
Van E. Kelly
Uwe Nonnenmann

AT & ‘I’ Bell Laboratories
600 Mountain Ave. 3D-418

Murray Hill, New Jersey 07974

ABSTRACT

The WATSON automatic programming system
computes formal behavior specifications for process-
control software from informal “scenarios”: traces of
typical system operation. It first generalizes scenarios
into stimulus-response rules, then modifies and augments
these rules to repair inconsistency and incompleteness. It
finally produces a formal specification for the class of
computations which implement that scenario and which
are also compatible with a set of “domain axioms”. A
particular automaton from that class is constructed as an
executable prototype for the specification.

WATSON’s inference engine combines theorem
proving in a very weak temporal logic with faster and
stronger, but approximate, model-based reasoning. The
use of models and of closed-world reasoning over
“snapshots” of an evolving knowledge base leads to an
interesting special case of non-monotonic reasoning.

The WATSON’ system addresses an important
issue in applying AI to the early stages of software
synthesis: converting informal, incomplete requirements
into formal specifications that are consistent, complete
(for a given level of abstraction), and executable. For ten
years AI research has attempted this task [Balzer 771, but
the problem’s difficulty is exacerbated by the many
possible types of imprecision in natural language
specifications, as well as by the lack of a suitable corpus
of formalized background knowledge for most application
domains.

We have restricted ourselves to a single common
style of informal specification: the “scenario”. Scenarios
are abstracted traces of system behavior for particular
stimuli, requiring very modest natural-language

1. named for Alexander G. Bell’s laboratory assistant, not the
fictitious M.D.

technology to interpret. We have also selected a domain
-- the design of telephone services -- in which most
“common-sense” notions of proper system behavior can be
axiomatized in a logic formalism with very weak temporal
inference capabilities [DeTreville 841. The resulting
domain axioms, together with the small signaling
“vocabulary” of telephones, makes exhaustive reasoning*
more tractable. These restrictions were justified, allowing
us to concentrate on two specific issues:

a. gaining leverage from domain knowledge in
generalizing scenarios, and

b. engineering fast hybrid
interactive environments.

reasoning systems, for

In the next section, we summarize WATSON. We
then demonstrate how it exploits domain knowledge using
a simple case study, examine its hybrid inference engine,
compare it to other research, and, finally, outline our
future plans for the system.

Figure 1 summarizes WATSON. Scenarios are
parsed and generalized into logic rules. These scenarios
and rules describe agents (finite-state process
abstractions), sequences of stimuli, and assertions about
the world whose truth values change dynamically.
Omissions and informality in the original scenario may
lead to over-generalized, under-generalized, or missing
rules.

After constructing partial, underconstrained
models for each type of agent mentioned in the scenario,
WATSON interactively refines the rules and models. It
repairs rule contradictions, eliminates unreachable or
dead-end model states, infers missing rules,%nd ascertains
that all stimuli are handled in every state of the world.
To complete information missing from its domain
knowledge, WATSON asks the user true-false questions
about short hypothetical scenarios. The user is never
asked to envision multiple situations at once.

Finally, WATSON performs an exhaustive
consistency test on its refined set of rules. This proves

Kelly and Nonnenmann 127

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

.
Theorem Proving !

I
,L -------

Early
Prototype

-----^--- ---------

rules

FIGURE I
WATSON BLOCK DIAGRAM

that the refined rules prohibit transitions from consistent
to inconsistent world-states for all input stimuli. If these
rules are later embedded in a larger set of rules (i.e., one
describing more telephone services), and the larger set of
rules passes the consistency test, then the original
scenarios will still work. There are many possible
computations (i.e., agent models) that could implement a
given set of scenarios, but the refined rules form a
model-independent verification condition for all such
computations.2

Different finite-state models for the same rules
may require different numbers of state transitions to
implement any given rule subset. WATSON computes a
minimal (fewest states and transitions) model for the
specification, which is useful for early acceptance testing,
either by software simulation or by use of a special test-
bed with actual telephone equipment.

