From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

A New Structural Induction Scheme for
Proving Properties of Mutually Recursive Concepts

Peiya Liu
Siemens Research and Technology Laboratories
105 College Road East
Princeton, NJ 08540
Tel:609-7343349

ABSTRACT

Structural induction schemes bhave been wused for
mechanically proving properties of self-recursive concepts in
previous research. However, based on those schemes, it
becomes very difficult to automatically generate the right
induction hypotheses whenever the conjectures are involved
with mutually recursive concepts. This paper will show
that the difficulties come mainly from the weak induction
schemes provided in the past, and a strong induction
scheme is needed for the mutually defined concepts.
Furthermore, a generalized induction principle is provided
to smoothly integrate both schemes. Thus, in this
mechanical induction, hypotheses are generated by mixing
strong induction schemes with weak inductions schemes.
While the weak induction schemes are suggested by self-
recursive concepts, the strong induction schemes are
suggested by mutually recursive concepts.

I. Introduction

There are currently two good ways of programming based on formal
logic, namely: (1) programs based on recursive functions, such as
LISP, and (2) programs based on non-negative recursive relations,
such as PROLOG. Structural induction schemes have been provided
for proving properties of self-recursive functions [Bourbaki
68] [Burstall 60] [Brotz 74] [Boyer 75] [Aubin 76] [Cartwright
76] [Boyer 79] and of self-recursive relations [Clark 77] [Brown&Liu
85| [Brown 86] [Liu 86]. Both schemes are applicable to recursively
defined data objects such as natural numbers, lists, and trees [Hoare
75] [Boyer 79]. However, it is hard to apply these schemes to mutually
recursive functions and relations. In this paper, a new structural
induction scheme is introduced for proving properties of mutually
recursive concepts. In addition, we show that the new scheme can be
smoothly integrated with the old scheme in a generalized structural
induction principle.

II. Self-Recursive and Mutually Recursive Concepts

Before formally stating the recursive concepts, some definitions are
necessary. S is a ferm if it is a variable, a sequence of a function
symbol of n arguments followed by n terms, or a sequence of a
universal quantifier ALL or existential quantifier EX of two
arguments followed by a variable and a term. The scope of a
quantifier occurring in the term is the subterm to which the quantifier
applies. For example, the scope of the quantifier ALL in the term
(ALL X(FOO X Y)) is (FOO X Y). A variable is free in the term if at
least one occurrence of it is not within the scope of a quantifier
employing the variable. A term t governs an occurrence of term s if
either there is a subterm (IF t p q) and the occurrence of s is in p, or
there is a subterm (IF t’ p q) and the occurrence of s in g, where t is
(NOT t’). A term is f-free if the symbol f does not occur in the term
as a function symbol. (ALL _LIST (x, ... x) p) is an abbreviation for

(ALL x,(ALL x,(... (ALL x, P (EX_LIST(xl - x) p) for (EX
x,(EX X,(. (EX %, p)))); and (ALL_EX (x, ... x,) p) for a sequence of
n mixed quantifiers over p, its negated form (EX_ALL (x, ... x JINOT

p)). NIL is considered to be false and T denotes true. The symbols
EQUAL and IF are two primitive operators. Informally speaking, if X
is NIL, then (IF X Y Z) is equal to Z, and if X is not NIL, then (IF X
Y Z) is equal to Y. The logic operators AND, IMPLIES, OR, and
NOT can also be represented by IF formulae.

The recursive concepts are formally defined as follows.

