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ABSTRACT 
Structural induction schemes have been used for 
mechanically proving properties of self-recursive concepts in 
previous research. However, based on those schemeq, it 
becomes very difficult to automatically generate the right 
induction hypotheses whenever the conjectures are involved 
with mutually recursive concepts. This paper will show 
that the difficulties come mainly from the weak induction 
schemes provided in the past, and a strong induction 
scheme is needed for the mutually defined concepts. 
Furthermore, a generalized induction principle is provided 
to smoothly integrate both schemes. Thus, in this 
mechanical induction, hypotheses are generated by mixing 
strong induction schemes with weak inductions schemes. 
While the weak induction schemes are suggested by self- 
recursive concepts, the strong induction schemes are 
suggested by mutually recursive concepts. 

I. Introduction 

Before formally stating the recursive concepts, some definitions are 
necessary. S is a term if it is a variable, a sequence of a function 
symbol of n arguments followed by n terms, or a sequence of a 
universal quantifier ALL or existential quantifier EX of two 
arguments followed by a variable and a term. The scope of a 
quantifier occurring in the term is the subterm to which the quantifier 
applies. For example, the scope of the quantifier ALL in the term 
(ALL X(FO0 X Y)) is (FOO X Y). A variable is free in the term if at 
least one occurrence of it is not within the scope of a quantifier 
employing the variable. A term t governs an occurrence of term s if 
either there is a subterm (IF t p q) and the occurrence of s is in p, or 
there is a subterm (IF t’ p q) and the occurrence of s in q, where t is 
(NOT t’). A term is f-free if the symbol f does not occur in the term 
as a function symbol. (ALL-LIST (x1 . . . xn) p) is an abbreviation for 
(ALL xl(ALL x2( . . . (ALL xn p)))), (EX-LIST(xr . . . xn) p) for (EX 
xr(EX x2( . . . (EX xn p)))), and (ALL-EX (x1 . . . xh) p) for a sequence of 
n mixed quantifiers over p, its negated form (EX-ALL (x1 . . . x,)(NOT 
p)). NIL is considered to be false and T denotes true. The symbols 
EQUAL and IF are two primitive operators. Informally speaking, if X 
is NlL, then (lF X Y Z) is equal to Z, end if X is not NIL, then (IF X 
Y Z) is equal to Y. The logic operators AND, IMPLIES, OR, and 
NOT can also be represented by IF formulae. 

The recursive concepts are formally defined as follows. 

(EQUAL(f,, x1 . . . xk x~,~+~ . . . x~,~ 
n 

) bodyJ ), where 

(A> f, . . . f, are new function symbols of ni 
. . . nn arguments, respectively, and l<k<_ni 
for l<i<n; 

(B) x1 * * * Xk’ xI,L+I# . *. , Xi+ for l<i<n are 

distinct variables; 

(c-3 body i for l<i<n is a term and only 
mentions free variables in x1, . . . , xk, 

Xi,k+la ’ - *’ Xi,ni; 

(D) there is a well-founded relation r and a 
measure function m of k arguments; and 

(E) for each occurrence of a subterm of form 
(fj 71  � * � yk� Yj,k +l� Yj,k +2# -* - l Y,,n ) l 

l<lln in the bodyi, l<i$r, 
1 

it Is a 
theorem that: 
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(DEFQ 
(EQUfi& X1 0.. Xk Xl,k+l -0. X1 n ) body11 

(EQUAL(fi x1 . . . xk x~,~+~ . . . I~‘~‘) body,) 
'2 

. . . 

(ALL--LIST (x 1 . . . xk xi k+i . . . xi n > , ' i 
(ALL--LIST (z, . . . zs> 

(IMPLIESUND t1 . . . tp) 
(r b yi . . . yk) Cm xi . . . ~~11111, 

where tl . . . tp are f,-free governing terms 
in the body, for l<t$r, and zi . . . zS are 
the governing variables which are free 
variables, excluding variables x1 . . . xk 

Xi,k+l . -* Xl,ni' in the governing terms or 

subterm cfj Yi . . . yk’ yj,k+l’ yj,k+2a . . . # 

The definition principle is to describe that n axioms constitute a 
recursive definition of some concept. N axioms of the form: (fl x1 . . . 

