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ABSTRACT

In this paper, we propose a lagic
which is nontrivial in the presence
of inconsistency. The logic is based
on the resolution principle and
coincides with the classical laogic
when premises are consistent. Some
results of interesting to Automated
Theorem Proving are a sound and
sometimes complete three-valued
semantics for the resolution rule
and a refutation process which is
much in the spirit of the problem
reduction format.

1. Introduction

There are at least two considerations
in Computer Science and Artificial
Intelligence force us to study
nontrivial reasoning in the presence of
inconsistency. In database system, we
certainly do not wish cur system to be
wrecked by a single contradiction
offered by the user and we often need to
draw some conclusions about cbjects
which are irrelevant to the
contradiction because a contradiction is
often difficult to be detected and
corrected. In AI, there are many efforts
to formalize common sense reasoning, for
example, [McCarthy, 1980,19861, [Reiter,
19801. A general rule for explaining
common sense reasoning may fail
sometimes. For example, according to
closed world assumption (Reiter(1978)),
a positive literal is not true if it is
not a consequence of the facts in a
database, so if we have a database
expressed by the formula P(a)\/P(b),
then we will run to contradiction by
using the closed world assumption for we
can infer ~-F(a)/\-P(b). Therefore
reasoning in the presence of
inconsistency seems necessary in common
sense reasoning (the above contradiction
caused by closed world assumption can be
avoided by using circumscription
[McCarthy, 19861, but as Davis showed in
[Davis, 19801 that circumscription camn

also cause inconsistency).

Systems that are not wrecked by
contradictions have been studied by
Philosophers , Logicians and Computer
Scientists for years [da Costa, 1974,
Belnap, 1976, Priest, 1979 and Martins
and Shapiro, 19861.

In this paper, we propose a logic
satisfying the following three
conditions: in the following, L is the
new logicy, G I+ A means A can be infered
from G in L and G i— A means A can be
infered from 6 according to classical
logic, where A is a formula and G is a
set of formulas.

(A) if B is a consistent set of formulas
in the sense of first order logic,; then
for any formula A, G I+ A iff G I—- A.

(B) the problem of deciding whether 6 i+
A is true for finite B is partial
solvable, that is, the set {(G,A) | G I+
A} is recursively enumerable.

(C) for any finite G, there is a formula
A such that 6 I+ A is not true.

The reasons for the three conditions
are as follows. First, the condition (C)
means that the deductive relation "i+"
is nontrivial in every possible case. We
regulate the condition (A) because we

wish the new logic L to be a faithful

extension of the first order logic.
Finally, the reguirment (B) is necessary
for the logic L to be implemented by a
computer program.

The systems in [Priest, 19791 and
fMartins & Shapiro, 198461 satisfy the
conditions (B) and (C) but net (RA). As
an example of the logic L that satisfies
(A) and (C) but not (B), define G I+ A
itf B’ I- A for every maximal subset G°
of G such that G’ is consistent in the
sense of the first order logic. It is
easy to see that (A) and (C) hold, but
(B) is false for the problem of deciding
whether a finite set of formulas is
consistent is undecidable. Note that the
relation "1+" defined here is a direct
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[Rescher, 194641 in the propo
language to the first order one.

Our main point is that various
contradiction tolerant systems can be
constructed by restricting the classical
rule of "reduction to absurdity”.
Accarding to the rule, if we can infer a
contradiction from A and -B, then we
assert that B can be infered from A.
From this it is easy to see that every
thing can be infered from a
contradiction. So we must restrict the
rule as: A infers B whenever we can
deduce a contradiction from A and -B by
using some information from —-B. The idea
is certainly not a new one, for example,
EDunn, 197&61. What make our work new is
just a new way of formalizing the
statement: using some information from
~B. In Section 2, we consider the
resolution principle as a general rule
of "reduction to absurdity" and define a
deductive relation satisfying the
conditions (A) to (C) above based on the
resolution principle. In Section 3, we
show some connections of the results
obtained in Section 2 with Automated
Theorem Proving. Section 4 contains some

concluding remarks.
2. Propositional Resolution

In this section, we shall focus our
attentions on the propositional logic,
we consider how to use the propositional
resolution to obtain a logic suitable
for the reasoning in the presence of
inconsistency. Our terminology are those
in [Chang and Lee, 1973]. In particular,
a deduction of a clause C from a set of
clauses S is a sequence Cl,...,Cn, where
Cn is C and Ci is either in 8 or a
resolvent of clauses preceding Ci. A
deduction of 0 (the empty clause) from S
is called a refutation. Proof by
resolution principle is a complete rule
of "reduction to absurdity" in the sense
that for any formulas A and B, A I~ B
iff the union of 51 and S2 can be
refuted by the resolution rule, where
/\81 and /\82 are conjunctive normal
forms of A and -B, respectively.
Therefore, in order to prevent every
thing from being infered from a
contradiction, we have to restrict
refutations of the union of 81 and S2,
this motivates the following definitions.