144 Automated Reasoning

Ruey-Juin Chang
Artificial Intelligence Laboratory
The University of Texas at Austin

Austin, TX 78712

CS.CHANGQ@QUTEXAS-20

(DEFQ
(EQUAL(f1 Xy oo X Xy poy o xl,nl) body,)

(EQUAL(f, x, ... x, Xg 1 xz'nz) body,)

e X,

(EQUAL(f, x

A k& ¥nk+1 ** Xon) body)), where
n
@ f

1 --- f, are new function symbols of n,

- b, arguments, respectively, and 1<k<n,
for 1<1<n;

® x ... x, Xy gagr e le11 for 1<i<n are
distinct variables;

() body, for 1<i<m 1is a term and only
mentions free variables in Xyo e Xy,
X perr oo xi'ni;

(D) there is a well-founded relation r and a
measure function m of k arguments; and

(E) for each occurrence of a subterm of form
€y ¥y o0 T Fyxerr Vyxe2e » ¥y
1<j<n 1in the body,, 1<i<n, it is a
theorem that:

(ALL__LIST (x1 v Xy Xy gy e xi,ni)
(ALL_LIST (z, ... z)
(IMPLIES(AND t1 ... tp)
@y, ... y) @ X ... %000,
where t1 . tp are f -free governing terms
in the body, for 1<t<n, and zy ... zg are

s
the governing variables which are free

variables, excluding variables x, X,
Xy ket o xi.ni' in the governing terms or
subterm (f:l A Yoo Tyenr Vykear -0
yj'nj).

The definition principle is to describe that n axioms constitute a
recursive definition of some concept. N axioms of the form: (f, x, ...

LR S xl,n1)= bodyl, (f2 Xy e Xp Koy g o xz’n2)= body2, ey

{f

n Xy Xy Xpjert xn’nn)= bodyll can be shown to be recursive if,

according to the same measure m, the complexity of the arguments of
gvery occurrence of fl’ ey fn in any bodyi, assuming the hypotheses
governing the occurrences in the body;, is less than the complexity of
Xy e X The purpose of requirement (E) in the definition principle is

to make recursive concepts terminate, and further, to avoid an
inconsistency problem. Note that if n=1, then the principle of
definition defines a self-recursive concept.

Example QO:
(DEFQ
(EQUAL (EVAL L ENVRN)
(IF (LISTP L)
(APPLY.SUBR (CAR L)
(EVAL.LIST(CDR L) ENVRN))
L))
(EQUAL (EVAL.LIST L ENVRN)
(IF(LISTP L)
(CONS (EVAL (CAR L) ENVRN)
(EVAL.LIST(CDR L) ENVRN))
NIL)))

In example Q0 above, mutually recursive concepts will be admitted by
the following instantiation of our definition principle.

(A) fl is the function symbol EVAL; f_ is the function symbol
EVAL.LIST.

(B) xlisL,xzisENVRN,kis2,ni52,nlis2,andn2i32.

(C) body, is the term (IF(LISTP L) (APPLY.SUBR (CAR L)
(EVAL.LIST(CDR L) ENVRN)) L), and body, is the term

(IF(LISTP 1) (CONS(EVAL{CAR L) ENVRN)
(EVAL.LIST(CDR L) ENVRN)) NIL).

(D) r is PLESSP and m is (LENGTH: L ENVRN), where
(LENGTH1 L ENVRN) is defined to be (LENGTH L).
LENGTH is a primitive function for counting the elements
in L.

(E) The following theorems are required in the definition
principle:

o For an occurrence (EVAL.LIST(CDR L) ENVRN) in
the body of function EVAL, the governing term is
(LISTP L). It is a theorem that (ALL
L(IMPLIES(LISTP L)(PLESSP(LENGTH(CDR L))
(LENGTH L)))).

o For an occurrence (EVAL.LIST(CDR L)ENVRN) in
the body of function EVAL.LIST, the governing
term is (LISTP L). It is a theorem that (ALL
L(IMPLIES(LISTP L)(PLESSP(LENGTH(CDR
L))(LENGTH L)))).

e For an occurrence (EVAL{CAR L)ENVRN) in the
body of function (EVAL.LIST L ENVRN), the
governing term is (LISTP L). It is a theorem that
(ALL L{IMPLIES(LISTP L)(PLESSP(LENGTH(CAR
L)(LENGTH L)))).