‘k 'l,k+l "- 'l,nl )= body,, (f2 x1 . . . xk ~~,~+r . . . x2 n )= body,, . . . . 

(f, x1 . . . xk ~~,~+r . . . xnn )= bodyn can be shown to ie recursive if, 
‘n 

according to the same measure m, the complexity of the arguments of 
every occurrence of f,, . . . . f, in any bodyi, assuming the hypotheses 
governing the occurrences in the body,, is less than the complexity of 
x1 . . . xn. The purpose of requirement (E) in the definition principle is 
to make recursive concepts terminate, and further, to avoid an 
inconsistency problem. Note that if n=l, then the principle of 
definition defines a self-recursive concept. 
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Example QO: 
(DEFQ 
(EQUAL(EVAL L ENVRN) 

(IF(LISTP L) 
(APPLY.suTm (CAR L) 

(E~AL.LIST(CDR L) 
L)) 

(EQUAL(EVAL.LIST L ENVRN) 
(IF(LISTP L) 

(CONSGVAL(CAR L) ENVRN) 
(EVAL.LIST(CDR L) ENVRN)) 

NIL) 11 

EN’WW > 

In example QO above, mutually recursive concepts will be admitted by 
the following instantiation of our definition principle. 

(4 f, is the function symbol EVAL; f9 is the function symbol 
EVAL.LIST. 

(B) 

(C) 

x1 is L, x2 is ENVRN, k is 2, n is 2, nl is 2, and n2 is 2. 

body1 is the term (IF(LISTP L) (APPLY.SUBR (CAR L) 
(EVAL.LIST(CDR L) ENVRN)) L), and body, is the term 
(IF(LISTP L) (CONS(EVAL(CAR L) ENVRN) 
(EVAL.LIST(CDR L) ENVRN)) NIL). 

W’) r is PLESSP and m is (LENGTH1 L ENVRN), where 
(LENGTH1 L ENVRN) is defined to be (LENGTH L). 
LENGTH is a primitive function for counting the elements 
in L. 

(El The following theorems are required in the definition 
principle: 

e For an occurrence (EVAL.LIST(CDR L) ENVRN) in 
the body of function EVAL, the governing term is 
(LISTP L). It is a theorem that (ALL 
L(lMPLIES(LISTP L)(PLESSP(LENGTH(CDR L)) 
(LENGTH L)))). 

o For an occurrence (EVAL.LIST(CDR L)ENVRN) in 
the body of function EVAL.LIST, the governing 
term is (LISTP L). It is a theorem that (ALL 
L(IMPLlES(LISTP L)(PLESSP(LENGTH(CDR 
L))(LENGTH L)))). 

o For an occurrence (EVAL(CAR L)ENVRN) in the 
body of function (EVAL.LIST L ENVRN), the 
governing term is (LISTP L). It is a theorem that 
(ALL L(IMPLlES(LISTP L)(PLESSP(LENGTH(CAR 
L))(LENGTH L)))). 

Suppose that (PART L C Ll L2) is true if Ll is a list of elements of L 
less than C, and L2 is a list of the rest of L. For example, suppose C is 
6 and L is a list (2 6 3 9 lo), then Ll is (2 3) and L2 is (6 9 10). The 
quick sort concept could be defined as follows. 