To highlight how WATSON converts scenarios
into a coherent system definition, we begin by analyzing
the structure of a scenario, noting its ambiguities and
omissions. Next we examine the telephony domain
axioms, which provide the backdrop for all our
interpretations. Finally we consider one particular
anomaly fixed by WATSON.

2. For a more complete discussion of the final consistency test, the
generalizer, detailed models used in the hybrid reasoner, and more
case studies see [Kelly 871.

A. Scenarios, Episode ~Wach’eS, ad

A single scenario defining a simplified version of
66pIain old telephone service”, or P TS3, is given below:

First, Joe is on-hook,
and Joe goes OH-hook,

then Joe starts getting dial-tone.
Next, Joe dials Bob;

then Bob starts ringing
and Joe starts calling Bob

and Joe starts getting ringback.
Next, Bob goes OH-hook,

then Joe gets conrmected to Bob.
Next, Joe goes on-hook,

then Joe stops being connected to Bob.

Joe and Bob are agents of the same type, whose
implementations must be isomorphic. The stimuli that
drive the scenario are “going-on-hook”, “going-off-hook”,
and “dialing”; in our simplified telephone domain, these
are the only ways in which a telephone user can possibly
affect a telephone instrument.4 Seven different predicates
(e.g., “on- hook”, “get-dial-tone”, “connected”) are used in
the preceding scenario to describe the changing state of
the world. Assertions constructed using these predicates
appear in two different tenses in the scenario: a present
tense (“Joe is on-hook”) and an immediate-future tense
denoting immanent change in the truth-value of the
assertion (“Bob starts ringing”), presumably occurring
before the next stimulus. A 2-tense logic is thus a
natural formalism for capturing this scenario.

1. Episodic Strut

The scenario is understood as a sequence of four
sequential episodes, each consisting of three parts:

e antecedents, assertions known to be true of the agents
before a stimulus,

8 a stimarlus, which may have implicit persistent side-
effects’, and

0 explicit consequenta, or changes in the truth-values of
selected assertions after the stimulus. The
consequents of one episode implicitly determine the
antecedents of the next.

3. “On-hook” refers to when the telephone handset is resting in its
cradle, i.e., “hung-up”. “Off-hook” is the opposite state. When
“on-hook”, the phone is disconnected, except for its ringing
circuit. “Ringback” is the sound that a caller hears when a called
party rings.

4. We omit the stimulus of momentarily “flashing” the phone
switch-hook, which is usually recognized by switching systems as
different from hanging up and then going off-hook again.

5. For example after “Joe goes off-hook”, we should know implicitly
that Joe is no longer on-hook. But the momentary stimulus
“dials” has no persistent side-effects on the state of the world.

128 Automated Reasoning

Each episode represents a single stimulus-response
(S-R) cycle for the system, and is mapped into a set of
logic rules, one rule per each consequent. The
antecedents of the episode appear in the present tense and
the consequents appear in the immediate-future tense,
using the modal operators BEGINS and ENDS. The
following six rules, numbered by episode, implement the
scenario:

R 1.1: ‘p’x [on-hook (x) i\ EVENT (goes-of-hook (x))
> BEGINS (dial -tone (x)) 1

R 2.1: vx,y [dial-tone(x) A EVENT (dials (x,y))
I BEGINS (calling (x, y 1) 1

R 2.2: vx [3yhdiaZ-tone (x) A EVENT (dials (x,y))l
> BEGINS (ringback Lx)) I

R 2.3: vx,y [dial-tone (x) A EVENT (dials (x,y))
2 BEGINS (ringing <y > 11

R 3.1: vx,y [caZZing <y,x> A riPtgback (Y> A ringing(x)
/\ EVENT (goes-ofl-hook (x)1