Definition i. Suppose 8 is a set of
clauses, C1,C2,...Ck is a deduction from
S; for any Ci, cu(Ci), the set of
clauses used in infering Ci, is defined
inductively as follows:
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(2) if Ci is a resolvent of Cm and Cn,
my,n < i, then cul(Ci) is the union of
cu(Cm) and cul(Cn).

Note that in De.l1, if Ci is both in S
and a resolvent of Cm and Cn for some
natural numbers myn < i, or Ci is a
resolvent of more than one pair of
clauses preceding it, then by Definition
1, there are more than one way to
compute cu(Ci). In order to avoid
ambiguities, in the following, when we
write down a deduction Ci1,C2,...;Ck from
5, we shall attach a fixed cu(Ck) with
it, so a deduction from S is in fact a
deduction from S with a fixed way for
computing cu(.). Therefore LI\/-L2, L2,
Li with cu(lLl) = {Li\/-L2, L2} and
LiN/-L2, L2, L1 with cudLl) = {L1} are
considered as two different deductions
of L1 from § = {Li\/-L.2, L2, L1>.

Definition 2. Suppose (81,S852) is a pair
of sets of clauses, a sequence E£i, C2

«ss38k iz a refutation of (S1,82) if it

is a refutation of the union of S1 and
62 and there is a clause C which is both
in 82 and cu(Ck).

It is conventional to transform a
formula into a set of clauses. We can
furthermore suppose the process of
transformation is unique so that for any
formula we can say the set of clauses
corresponding to the formula. The
function of De.2 is illustrated by the
following definition

Definition 3. Suppose G is a set of
formulas and F a formula, Si and S2 are
the sets of clauses corresponding to 6
and ~F, respectively. F can be infered
from 6 (by contradiction tolerant
reasoning), written 6 I!1—- F, iff (51,582)
can be refuted according to De.Z2.

For the convenience of express, in
this paper, all propositions about "1i-"
are stated in term of the refutationness
of a pair of sets of clauses. The
transformation is obvious. Two
propositions come directly from the
definitions.

Proposition 1. Suppose (S51,82) is a pair
of sets of clauses. If S1 is consistent
then a sequence of clauses is a
refutation of (51,52) iff it is a
refutation of the union of S1 and S2.

Proposition 2. Suppose (81,82) is a pair
of sets of clauses, if Si1 and S2 have no
common predicate and function symbols,
then (81,582) can be refuted iff S2 can
be refuted.



Proposition 1 and Proposition 2
carrespond to the properties (A} and (C)
in Sec.1, respectively. In order to see
when (S51,52) can be refuted in the case
that S1 is inconsistent, we need some
more definitions.

In the following, for any literal L,
we write -L as the literal such that if
L is the atom A, then -L is —A, and if L
is the negation of the atom A, then -L
is A. The following lemma about the
resaolution principle will play an
important role in this paper.

Lemma 1. Suppose S is a set of clauses,
C1,02;...,Cn=0 is a refutation of S. For
any C=L1i\/...\/Lk in cu(Cn), there is a
deduction of ~Li from S for any
im1,2,.00 ke

By the lemma, it is easy to see the
following theaorem is true.

Theorem 1. Suppose S1 and 52 are two
sets of clauses. (S1,52) can be refuted
iff there is a clause C=L1V/...\/Lk in
§2 such that for any i=l,...,k, there is
a deduction of —-L from the union of 81

in order to further our study, we
introduce a semantics such that the
resolution rule is always sound, and
sometimes complete in the semantics.

The semantics is a three—valued

valuation, we define it for "-" and "\/"
, other connectives are defined by
definitiaons: A/\B = —(-A\/-B), A -> B =

-A\/B. The three values are t (true), f
(false) and p (?). There is no fixed
meaning for "p", sometime it can be
understoad as true and sometime false.