Example Ql: 
(DEFQ 
(EQ~~(Qs~RT.R z wi w2> 

(IF(LISTP Z> 
ax xm Y(IF(PART(CDR z) mm z> x Y) 

(M V(IF(QS0RT.R X WI (CONS(CAR Z> VI> 
(QSORT.R Y v w2) 
NIL)) 

NIL))) 
(EQUAL wi w2)))) 

In the predicate (QS0RT.R Z Wl W2), Z is an input list and the 
output is the difference list of Wl and W2, which is an ordered list 
Z. The QS0RT.R could be added to the system because (ALL Z(ALL 
Wl(ALL W2(ALL X (ALL Y&ALL V(IMPLIES(AND(LISTP 
Z)(PART(CDR Z)(CAR Z) X Y))(PLESSP(LENGTHl X WI 
(CONS(CAR Z)) V)(LENGTHl Z Wl W2))))))))) and (ALL Z(ALL 
Wl(ALL WZ(ALL X (ALL Y(ALL V(IMPLlES(AND(LISTP 
Z)(PART(CDR Z)(CAR Z) X Y))(PLESSP(LENGTHl Y V W2) 
V)(LENGTHl Z Wl W2))))))))) hold. 

III. A Generalized Structural Induction Principle 

A. Why Strong Induction Schemes are Needed 

Essentially mechanical induction reasoning works because the 
similarity could be contrived between the structures of the recursive 
definition functions and of the induction schemes. The structures of 
recursive functions serve as templates for automatically generating the 
suitable induction hypotheses to prove a conjecture involved with 
those recursive functions. However, there is often no structure 
similarity between mutually recursive functions and weak induction 
schemes provided in previous research. The finite number of 
hypotheses are needed to be specified explicitly in the weak induction 
schemes. Using these weak induction schemes often results in the 
generation of useless induction hypotheses for the conjecture involved 
with mutually recursive functions. A strong induction form will be 
shown to be needed and can be generated from the structures of 
mutually recursive concepts. In the strong induction schemes, the 
finite number of hypotheses are implicitly described by particular 
recursive concepts. 

An example will illustrate the problem in using weak induction 
schemes for hypothesis generation. Suppose we try to prove the 
conjecture (ALL L(EQUAL L(FO0 L))), where the mutually recursive 
functions are defined as follows. 

(DEFQ 
(EQUAL. (FOO L) 

(IF(LISTP L) 
(CONS(CAR L) (FOOLIST(CDR L))) 
L)) 

(EQUAL(FOOLIST L) 
(IF(LISTP L) 

(CONS(FOO(CAR L)) (F~OLIST(CDR ~1)) 
L))) 

Let (p L) be the term (EQUAL L FOO L)). In the weak induction 
schemes, the instantiated terms of I 
required to be explicitly described. 

p L) as induction hypotheses are 
Thus, the induction hypothesis, 

based on the weak induction scheme and the structure of (FOO L). 

its term (p L) in the proof by. induction, it will not look iike 
counterpart in the hypotheses, and the hypotheses will be useless. 

Even if we change these functions into a self-recursive 
an extra argument S as follows, our problem still exists. 

function with 

(DEFQ 
(EQU~~+(FOOS L s) 

(IF(EQUAL s 0) 
(IF(LISTP L) 

(CONS (CAR L) (FOOS(CDR L) I>> 
L) 

(IF(EQUAL s 11 
(IF(LISTP L) 

(CONS(FOOS(CAR L) 0) (FOOS(CDR L) 1)) 
L) 

NIL)))) 
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An induction scheme, following the weak induction principle, for the 
conjecture (ALL L(EQUAL L(FOOS L 0))) will be generated as (ALL 
LW'LWAWLISTP L)WWP (CDR WP (Cm W (P W, 
where (p L) is the term (EQUAL L(FOOS L 0)). In the base case, we 
need to prove (ALL L(lMPLIES(NOT(LISTP L))(p L))). However, if 
we open the term (FOOS L 0) in the conclusion (EQUAL LrFOOS L 
O)!, it will also not.look like its counterpart in thk hypothe&. Often 
this type of redefined self-recursive functions is hard to suggest right 
induction hypotheses in weak induction schemes, due to its unnatural 
recursion characteristics and certain sensitive switch arguments 
irrelevant to the measured arguments on which functions recurse. In 
this example, what is really needed in the hypothesis is the term 
(AND(LISTP L) (FOOLIST-IND (CDR L))), where (FOOLIST-IND L) 
and (FOO-IND L) are mutually defined as 

(EQUAL (FOO-IND L) 
(IF(LISTP L) 

(F~~LIsT-IND (CDR L)) 
T)), and 

(EQuAL(FooLIST-IND L) 
(IF(LISTP L) 

(AND (p(C;4RL)) (FOOLIST-IND (CDR ~1)) 
T)). 

