i.e., closer to idiomatic 
English. Therefore, a very flexible user-customizable 
English parser used to generate FOL database queries 
[Ballard 861 will soon be adapted for WATSON. 
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