-1t | fF P /[ ] f
¢+l tlep t| | t

£ | §|F

p t f p

The above truth tables are
self-explanatory. A (three-valued)
valuation v is a mapping from atoms to
{t,f,p3. It is conventional to extend
the domain of a valuation to the set of
formulas. For any set S of formuals and
formula F, F is a (three-valued)
semantic consequence of S, written 8§ 1=
F, iff for any valuation v, if for any
member A of S, v(A) is not §, then v(F)
is not f either.

Example 1. {L1, -LI\/L2} =12 is true,
but L1 = Li1\/L2 is not true, where L1
and L2 are different literals.

Theorem 2. Suppose S is a set of
clauses, C is a clause. If there is a
deduction of C from 8, then S = C.

Theorem 2 shows that the resolution
rule is sound within our (three-valued)
semantics. The converse (completeness)
of the theorem is also true if the
clause C in the theaorem is a literal.

Theorem 3. Suppose 5 is a set of
clauses, L a literal. If S i= L, then
there is a deduction of L from S.

In terms of "ti1-", Theorem 2 and
Theorem 3 correspond to the following
theorem.

Theorem 4. Suppose 6§ is a set of
formulas and C & clause. S is the set of
clauses corresponding to 6. We have

G I1- -C iff § I= ~C.

Note that the result of the theorem
not true if we replace S I= -C by 6 I=
-C, that is, the process of transforming
a formula to its conjunctive naormal form
is not truth preserving according to our
three-valued semantics. In fact, the
problem is the distribution laws, it is
easy to see that 1= AW/ (B/AC) <-> (A\/B)
/N(AN/C) is not true.

In a sense, our three-valued semantics
is a weakening of the conventional
two—-valued semantics. For any sets of
formulas 6 and formula F, it is easy to
see that if G I= F, then G I- F, but the
converse is not true. It is of
interesting ta note that the
three~valued semantics can be
furthermore weakened . If we just change
the truth table for "\/" above so that
the truth-value of A\/B is p not § when
Aie f and B is p or A iz p and B is ,
then we get a semantics which is exactly
the one in [Priest, 1979]. It can be
praoved that for any set G of formulas
and formula F, if F is a semantic
consequence of G according to the new
semantics (with t and p designated),
then 6 {i— F, but the converse is not
true.

Now, let’'s see how to extend the above
results to the first order level.
Suppose S1 and S2 are sets of clauses.
Closed(S51,82) is the pair
(ClosedS1,ClosedS2), where ClosedSi = {C
I € =Cl{tl,...3tn)y, where C1 is in Si
and tl,...,tn are terms in the Herbrand
domain of the union of S1 and 8§23,
i=1,2. For any sets S1 and 52 of
clauses, (51,52) can be refuted if¥f
Closed(81,82) can be refuted according
to De.2. Sa for any formulas A and B, A
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11— B iff (51,52) can be refuted, where
51 and 52 are the sets of clauses
corresponding to A and —-B, respectively.
The three conditions in Sec.l1 are still
true when the relation "i+" there is
replaced by "IlI-" here. Condition (A) is
easy. Note that for condition (C) to be
true, we must assume that our language
be infinite, for if the language is
finite, for example, there is only one
predicate P(x),; then it is easy to see
that for any formula B, (x) (P(x)}/\-P(x))
ti—- B is true. For the condition (B),
note that Closed(S1,52) can be refuted
iff there are two finite sets §1° and
52’ such that Si’ is included in
Closed(Si) and (S1°,52°’) can be refuted,
i=1,2.

Finally, before we concluding this
section, we would like to pointed out
that relevant logics of similar spirits
as the one developed in this section can
be obtained by other formalisms than
resolution. For example, as one of the
reviewers has pointed out that the set
of support theorem—proving strategy
{included in MESON format, see [Loveland
and Stickel, 19731) is a convenient
formalism. The other formalism we have
used is ‘coupled tableaux’ system [Lin,
19871. It is certainly of interesting to
establish some connections among varies
relevant logics which satisfy the
conditions (A) to (C) above and are
based on diffrent formalisms. But this
is still an open problem.

3. Some Applications In Automated
Theorem Praoving

It is of interesting to notice that
the results obtained in Sec.2 motivate a
refutation process which is in the
spirit of the problem reduction format
and its extension: MESON format
[Loveland and Stickel, 19731.

Theorem 5. Suppose § is a set of
clauses, L is a literal and S1 is the
subset of S such that -L does not occur
in any member of S1, then there is a
deduction of L from 8§ iff there is a
deduction of L from S1.

