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ABSTRCaCT 

In this paper, we propose a logic 
which is nontrivial in the presence 
of inconsistency. The logic is based 
on the resolution principle and 
coincides with the classical logic 
when premises are consistent. Some 
results of interesting to Automated 
Theorem Proving are a sound and 
sometimes complete three-valued 
semantics for the resolution rule 
and a refutation process which is 
much in the spirit of the problem 
reduction format. 

1. Introduction 

There are at least two considerations 
in Computer Science and Artificial 
Intelligence force us to study 
nontriviaa reasoning in the pre5ence of 
inconsistency. In database system, we 
certainly do not wish our system to be 
wrecked by a single contradiction 
offered by the user and we oftem need to 
draw some conclusions about objects 
which are irrelevant tc the 
contradiction because a contradiction is 
often difficult to be detected and 
corrected. In AI, there are many efforts 
to formalize common sense reasoning, for 
example9 CMcCarthy, 19GQp%9G&3, KReiter, 
19803. CI general rule for explaining 
common sense reasoning may fail 
smet i mes. For example, aecordi ng to 
closed world assumption ~Reiter(f97Gb1, 
a positive literal ir not true if it is 
not a consequence of the facts in a 
database, so if we have a database 
expressed by the formula P(aI\/P(b), 
then we will run to contradiction by 
using the closed world assumption for we 
can infer -P(a)/\-P(b). Ther 
reasoning in the presence of 
inconsistency 5eems necessary in common 
sense reasoning (the above contradiction 
caused by closed world assumption can be 
avoided by using circumec 
CMcCarthy, 19E463, but as avis shcpwed in 
[Davisi, 19803 that circumscription can 

al so cause inconsistency) . 

Systems that are not wrecked by 
contradictions have been studied by 
Phi 1 osophers , Logicians and Computer 
Scientists for years Cda Costa, 89‘;749 
Belnap, 197b9 Priest, 1979 and Martins 
and Shapiro, 19863. 

In this paper, WI propose a logic 
satisfying the following three 
conditions: in the following, L is the 
new Iogic, G I+ II means & can be fnfered 
from G in L and G D- A means A cam be 
infered from G according to classicall 
logic, where A is a formula and G is a 
set af formulas. 

(A) if G is a consistent set of formulas 
in the sense of first order logic, then 
for any formula A9 G 1s ba if9 G I- A. 

(%I the problem of deci ing whether G I-+ 
6l is true for finite G is partial 
solvable, that is, the set C(G9Be\) I G 94 
A3 is recursively enumerable. 

(Cl for any 
d4 such that 

finite 
0 I4 A 

G9 
is 

ther@ is a d 
not true. 

ormul a 

The reasons for the three ccnditiorts 
are as follows. First, the condition 4421 
means that the deductive relation “i+” 
is nontrivial in every possible ca5e. 
regulate the condition (A) becau5e we 
,wish the new logic L to be a faithful 
extension of the first order logic. 
Finally, the requirment QIB) is necessary 
foF the Iogic L to be implemented by a 
computer program. 

The systems in EPriest, 19793 and 
KMrrtirns apiros 698$3 satisf 
condition 1 and (Cl but not ( 
asa exampl the logic L that s 
CA) and (Cl but not (I31 B define G 14 ISI 
if9 63' I- A for every maximal subset G’ 
of G such that 6' is consistent in the 
sense af the first order logic. It is 
easy to see that (AI and (Cl hol but 
tl3) is false for the problem of cidiwg 
whether a finite set of formula5 is 

ate that the 
i rect 
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(19 i-f Ci is in ST then cu(Ci) i <Ci>. extension of a relation defined in 
CRescher , 19643 in the propositional 
language to the first order one. 