Suppose that (PART L C L1 L2} is true if L1 is a list of elements of L
less than C, and L2 is a list of the rest of L. For example, suppose C is
6 and L is a list (2 6 3 9 10), then L1 is (2 3) and L2 is (6 ¢ 10). The
quick sort concept could be defined as follows.

Example Q1:
(DEFQ
(EQUAL(QSORT.R Z W1 W2)
(IF (LISTP Z)
(EX X(EX Y(IF(PART(CDR Z)(CAR Z) X Y)
(EX V(IF(QSORT.R X Wi (CONS(CAR Z) V))
(QSORT.R Y V W2)
NIL))
NIL)))
(EQUAL W1 W2))))

In the predicate (QSORT.R Z W1 W2), Z is an input list and the
output is the difference list of W1 and W2, which is an ordered list
Z. The QSORT R could be added to the system because (ALL Z(ALL
WIALL W2(ALL X (ALL Y(ALL V(IMPLIES(AND(LISTP
Z)}(PART(CDR Z)SCAR Z) X Y))PLESSP(LENGTH1I X W1
(CONS(CAR Z)) V)(LENGTH1 Z W1 W2))))))))) and (ALL Z(ALL
WIALL W2(ALL X (ALL Y(ALL V(IMPLIES(AND(LISTP
Z)(PART(CDR Z)(CAR Z) X Y))PLESSP(LENGTHI Y V W32)
V)(LENGTH1 Z W1 W2)))}))))) hold.

III. A Generalized Structural Induction Principle

A. Why Strong Induction Schemes are Needed

Essentially mechanical induction reasoning works because the
similarity could be contrived between the structures of the recursive
definition functions and of the induction schemes. The structures of
recursive functions serve as templates for automatically generating the
suitable induction hypotheses to prove a conjecture involved with
those recursive functions. However, there is often no structure
similarity between mutually recursive functions and weak induction
schemes provided in previous research. The finite number of
hypotheses are needed to be specified ezplicitly in the weak induction
schemes. Using these weak induction schemes often results in the
generation of useless induction hypotheses for the conjecture involved
with mutually recursive functions. A strong induction form will be
shown to be needed and can be generated from the structures of
mutually recursive concepts. In the strong induction schemes, the
finite number of hypotheses are implicitly described by particular
recursive concepts.

An example will illustrate the problem in using weak induction
schemes for hypothesis generation. Suppose we try to prove the
conjecture (ALL L(EQUAL L(FOO L))), where the mutually recursive
functions are defined as follows.

(DEFQ
(EQUAL (FOO L)
(IF (LISTP L)
(CONS(CAR L) (FOOLIST(CDR L)))
L))
(EQUAL (FOOLIST L)
(IF(LISTP L)
(CONS (FOO (CAR L)) (FOOLIST(CDR L)))
L))

Let (p L) be the term (EQUAL L(FOO L)). In the weak induction
schemes, the instantiated terms of (p L) as induction hypotheses are
required to be explicitly described. Thus, the induction hypothesis,
based on the weak induction scheme and the structure of (FOO L),
could be (AND(LISTP L)(p (CDR L)z), (AND(LISTP L)(p (CAR L)),
or (AND(LISTP L)(AND(p (CAR L)){p(CDR L)))), where (p (CAR L})
is the term (EQUAL (CAR L)(FOO (CAR L))), and (p (CDR L)) is the
term (EQUAL (CDR L)(FOO (CDR L))). However, if we open the
term (p L) in the proof by induction, it will not look like its
counterpart in the hypotheses, and the hypotheses will be useless.

Even if we change these functions into a self-recursive function with
an extra argument S as follows, our problem still exists.