Intuitively, the term (AND (LISTP L)(FOOLIST-IND (CDR L))) is 
actually ANDing the terms (LISTP L), (p (CAR (CDR L))), . . . . (p 
CADDDD...R L)) together by recursively opening up the term 
FOOLIST-IND (CDR L)). Th us, this hypothesis implicitly represents 

a series of instantiated conjectures and this induction form is actually 
a strong induction scheme. More importantly, there is an obvio& 
structural similarity between (FOO L) & (FOOLIST L) and (FOO- 
IND L) & (FOOLIST-IND L). Later on, we will give detailed 
descriptions of automatically cdnstructing the terms (FaOLIST-IND 
L) and (FOO-IND L) from mutually recursive concepts. (FOOLIST- 
IND (CDR L)) is obtained from the body of (FOO-IND L) since (FOO 
L 
L 

appears in the conjecture, and the corresponding term (FOO-IND 
suggests the possible induction hypotheses from the recursive 

structure of its body. 

B. A Comparison 
Schemes 

Between Weak and Strong Induction 

In the induction step of the weak induction scheme, we show that if X 
has the desired property at an arbitrarily liven Doint. then it also has 
the property at-the next higher point. WSippos;! X b a pair, then it 
can be constructed by applying CONS to two previously constructed 
objects, namely, (CAR X) and (CDR X). Thus, in the weak induction 
scheme, we prove that a certain property (P X) holds for all X by 
considering two cases. In the first case, called the base case, we prove 
that (P X) holds for all nonpair objects X. In the second case, called 
the induction step, we assume that X is a pair and that (P (CAR X)) 
and (P (CDR X)) hold, and prove that (P X) holds. 

On the other hand, in the strong induction scheme, we prove that a 
certain property (P X) holds for all X by considering two cases. In 
the first case, called the base case, we show that (P X) holds for all 
nonpair objects X. However, in the induction step, we assume that X 
is a pair and that (P (CAR X)), (P (CADR X)), . . . . and (P(CADDD . . . 
R X)) hold, and prove that (P X) holds. In other words, the induction 
step shows that if X has the desired property up to an arbitrarily 
given point, then it also has the property at the next higher point. For 
the convenience of mechanical induction, this series of hypotheses is 
represented as a recursive concept (Q X) defined to be (IF(LISTP 
X)(AND(P(CAR X))(Q(CDR X))) T). In the FOO example, we 
represent the hypothesis as (AND(LISTP X) (P*2 (CDR X )), where 
(P*2 X) is defined to be (IF(LISTP X)(AND(p (CAR X)) P*2(CDR 1 
X))) T). In the next section, we will show that the hypothesis can 
automatically be generated from mutually recursive functions by 
examining their structures. 

C. Hypothesis Terms 

Intuitively, hypothesis terms are those terms allowable to be 
instantiated as hypotheses in the strong induction schemes. These 
terms are quite powerful. They can implicitly represent a series of 
induction hypotheses in mechanical induction proof about the 
properties of mutually recursive concepts. A formal definition of 
hypothesis terms is described as follows. A subterm is a call of f in 
the term s if the subterm beginning with the function symbol f occurs 
in the term s. (P1 x1 . . . xII x”+~ . . . xJ, . . . . (Pd x1 . . . xI1 x~+~ . . . xt) are 
the hypothesis terms of f,, . . . . fd with P, replacing f,, . . . . fj l<j<cl, -- 
if 

1. f,, . . . . fd are the following mutually recursive functions 
based on a well-founded relation R and a measure function 
M of n arguments, 

(EQUAL(fl xi . . . xn x~+~ . . . x,> body& 
(EQUAL(f2 xi . . . xn x~+~ . . . xt> body& 
. . . , 
(EQUAL(fd xi . . . xn x~+~ . . . x,> bodyd); 

2. (PO x1 . . . xn, xn+l . . . xt) is a term; and 

3. (P1 x1 . . . xn xn+l . . . xJ, . . . . (Pd x1 . . . xn x~+~ . . . xt) are 
obtained in the following way. 