1 BEGINS (connected (y,x))l
R 4.1: // x,y [connected (x,y) A EVENT (goes-on-hook (x)) 1

> ENDS (connected (x,y))

aiies

One must distinguish between the level of
abstraction of the scenario (e.g., dialing is considered an
atomic operation) and its informality. WATSON does
not change a scenario’s abstraction level, but rather
corrects some of the following anomalies due to
informality, e.g.:

Antecedents may omitted from
over-generalized rules, such as R2.3.

episodes, causing

e Consequents may be missing from episodes, leading to
missing rules; for instance, it is not stated that Bob
stops ringing when he goes off-hook.

in an episode, @ Irrelevant
leading to

antecedents may be included
under-generalized rules.

0 Causal links among antecedents and consequents are
not always made explicit. Coincidence and causality
may be confused.

Specifications for a particular agent type are split over
several agents (Joe and Bob), and are not harmonized.
For example, both Rl .l and R3.1 have to do with
telephones going off-hook: Joe in Rl .l and Bob in
R3.1.

The “common-sense” domain axioms describing
telephone services combine several different sorts of
mformation:

1. Axioms and axiom schemas that embed temporal
reasoning with 2-tense logic into standard first-order
logic (FOL) resolution, for example:

0 \dA E ASSERTIONS [[A 1 -BEGINS(A)]
A [-A 1 -ENDS (A)]],

8 serialization axioms for stimuli.

2. Declarations for telephone terminology:

@ types of agents,

@ stimuli and their side-effects,

0 predicates
assertions.

and argument types for constructing

3. Hardware constraints on telephone devices:

telephones must be on-hook or off-hook, but not
both.

telephones can’t ring when off-hook, and can’t
dial or accept audio services (like dial-tone, busy
signal, or ringback) while on-hook.

“X dials Y” is a null operation unless X has
dial-tone.

4. Etiquette rules for telephone services:

e telephones
time.

Q) telephones should
someone is calling.

receive at most one audio service at a

not start to ring unless

While this body of knowledge appears complex, it
can be written down compactly (about a dozen axiom
schemas, excluding declarations) and in a scenario-
independent form. This means not writing FOL axioms
directly, but inferring default terminology declarations
from the scenario itself (as in [Goldman 7711, and using
second-order schema notation extensively.

C. Csnsistelocy and Co al ysis

1. Types of Correction Atiem

WATSON applies four main corrections to sets of
rules:

a. Repairing ineomistemt rules. Rules contradict if
they have the same stimulus, their antecedents are
compatible, but their consequents are incompatible.
The correction usually involves strengthening the
antecedents of one or more of the contradictory
rules.

b. IFtishing incompkte episodes by adding new r
For instance, in the second episode of the POTS
scenario, no rule ends Joe’s dial-tone, yet it clearly
must end.

Kelly and Nonnenmann 129

c. Ehninatiug unreachable “states”. Some
combinations of assertions may be consistent with
the domain axioms but never happen in any
scenario. For instance, Joe may call Bob and not
get a ringback (i.e., if he gets a busy-signal
instead), but our scenario does not show this.
WATSON will solicit a new scenario that accesses
such stat!es, or modify existing rules.

d. Ensuring all stimuli are handled in afl states.
Suppose Joe hangs up during dial-tone. The
domain axioms completely determine which “state”
Joe would then be in (on-hook but not ringing). So,
WATSON can build this entire episode from first
principles. In more complex cases, WATSON
cannot determine the exact outcome, and must get
help from the user, either by proposing several
alternatives or asking for a new scenario.

The procedure is similar for each of these four
oases. First the rules and agent models are used to detect
potential problems. Then a heuristic search is performed
for a “simplest” workable fix. Next, the fix is explained
to the user, who is asked for approval. Finally, the rules
and models are updated.