Our main point is that various 
contradiction tolerant systems can be 
constructed by restricting the classical 
rule of "reduction to absurdity". 
kcordinq to the rule, if we can infer a 
contradiction from CI and -33, then we 
assert that B can be infered 9rom A, 
From this it is easy to see that every 
thing can be infered from a 
contradiction. So we must restrict the 
rule as: A infers B whenever we can 
deduce a contradiction from Ca and -33 by 
using some information from -B. The idea 
is certainly not a new one, for exampPe, 
[Dunn 0 19761. What make BUF work new is 
just a new way 09 formalizing the 
statement: using some information from 
-B. In Section 2, we consider the 
resolution principle as a general rule 
of "reduction to absurdity" and define a 
deductive relation satisfying the 
conditions (A9 to (Cl above based on the 
resolution principle. In Section 3, we 
show some connections of the results 
obtained in Section 2 with CIutomated 
Theorem Proving. Section 4 contains some 
concluding remarks,, 

2. Propositional Resolution 

In this section, we shall f ecus our 
attentions on the propositional logic, 
we consider how to use the propositional 
resolution to obtain a logic suitable 
#or the reasoning in the presence o=#’ 
inconsistency. Our terminology are those 
in CChang and Lee, 19733. In particular, 
a deduction of a clause C from a set of 
clauses S is a sequenee Clr...rCnr where 
CR is C and Ci is either in S or a 
resolvent of clau5es preceding Ci. A 
deduction 09 0 (the empty clause9 from S 
is called a refutation. Proof by 
resolution principle is a complete rule 
Pf “reduction to absurdity" in the sense 
that for any formulas A and B, CI I- B 
iff the union of Sl and S2 can be 
F@buted by the resolution rule, where 
/\§I and AS2 are conJunctive normal 
forms of A and - , respectively. 
Therefore, in order to prevent every 
thing from being infered from a 
contradiction, we have to restrict 
refutations of the union of SP and S2, 
this motivates the 9ollowinq definitions. 

De-finition 1. Suppose S ie a set cf 
clauses, Ci,C2V,... Ck is a deductim #ram 
Sp for any Ci, cu(Ci9, the set of 
clauses used in inhering Cilp is d&ined 
inductively BB follows: 

(29 if Ci is a resolvent of Cm and Cn, 
m,n < i, then cu(Ci) is the union of 
cu(Cm9 and cu(Cn9. 

Note that in De. 1, if Ci is both in S 
and a resolvent of Cm and Cn for some 
natural numbers m,n < i* or Ci is a 
resolve& of more than one pair of 
clauses preceding it, then by Definition 
lp there are more than one way to 
compute cu (Ci 9. In order to avoid 
ambiguities, in the following, when we 
write down a deduction Cl,C2,...,Ck f~-cm 
SW we shall attach a +ixed cu(Ck9 with 
it, so a deduction from S is in fact a 
deduction from S with a fixed way for 
computing cut.). Ther&ore Ll\/-L2, L2, 
Ll with cu(L19 = CLl\/-L2, L23 and 
Lf\/-L29 L29 Ll with cu(LiI = CL13 are 
considered as two different deductions 
09 Ll from S = ELI\/--L2, L2, Ll). 

Dedinition 2. Suppose tSl,S21 is a pair 
of set5 of clauses, a sequence Cl, C2 
. . ..Ck is a refutation of (Sl,S29 i9 it 
is a refutation of the union of Sl and 
S2 and there is a clause C which is both 
in S2 and cu(Ck9. 

It is conventional to transsborm a 
formula into a set of clauses. kJe can 
furthermore suppose the proc 
trans-formation is unique so that for any 
formula we can say the set ob clauses 
corresponding to the formula. The 
function sf De.2 is illustrated by the 
following definition 

Definition 3. Suppose G i5 a s 
+ormuPas and F a formula, 81 and S2 are 
the sets of clauses corresponding to B 
and -FB respectively. F can be finbe!-ed 
9rom El (by contradiction tolerant 
reasoning 9 , writtarn 6 II- F. if9 (S19S29 
can be refuted according to k-2. 