Note that Theaorem 5 corresponds to the
repeated goals deletion rule [Loveland
and Reddy, 1981]1. In fact, we consider
it as the most general form of the
repeated goals deletion rule in clausal
form. A refutation process motivated by
Theorem S is as follows:

(1) S can be refuted iff there is a

clause C = Li\/...\/Lk in S such that
for any i=l,...,yk, there is a deduction
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of ~-Li from S.

(2) For any literal L, there is a
deduction of L from S iff there is a
clause C = LiN/...\/Lk in 81 such that
for any i=l,...,k, there is a deduction
of ~Li from the union of St and S2,
where 81 = {C | L\/C in 8 and -L not in
C» and 82 = {C } C in S and neither L
nor -L in C3.

(3) For any literal L, if L is in §,
then there exists a deduction of L from
S.

Example. S = {-P\/-B\/R, P\/R, @\/R, -R}

This is Example &.1 in [Chang and Lee,
197331. Chang and Lee used this example
to show the necessarity of introducing
mechanisms for reducing the useless
clauses generated by the general
resolution rule. Let’'s refute S by using
the process described above:

8§ can be refuted if there is a deduction
of R from S if there is a deduction of
-G from {-P\/-@, P, @}, if there is a
deduction of —P from {-P}, but by (3
above, there is indeed a deduction of -P
from {-P}, so 8§ can be refuted.

Again note that the results we have
obtained in this section can be easily
extended to the first-order level. Let’'s
see an example

Example. § =

(1) ,(2) ,(3) ,(4) ,(5) ,(6) ,(7)}, where (1)
= —E()I\/Vx)I\/S(x,f(x)), (2) =
—E(xI\N/VIN/C(F (%)) 3 (3) = P(a),
(4)=E(a)

($=2]
(7)

=S(a,yI\/Fly), (&) = —=Px)\/-V(x),
=P{x)\/-C(x).

This is Example 5.22 in [Chang and
Lee, 1973]1. A refutation process for S
when the rules (1) to (3) above are
suitably extended to the first-order
level looks like: (in the following, for
any formula F(x), Fi(x)i{x=til,...,tk?
will mean that F(ti),...,F{tk) have been
used in the resolution process and need
not being used again).

S can be refuted if there is a deduction
aof —P(a) from S, if there is a deduction
of V(a) fram {(1),(2),(4),(5), (&) I{x=al,
(7} 1{x=alt, —-Cla)}, if there are
deductions of E(a) and -C(f(a)) from
Si1={(1) 1 {x=a), (2)1{x=al}, (4), (5),

(&) I{xk=al}, (7)i{x=al}, —-Cla),
-E(ai\/S(a,f(a))3, if there is a
deduction of -C(f(a)) from Si, if there
is a deduction of P(f(a)) from
{{1) 1 {x=a}, (2)I1{x=al}, (4), (),
(&) 1 {x=a}, (7)i{x=a,f(a)l, —-Cla),



-E{a)\/ S(a f(a))} if there is
deduction of S¢ azfia)) from {(l)l{x—a},

(2) {{x=a}, (4), (D) iI{x=Ff(a)lr, (&) l1{x=al,
(7)i{x=a,f(a)l}, —-Cla),
~-E(a)\/S(a,f(a))}, if there is a
deduction of E(a) from {(1)({x=al,
(2) 1 {x=aX, (4), (D 1{x=Ff(a)l:, (&6)!{x=al,
(7)1 {x=a,f(a)>,; —-C(al)}, but (4) = E(a),
so S can be refuted.

4. Concluding Remarks

Intuitively, as Halpern said in
Halpern(1986), reasoning in the presence
of inconsistency is an issue which need
to be considered eventually in the
design of knowledge bases for it is
always possible to receive contradictory
information from users. In practice; we
think, few reasoning systems can infer
everything from a contradiction, for
example, in most Prolog implementations,
a program P {(which is a set of Horn
clauses) answers a question ?- L (L is a
literal) with “yes" iff the union of P
and {-L3} can be refuted by using linear
input resolution with -L as the top
clause iff (P,~-L) can be refuted iff P
ii— Ly according to our definitions.
Therefore, the logic proposed in this
paper may be considered as a
formalization of the logic used by some
practical reasoning systems. Conversely,
we hope the results cbtained in this
paper would be useful in the design of
practical reasoning systems.
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