2. Example: Fixing the Inconsistency of RI. 1 and
R3.1

Consider the contradiction between Rl .l and R3.1.
After detecting the inconsistency, WATSON notes that
the antecedents of R1.l are strictly more general than
those of R3.1. WATSON attempts to strengthen the
antecedents of R1.l until the antecedents of the two rules
become incompatible. The most obvious way, by finding
all antecedents of R3.1 not in Rl .l, negating them, and
conjoining them to Rl .l, produces something correct but
verbose:

R l.la: tjx Ion-hook (X1
A [-vinging (xl

V [Vy [vaZZing(y,x)
V -ringback (y)lll

A EVENT (goes~o~~hook (x))l
3 BEGINS (dial -tone (x)1 1.

WATSON searches for simpler versions that are
“negligibly” stronger then R 1.1 a. Considering rules
involving only a single negated antecedent from R3.1, it
finds the following candidates which are simpler than
R 1.1 a, but stronger by varying amounts:

R l.lb: VX Ion-hook (x1 A try [-ringback (y)l
n EVENT (goes-off-hook (x))

3 BEGINS (dial -tone (x)) I
R 1.1~: k/x [on-hook(x) A Vy I~caZZing(y,x)l

A EVENT (goes-ofl-hook (x))
3 BEGINS (dial -tone (x)) I

R l.ld: Vx [on-hook(x) A -ringing(x)
A EVENT (goes-ofl-hook (xl)

I) BEGINS (dial -tone (x)) I

It heuristically ranks Rl .ld as the simplest, since it
doesn’t introduce new variables to Rl .l. It then tries to
show that Rl . Id is “virtually” as general as Rl . la by
establishing

CWR F vx [ringing (x)
I 3 [calling <y,x> A ringback <y> II,

where CWR is an expanded set of “closed world rules”
constructed on the fly from the scenario rules to support
reasoning both forward and backward in time over a
single S-R cycle. These contain an implicit assumption
that the presently known rules are the only rules. Since
according to the known rules there is no way for a phone
to ring without another phone initiating a call and getting
ringback, this proof succeeds, leading to a conclusion that
Rl.ld is safe to use.

At this point, WATSON knows it has a
“maximally simple” acceptable solution. It now asks the
user for approval before replacing Rl . 1 with Rl . Id. It
paraphrases Rl . 1 and R3.1 back into “scenario-ese”,
describes the contradiction, and asks for permission to
replace Rl . 1 with Rl . Id. If WATSON had found two
equally desirable solutions, the user would be asked to
make the choice.

D. Saamnmary of the POTS Case Study

The simplified POTS scenario requires fourteen
rules to pass the final consistency check. WATSON can
obtain these by rewriting three of the original six and
generating the remaining eight from first principles. Four
of these eight are required to complete unfinished
episodes, and the other four handle telephones that hang
up midway through the scenario (unanticipated stimuli).
This requires 5 minutes of machine time on a Symbolics
3600 -workstation, 96% of which is spent proving
theorems. Our home-brew theorem prover runs faster
than similar resolution engines (i.e., full FOL, breadth-
first or depth-first clause selection) that we have used in
the past, but the response time still taxes user patience.

130 Automated Reasoning

monotonicity. Similar problems arise in WATSON’s 2-
tense logic and extended models. For example, if a new
scenario provided a rule that would allow a telephone to
ring without some other phone calling it and receiving a
ringback (say, a line-test feature), that would invalidate
the assumption by which we chose Rl.ld as the best
replacement for R 1.1.

easming

Not only is theorem proving slow, but WATSON’s
temporal reasoning is confined to a single stimulus-
response cycle of the system. This weak logic was
necessitated by exponential blowups when using more
powerful, episode-chaining logics (e.g., situation calculi)
with the initially under-constrained scenario rules. Our
solution integrates model-based reasoning into
WATSON’s inference methods.