FQF the convenience of express, in 
this paper o all propositions about 8’ I I-” 
are stated in term ob the refutationness 
of a pair of sets of clauses. The 
transformation is obvious. Two 
propositions come directly from the 
definitions. 

Proposition 1. Suppose (Sips29 is a pair 
of sets of clauses. If Sl is consistent 
then a sequence of claures is a 
refutation of (Sl,S29 iff it is a 
refutation of the union of Sl and S2. 

Proposition 2. Suppose tSl,S29 is a pair 
of ret9 of clau5iesi, if 91 and S2 have no 
common predicate and -function symbolsi, 
then (Sl ,S29 can be refuted if f S2 can 
be Fef mted. 
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Proposition I and Proposition 2 
correspond to the properties (A9 and (C9 
in Sec.1, respectively. IR ordelr t0 see 
when (Sl,S29 can be refuted in the ease 
that Sl is inconsistent, we need some 
more definitions. 

In the following, for any literal Lo 
we write -L as the literal such that if 
L is the atom PI, then -L is -ho and if L 
is the negation of the atom PIN then -L 
is A. The following lemma about the 
rescllution principle will play an 
important role in this paper. 

Lemma 1. Suppose S is a set of clauses, 
ClrC2ZJ.mm, Cm-0 ir a refutation of S. For 
any C=Ll\/... \/Lk in cu<Cn9 q there is a 
deduction of -Li from S for any 
i=1,2g...gk. 

%y the 1 emma, it is easy 
following theorem i s true. 

ta see the 

Theorem 1. Suppose Sl and S2 are two 
siets of clausess. (Sl ,S29 can be refuted 
iff there is a clause C=Ll\/...\/Lk in 
S2 such that for any i=l,...VkV there is 
a deduction of 4. from the union of Si 
and $52. 

In order to further our study, we 
introduce a semantics such that the 
resolution rule is always soundo and 
sometimes complete in the semantics. 

The semantics is a three-valued 
valuation, we define it for “-*I and “\/” 

other connectives are defined by 
iefiniti*ns: A/W = -t-&\/-B), A -> 18 = 
-AN/B* The three values are t (trueb, f 
(false) and p (79. There is no fixed 
meaning for “p”r sometime it can be 
understood as true and sometime false. 

The above truth tables are 
self-explanatory. CI (three-valued) 
valuation v is a mapping from atoms to 
Ct,f ,p>. It Is conventional to extend 
the domain of a valuation to the set of 
formulas. For any set S of f ormuals and 
formula F, F is a (three-valued) 
semantic consequence of Sg written S I= 
F, iff for any valuation v, if for any 
member Cs of S, v(cI9 ir not 8, then v(F) 
is not f either. 

Example 1. CLl, -Ll\/L23 13 L2 i.5 true9 
but Ll := Ll\/L2 is not true, where Ll 
and L2 are different literals. 

Theorem 2. Suppose S is a set of 
cl au5es o C is a clause. If there ie a 
deduction of C from 5, then 8 I= C, 

Theorem 2 shows that the resolution 
rule is sound within our (three-valued9 
semant i cs . The converse (completeness9 
of the theorem is also true if the 
clause C in the theorem is a literal. 

Theorem 3. Suppose § is a set of 
clausesi, L a literal. If 8 I= L, then 
there is a deduction of L from S. 

In terms of ” I I-” 4 Theorem 2 and 
Theorem 3 correspond to the following 
theorem. 

Theorem 4. Suppose G is a set of 
formulas and C a clause,. 8 is the set of 
clauses corresponding to G. e havcq 

G II- -G if8 s I= -c. 

Note that the result of the theorem is 
not true if we replace S I- -@ by B I= 
-C, that ifsi, the process of transforming 
a formula to its conjunctive normall form 
is not truth preserving acccrdfng te our 
three-valued semantics. In fact, the 
problem is the distribution Bawe5, it is 
easy to see that I= A\/ (B/\G9 (-2 (h\/B) 
/\tE\\/C9 is not true. 