(EQUAL(Pi x1 . . . x,, x~+~ . . . x,) body'& 
(EQUAL(P2 x1 . . . xn x,,+~ . . . xt> body'& 
. . . , 
(EQUAL(Pd x1 . . . xn x~+~ . . . x,> body'& 

where body’i=(HT body,) for l<i<d and HT is -- 
recursively defined as follows: 

a. Suppose the term s has the form (ALL-EX(z) v), 
then (HT s)=(ALL-EX(z)(HT v)). 

b. Suppose the term s has the form (IF c u v).. Then 
(HT s)=(IF c (HT u)(HT v)) if the term c is fcfree, 
l<i$l; (HT s)=(IF (HT c)(HT u)(HT v)) otherwise. 

C. Suppose the term s is fcfree, l<i<d, then (HT 
s)=T. 

a. Suppose s’ is a term obtained by replacing every 
occurrence of fk (for l_<k<j) as a function symbol in 
the term s with the symbol P,, and by replacing 
every occurrence of fk (for j<k<d) as a function 
symbol in the term s with the symbol P,. Then (HT 
s)=(AND all calls of P,. for O<i<d in the term s’), 
if there is more than one call of Pi, or (HT s)= a 
call of P,. for O_<i<d in the term s’, if only one call 
exists. 

Example Q2:To find out the hypothesis terms of FOO and 
FOOLIST with P, replacing FOO. 

(EQUAL(P~ L) (IF~LISTP L) 
(p,#ZDR L)) 
T)) 

(EQUAL(P~ L) (IF~LISTP L) 
(AND (P, (CAR I-1 1 (P, (CDR I-1 > > 
T)) 

From the bodies of FOO and FOOLIST, the hypothesis terms (PI T,) 
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and (PZ L) are constructed as above. Symbol T comes from step 3(c). 
The term (AND(P,(CAR L))(P,(CDR L))) in the body of (P, L) is 
obtained by step 3(d) from the term 
L))(FOOLIST(CDR L) ) 

1 

(CONS(FO6 CAR 
in the body of (FOOLIST L). In step 3 d), t s’ 

is (CONS(Pu(CAR L)) P,(CDR L))), and (HT s)=(AND all calls of P,. 
for O<i<d in the tern s 3=(AND(P&CAR L))(P&CDR L))). 

(P, L) (IF (LISTP L) 
(P, (CDR L)) 
T)) 

A formal description of the generalized induction principle is 
contained in Appendix I. The key point in the generalized induction 
principle is to allow hypothesis terms, in addition to (PO x1 . . . xJ, to 
be instantiated in the induction hypothesis. This extension will make 
the strong induction forms possible in the hypotheses. The soundness 
proof of this principle was shown in [Liu 861. The principle extends 
the weak induction schemes [Bayer 791 [Brown&Liu 851 to include the 
strong one. While strong induction schemes are shown to have a close 
relationship to mutually recursive concepts, weak induction schemes 
are related to the self-recursive concepts. In the next section, we focus 
on strong induction schemes and interactions between strong and 
weak schemes. For the pure weak induction schemes, we refer the 
readers to prior work [Boyer 791 [Brown&Liu 851 [Brown 861 [Liu 861. 

D. Illustrations of Mixing Induction Hypotheses 

Once each induction scheme is suggested by any term in the 
conjecture, we begin to heuristically combine the individual schemes 
to synthesize the best one for the conjecture. Smooth interactions 
between induction schemes suggested by self-recursive and mutually 
recursive concepts are shown below in the synthesis of the final 
induction scheme. 