WATSON’s most important models are the
minimal (fewest states) automatons required to
implement each type of agent. Each state corresponds to
a particular assignment of truth-values to every known
assertion about the agent. State transitions are governed
by the logical rules generalized from the scenario. These
automatons are initially fragmentary and
underconstrained, but evolve into connected, deterministic
state transition graphs as WATSON edits the rules. The
models are stored in a form that facilitates their use even
when incomplete. They consist of a list of states telling
what assertions hold in each state, a list of constraints on
the possible states of agents both before and after each
episode, and groupings of rules according to which state
transitions they influence.

Model-based reasoning increases both the strength
and speed of WATSON’s reasoning. Of the queries
posed during the correction/completion stage, about 20%
require reasoning over multiple episodes, which cannot be
done by theorem proving in 2-tense logic, but can be
answered in the model. Another 65% are fully
instantiated queries asking whether some property P holds
in some model; for these, querying the model is typically
50 times faster using the theorem prover. The major
caveat is incompleteness: a query might fail in
WATSON’s minimal model, and still hold in some other
model. Fortunately, many important properties, such as
graph connectivity, hold in minimal models or not at all.
In other cases, models can at least filter the set of
theorems to be proved. Still, care is needed when
interpreting the results of model-based reasoning. In
WATSON, such circumspection is presently hard-coded,
but explicit automated meta-reasoning about model
limitations is on our future research agenda.

WATSON’s non-monotonicity is nevertheless
simpler than the general case. Most treatments of non-
monotonicity assume retractions are forced
asynchronously by evidence external to the system (new
data). WATSON’s problems all arise from internal
decisions to apply closed-world reasoning. Thus, non-
monotonicity can be minimized (but not eliminated) by
careful static ordering of process steps, and by exploiting
meta-knowledge about which model properties are stable.
For instance, once WATSON has eliminated all
unreachable states, it is safe to assume that no presently
known state will ever become unreachable. The burden of
this meta-reasoning should also be transferred eventually
from WATSON’s designers to WATSON.

For those relatively few determinations vulnerable
to later retraction, WATSON applies brute force -- re-
validating them all after every rule and model update.
Fortunately, the speed of model-based reasoning reduces
this overhead. Furthermore, WATSON batches
unrelated rule updates together to minimize the frequency
of update cycles. The POTS scenario, for example, can
be processed in only four update-revalidate cycles.

The general goals of WATSON recall the SAFE
project at ISI ([Balzer 771, [Goldman 771). SAFE
attempted to understand an English prose description of a
process, inferring the relevant entities mentioned in the
process and their key relationships. It then generated an
algorithm to implement the process. Of the six types of
specification ambiguity corrected by SAFE, four of them,
accounting for 88% of those corrections, were artifacts of
using fairly unconstrained natural language input.
Conversely, the scenario ambiguities corrected by
WATSON did not arise in the SAFE case studies,
because SAFE’s initial specifications were more expansive
(100-200 words).

onstonicity
. Acquiring Programs from Examples

There are well-known relationships between
reasoning with a minimum Herbrand model and theorem
proving with a closed-world assumption in ordinary first-
order logic. Either one of these techniques, when applied
to an evolving knowledge base, opens the door to non-

Several approaches have been used to “learn”
programs based on sample traces: the pattern-matching
approaches of Biermann & Krishnawamy [Biermann 761
and Bauer [Bauer 791, the language recognizer generators

Kelly and Nonnenmann 131

of Angluin [Angluin 781 and Berwick [Berwick 861, and
Andreae’s NODDY system [Andreae 851. Of the three,
the work of Andreae is much the closest to the spirit of
WATSON by its use of explicit domain knowledge. The
other approaches attempt domain-independence, entailing
that their input examples must be either numerous or
meticulously annotated.
its domain kndwl d t

NODDY, like WATSON, uses
e ge o constrain the generality of the

programs it writes, much like the function of negative
examples in an example-based learning system. NODDY
writes robot programs, and its domain knowledge is solid
geometry.