In a sense, our three-va’B ued semantics 
eakening of the conventional 
lued semantics. For any sets of 

formulas G and formula F, it is easy to 
see that if G I= F., then G 9- 6, but the 
converse is not true. It is cb 
interesting to note that the 
three-valued semantics can be 
further-more weakened . If we just change 
the truth table for “\P” above so that 
the truth-value of A\/B is p not f hen 
A is f and B is p or A is p and i5 9, 
then we get a semantics which is exactly 
the one in tPriestq 19793. It can be 
proved that for any set G of Bcrmmllas 
and formula F4 if F is a semantic 
consequence of 0 according to the new 
semantics (with t and p design 
then G II- F, but the converse is not 
true. 

=+‘J, let'5 see how to extend the above 
ullts to the first order Bevel. 

Suppose 81 and S2 are sets of clauses- 
Closed(Sl,S29 is the pair 
(ClosedSl ,ClosedS29 9 where CllosedSi = CC 
I c= Cl (tl ,...,tn9, 
and tl ,...,tn are terms in th 
domain of the union o 
i-f ,2. For any sets S1 and 82 o-f 
clauses, (SloS29 can be refuted iff 
Closed(Sl,S29 can be refuted accord 
to De.2. So for any ~orrn~~a~ & and 
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I I- B iff (Sl,S29 can be refuted, where 
Sl and S2 are the sets of clauses 
corresponding to A and -B, respectively. 
The three conditions in Sec.1 are still 
true when the relation 'It+" there is 
replaced by "II-" here. Condition (449 is 
easy. Note that for condition (C) to be 
true, we must assume that our language 
be infinite, for if the language is 
finite, for example, there is only one 
predicate P(x), then it is easy to see 
that for any formula B, (x9 (P(x)/\-P(x)9 
I I- E is true. FOP the condition (B9g 
note that Closed (Sl ,S29 can be refuted 
iff there are two finite sets Sl' and 
S2’ such that Si' is included in 
Closed(Si 9 and (S1’ ,S2'9 can be refuted, 
i=1,2. 

Finally, before we concluding this 
section, we would like to pointed out 
that relevant logics of similar spirits 
as the one developed in this section can 
be obtained by other formalisms than 
resolution. FOP example, as one of the 
reviewers has pointed out that the set 
of support theorem-proving strategy 
(included in MESON format, see CLoveland 
and Stickel, 197319 is a convenient 
formalism. The other frarmalism we have 
used is 'coupled tableaux* system CLin, 
19873. It is certainly of interesting to 
establish some connections among varies 
relevant logics which satisfy the 
conditions (cS9 to (C9 above and are 
based on diffrent formalisms. But this 
is still an open problem. 

s. Some bpplications 
Theorem Proving 

In Automated 

It is of interesting to notice that 
the results obtained in Sec.2 motivate a 
refutation process which is in the 
spirit of the problem reduction format 
and its extension: lYlESON format 
CLoveland and Stickel, 19733. 

Theorem 5. Suppose S is a set of 
cl ausee, L is a literal and Sb is the 
subset of S such that -L does not occur 
in any member of Sl, then there is a 
deduction of L from S iff there is a 
deduction of L from Sl. 

Note that Theorem 5 corresponds to the 
repeated goals deletion rule CLoveland 
and Reddy, 19811. In fact, we consider 
it as the most general form of the 
repeated goals deletion rule in clausal 
form. A refutation process motivated by 
Theorem 5 is as follows: 

(19 S can be refuted iff there is a 
clau,se C = Ll\/... \/Lk in S such that 
for any i=l,..., k, there is a deduction 

of -Li from S. 

(29 For any literal L, there is a 
deduction of L from S iff there is a 
clause C = Ll\/ . ..\/Lk in $31 such that 
for any i-l ,...,k, there is a deduction 
of -Li from the union of Sl and S2, 
where Sl = CC I L\/C in S and -L not in 
C3 and S2 = CC I C in S and neither L 
nor -L in CD. 