Suppose that we try to prove the conjecture (ALL L(EQUAL 
(FOOLIST L)(FOO L))). Note that it contains two mutually recursive 
concepts. Let (PO L) be (EQUAL(FOOLIST L)(FOO L)). (P, L) and 
(P2 L) are the hypothesis terms of (FOO L), (FOOLIST L) *with P, 
replacing FOO, FOOLIST. 

(EQUAL(P~ L) (IF(LISTP L) 
(PO (CDR L) 1 
T)) 

(EQUAL(P2 L) (IFCLISTP 
(AND 
T)) 

L1 
(PO (cm I-1) (PO (CDR 

Therefore, the induction scheme suggested by (FOO L) is: (ALL 
L(IMPLIES(AND(LISTP L)(P,, (CDR L)))(Pu L))), and the scheme 
suggested by (FOOLIST L) is: (ALL L(Ih4PLIES(AND(LISTP 
L)(AND(Pu(CAR L)) (P,(CDR L))))(P,L))). An interesting thing is 
shown in this case. Two mutually recursive concepts are supposed to 
suggest the strong induction schemes. However, since both concepts 
appear in the conjecture, the strong schemes are collapsed into the 
weak induction schemes. By merging these two induction hypotheses, 
we provide one induction step and one base case to cover all the 
relevant recursive aspects as follows. 

Base case: (ALL L(IMPLIES(NOT(LISTP L)) (PoL>>> 
Induction step : (ALL L (IMPLIES (AND (LISTP L) 

(AMD(Po (CAR L)) 
(P, (CDR L)))) 

(Po L))) 

In the second examnle. there are self-recursive and mutuallv recursive 
concepts in the conjkcture (ALL L(EQUAL(FO0 L)(COPY L))), where 
COPY L) is defined a~ (IF(LISTP L) (CONS (COPY(CAR L)) 
COPY(CDR L)) ) L). Let (P, L) be (EQUAL(FO0 L)(COPY L)). 

Thus, the weak induction scheme suggested by the function (COPY 
L) is: (ALL L(IMPLIES(AND(LISTP L)(AND (PO (CAR L))(Pu (CDR 
L)))) (Pa L))), and the strong induction scheme for the function (FOO 
L) is: (ALL L(IMPLIES(AND(LISTP L)(PZ (CDR L))) (PO L))), where 

(EQUAL(P~ L) (IFCLISTP L) 
(AND (PO (CAR L)) (P, (CDR L) > > 
T)) 

The final induction scheme is obtained by mixing one 
scheme and one weak induction scheme as follows. 

strong induction 

Base case: (ALL L(IMPLIES(NOT(LISTP L)) (P, L))) 
Induction step : (ALL L (IMPLIES (AND (LISTP L) 

(AND (P, (CDR L) > 
(AND (P, (CAR L) > 

(P()KDR L))))) 
(PoL) > > 

Once the above induction hypotheses are set up, the rest of the proofs 
will become straightforward. In the research [Bayer 791 [Liu 861, 
many heuristics are provided to manipulate the induction schemes 
and formulate the best one. 

IV. Conclusions 

A generalized induction principle is provided for the conjectures 
involved with both self-recursive and mutually recursive concepts. 
Mechanical induction under the principle could be used as a proof 
strategy for a theorem prover or logic program interpreter. Two 
results are shown in this paper for proving properties of recursive 
concepts: (1) mutually recursive concepts need to suggest strong 
induction hypotheses, and (2) the relationship between the strong 
induction scheme and the weak induction scheme in mechanical 
structural induction. 