One distinctive feature of WATSON, compared
with other systems, is its handling of multi-agent
interactions; the others are restricted to single-agent
worlds. Another difference is that WATSON produces a
specification for a class of computations, not just a single
program. The final implementation, adapted to a
particular machine architecture, may have much more
internal complexity than WATSON’s minimal model.
The rules form an model-independent post-hoc
verification criterion, and guidance for further
transformational development.

VI. STATUS AN LAN3

WATSON evolved from PHOAN [DeTreville 841,
which provided its axiomatization style, exhaustive
consistency test, and FSA synthesis procedure. PHQAN
successfully programmed POTS service for an
experimental ethernet-based telephone switch
[DeTreville 831. By argument from parentage, we
conclude that the same hardware should execute
WATSON’s code, but this has not yet been verified.

Our WATSQN prototype can handle the POTS
scenario and several extensions, such as busy-signals,
billing, and multi-call contention. We are extending it to
cover the “toy telephone” suite of telephone services
defined in [IEEE 831. An important feature of
WATSON is its ability to detect unforeseen interactions
among different services. The “toy telephone” domain
contains several examples of such interactions.

We have previously noted ongoing research issues
in meta-reasoning about model errors and non-
monotonicity. We would also like to generalize the style
of scenario WATSON can accept; i.e., closer to idiomatic
English. Therefore, a very flexible user-customizable
English parser used to generate FOL database queries
[Ballard 861 will soon be adapted for WATSON.

[Andreae 851 Peter Andreae, “Justified Generalization:
Acquiring Procedures From Examples”, MIT AI
Lab Technical Report 834, 1985.

[Angluin 781 Dana Angluin, “Inductive Inference of
Formal Languages from Positive Data”,
Information and Control, 1978, Vol 45, pp. 117-
135.

[Ballard 861 Bruce Ballard and Douglas Stumberger,
“Semantic Acquisition in TELI: A Transportable,
User-Customizable Natural Language Processor”,
in ACL-24 Proceedings, Association For Computer
Linguistics, 1986, pp. 20-29.

[Balzer 771 Robert Balzer, Neil Goldman, and David
Wile, “Informality in Program Specifications”, in
Proceedings of IJCAI-5, 1977, pp. 389-397.

[Bauer 791 Michael A. Bauer, “Programming by
Examples,” Artificial Intelligence, May 1979, vol.
12, no. 1, pp. 1-21.

[Berwick 861 Robert C. Berwick, ‘“Learning from
Positive-Only Examples: The Subset Principle and
Three Case Studies,” in Machine Learning: An
Artificial Intelligence Approach, Volume II
Michalski, Carbonell, and Mitchell, eds.; Morgan
Kaufmann, 1986

[Biermann 761 Alan W. Biermann and Ramachandran
Krishnawamy, “Constructing Programs From
Example Computations,” IEEE Transactions on
Software Engineering, Sept. 1976, Vol. SE-2, no.
3, pp. 141-153

[DeTreville 831 John DeTreville and W. David Sincoskie,
“A Distributed Experimental Communications
System”, IEEE Transactions on Communication,
Dec. 1983, Vol. COM-3 1, no. 12.

[DeTreville 841 John DeTreville, “Phoan: An Intelligent
System For Distributed Control Synthesis”, ACM
SIGSOFTBZGPLAIV Software Engineering
Symposium on Practical Software Development
Environments, P. Henderson, ed.; 1984, pp. 96-103.

[Goldman 771 Neil Goldman, Robert Balzer, and David
Wile, “The Inference of Domain Structure from
Informal Process Descriptions”, USC-IS1 Research
Report 77-64, October 1977.

[IEEE 831 JSP & JSD: The Jackson Approach TO
Software Development, IEEE Computer Society,
1983

[Kelly 871 Van E. Kelly and Uwe Nonnenmann, “From
Scenarios To Formal Specifications: the WATSON
System” Computer Technology Research
Laboratory Technical Report (forthcoming).

132 Automated Reasoning