(39 For any literal L, if L is in S, 
then there exists a deduction of L from 
S. 

Example. S = C-P\/-Q\/R, P\/R, W/R, -R> 

This is Example 6.1 in CChang and Lee, 
19733. Chang and Lee used this example 
to show the necessarity of introducing 
mechanisms for reducing the useless 
clauses generated by the general 
resolution rule. Let’s refute S by using 
the process described above: 

S can be refuted if there is a deduction 
of R from S if there is a deduction of 
-Q from C-P\/-Q, P1 Q3* if there is a 
deduction of -P from C-P>, but by (39 
above, there is indeed a deduction of -P 
from C-P), so S can be refuted. 

Again note that the results we have 
obtained in this section can be easily 
extended to the first-order level. Let’s 
see an example 

Example. S = 
C(1~,(29,(3~,(49,~59,(69,~793, where (19 
= -E(x9\/W(x9\/S(x,b(x99, (21 = 
-E(x)\/V(x)\/C(f (x9 9 v (39 = P(a) o 
(49=E(a9 

(51 = 
(79 = 

-S 
-P 

(a,y9 \/P(y) 
(x9\/-CCX). 

, (6) = -P(x)\/-V(x) 1 

This is Example 5.22 in CChang and 
Lee, 19731. A refutation process for S 
when the rules (19 to (3) above are 
suitably extended to the first-order 
level looks like: (in the following, for 
any formula F(x), F(x) IXx=tf,...,tk3 
will mean that F(tf9 ,,... ,F(tk) have been 
used in the resolution process and need 
not being used again). 

S can be refuted if there is a deduction 
of -P(a) from S, if there is a deduction 
of V(a) from ~(1),(29,(4),(5),(69lCx=a3, 
(71 I Cx=a3, -C(a) 3, if there are 
deductions o+ E(a) and -C(b (a) 9 from 
Sl=C(l)ICx=aB, (29 ICx=a3, (49, (59, 
(61 I Cx=a3, (79 I {x-a), -C (aI 1 
-E(a)\/S(a,f (a))), if there is a 
deduction of -Ctf(a99 from Si, if there 
is a deduction of P(f(a99 from 
C(l) ICx=a>, (29 ICx=a3, (49 o (59 s 
(69 I4x=a3, (79 lCx=a,f (a)>, -C(a) V 
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-E(a)\/ S(a f(a))3 if there is a deduction o$ S(a,f(a)) from f(l)lcx=a3, 
(21 I Cx=a>, (41, (59 I Cx=f (aI 3 I (6) I Cw=a3 I 
(7) ICx=a,f (a)), -C(a), 
-E(aI\/S(a,f(a))3, if there is a 
deduction of E(a) from C(l)l<x=a>, 
(21 I <%=a), (4) s (51 I Ix=f (a) 3 ‘I (69 I Cx=a3 ., 
(7)ICx=a,f(a)>, -C(a)), but (4) = E(a), 
so S can be refuted. 

4. Concluding Remarks 

Intuitively, as Hallpern said in 
Halpern(l9861, reasoning in the presence 
of inconsistency is an issue which need 
to be considered eventualIy in the 
design of knowledge bases for it is 
always possible to receive contradictory 
information from users. In practice, we 
think, few reasoning systems can infer 
everything from a contradiction, for 
example, in most Prolog implementations, 
a program P (which is a set of Horn 
clauses) answers a question ?- L (L is a 
literal9 with "yes" if f the union of P 
and <-L3 can be ref utad by using linear 
input resolution with -L as the top 
clause iff (P,-LI can be refuted iff P 
: :- L, according to our definitions. 
There-f: ore, the logic proposed in this 
paper may be considered as a 
formalization of the logic used by some 
practical reasoning systems. Conversely, 
we hope the results obtained in this 
paper would be useful in the design of 
practical reasoning systems. 
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