Appendix I: A Formal Description of the Induction Principle 

Suppose : 

CA> Po is the term (p*O x1 . . . xn X n+i --* %) 
with t distinct free variables, l<nlt; 

(B) 1‘ is a well-founded relation; 

CC> m is a measure function of n arguments; 

(D> (p*l x1 . . . xn x~+~ . . . x,1, . . . . (p*d xi 
. . . X* %+I *** x,> are hypothesis terms of 
any given mutually recursive functions 
based on r and m with p*O replacing a 
subset of Cp*l, . . . . p*d); 

(E) bl, . . . , bk are non-negative integers; 

(F) for each i l<i<k, variables zi i, . . ., , 
=i.bi are distinct and different from x1, 

. . . , X n# xn+l. . . . I xc; 

CC> q,, . . . , qk are terms; 

(H) h,, . . . , h, are positive integers; and 

(I) for l<i<k and lSjlhls ?,j is a 
substitution and it is a theorem that 

(ALL--LIST (x, . . . x,> (ALL--LIST(z, i . . . zi b > 
’ i 

(IMPLIES q, 
(r(m x1 . . . xn>/si,j(m x1 . . . x,)1)>). 
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Then 
(A). (ALL--LIST (x1 . . . x,1 pO) is a theorem if 

for the base case, 
(ALL--LIST$ . . . x,) 

(IMPLIES (AND (NOT (ALL--MI (zi 1 . . . 
, zl,blw) 

. . . 
(NOT(ALL-_E$(zk,i . . . zk b )q,>))' 

' k 
P*) ) 

is a theorem and 

for each l<ilk induction step, 
(ALL-LIST(x, . . . x,> 

(IMPLIES ~LL--EX,(Z~ 1 . . . zl b 1 , ' i 
(AND q, p is1 /s~,~ . . . Pi’hi/s, h >I2 

l i 

Po) ) 
is a theorem. 

(E), (M--LIST (xi . . . x,1 po) is a theorem if 

for the base case, 
&X-LIST(xl . . . x,) 

(AND (AND (NOT(ALL--M1 (z, i . . . zi b ) q,) > , ’ 1 

(hi w-L--~ (z,, l . . . zk,b,> q$ > 1 

Po) ) 
is a theorem or 

for some l<i<k induction step, 
(EX-LIST(xl . . . xc> 

is .a theorem. 
Po) ) 

We now illustrate an application of this induction principle to prove 
the conjecture (ALL L(EQUAL L(FO0 L))). The induction is obtained 
by the following instantiation of this principle. p, is the term (p*O L) 
defined as (EQUAL L(FO0 L)); (p*l L) and (p*2 L) are the 
hypothesis terms of FOO and FOOLIST with p*O replacing FOO; r is 
a well-founded relation PLESSP; m is LENGTH; n is 1; t is 1; k is 1; 
b, is 0; x1 is L; q, is the term (LISTP L); h, is 1; s1 1 is {<L, (CDR 

>}; and one theorem required by (I) is: (ALL L(IMPLIES (LISTP 
(CDR L))(LENGTH L)))). Thus, the base csse 

and the induction step produced by this induction principle are (ALL 
L (IMPLIES (NOT (LISTP Lj) (p*O L))) and (ALL L (IMPLIES 
(LISTP L) (p*2(CDR L))) (p 0 L))). The soundness of (A) and 
this induction principle has been proved [Liu 861. The proof needs two 

* important properties that hypothesis terms preserve: (1) They satisfy 
the function definition principle based on the same R and M, since 
governing conditions remain unchanged after translation, and (2) Let 
<Xl . . . Xt> be a t-tuple in the domain of Dt. If (PO Yl . . . Yt) is not 

'ALL EX1, . . . . ALL-EXk could be any sequence of mixed quantifiers. 

2piJ . . . x x , .*-, piphi are chosen from any member of {(p*O xl n n+l ... x,), (P*l 

x1 . . . xn x”+l . . . x,), . . . . (P*d x1 . . . xn xo+l . . . x,)). 
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false for every t-tuple <Yl . . . yt> 
smaller than <Xl . . . Xt>, then (Pi 

in the 
Yl . . . 

domain of Dt that is RM- 
Yt) lli<d should not be 

false for such t-tuples. RM is the well-founded relation defined on 
n-tuples by (RM <Zl . . . Zn><Yl . . . Yn>)=(R (M Zl . . . Zn)(M Yl 
. . . Yn)). 
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