(DEFQ
(EQUAL (FOOS L S)
(IF (EQUAL S 0)
(IF (LISTP L)
(CONS (CAR L) (FOOS(CDR L) 1))
L)
(IF(EQUAL S 1)
(IF(LISTP L)
(CONS (FOOS (CAR L) 0) (FOOS(CDR L) 1))
L)
NIL))))

Liu and Chang 145

An induction scheme, following the weak induction principle, for the
conjecture (ALL L{EQUAL L{FCOS L 0))) will be generaied as {ALL
L(IMPLIESEAND(LISTP LYAND(p (CDR L))(p (CAR L})))) (p L)),
where (p L) is the term (EQUAL L(FOOS L 0)). In the base case, we
need to prove (ALL L{IMPLIES(NOT(LISTP L))(p L))). However, if
we open the term (FOOS L 0) in the conclusion (EQUAL L(FOOS L
0)), it will also not look like its counterpart in the hypothesis. Often
this type of redefined self-recursive functions is hard to suggest right
induction hypotheses in weak induction schemes, due to its unnatural
recursion characteristics and certain sensitive switch arguments
irrelevant to the measured arguments on which functions recurse. In
this example, what is really needed in the hypothesis is the term
(AND(LISTP L) (FOOLIST-IND (CDR L))), where (FOOLIST-IND L)
and (FOO-IND L) are mutually defined as

TrAY Friee mare

(EQUAL (FGO~IND L)
(IF (LISTP L)
(FOOLIST-IND (CDR L))
T)), and

(EQUAL (FOOLIST-IND L)
(IF (LISTP L)
(AND (p (CAR L)) (FOOLIST-IND (CDR L)))
™).

Intuitively, the term (AND (LISTP L)(FOOLIST-IND (CDR L)) is
actually ANDing the terms (LISTP L), (p (CAR (CDR L)), ..., {p
(CADDDD..R L)) together by recursively opening up the term
(FOOLIST-IND (CDR L)). Thus, this hypothesis implicitly represents
a series of instantiated conjectures and this induction form is actually
a strong induction scheme. More importantly, there is an obvious
structural similarity between (FOO L) & (FOOLIST L) and (FOO-
IND L) & (FOOLIST-IND L). Later on, we will give detailed
descriptions of automatically constructing the terms (FOOLIST-IND
L) and (FOO-IND L) from mutually recursive concepts. {FOOLIST-
IND (CDR L)) is obtained from the body of (FOO-IND L) since (FOO
L) appears in the conjecture, and the corresponding term (FOO-IND
L) suggests the possible induction hypotheses from the recursive
structure of its body.

B. A Comparison Between Weak and Strong Induction
Schemes

In the induction step of the weak induction scheme, we show that if X
has the desired property at an arbitrarily given point, then it also has
the property at the next higher point. Suppose X is a pair, then it
can be constructed by applying CONS to two previously constructed
objects, namely, (CAR X) and (CDR X). Thus, in the weak induction
scheme, we prove that a certain property (P X) holds for all X by
considering two cases. In the first case, called the base case, we prove
that (P X) holds for all nonpair objects X. In the second case, called
the induction step, we assume that X is a pair and that (P (CAR X))
and (P (CDR X)) hold, and prove that (P X) holds.

On the other hand, in the strong induction scheme, we prove that a
certain property (P X) holds for all X by considering two cases. In
the first case, called the base case, we show that (P X) holds for all
nonpair objects X. However, in the induction step, we assume that X
is a pair and that (P (CAR X)), (P (CADR X)), ..., and (P(CADDD ...
R X)) hold, and prove that (P X} holds. In other words, the induction
step shows that if X has the desired property up to an arbitrarily
given point, then it also has the property at the next higher point. For
the convenience of mechanical induction, this series of hypotheses is
represented as a recursive concept (Q X) defined to be (IF(LISTP
X)(AND(P(CAR X))(Q(CDR X))) T). In the FOO example, we
represent the hypothesis as (AND(LISTP X) (P*2 (CDR Xz)), where
(P*2 X) is defined to be (IF(LISTP X)(AND(p (CAR X))(P*2(CDR
X))) T). In the next section, we will show that the hypothesis can
automatically be generated from mutually recursive functions by
examining their structures.

146 Automated Reasoning

C. Hypothesis Terms

Intuitively, hypothesis terms are those terms allowable to be
instantiated as hypotheses in the strong induction schemes. These
terms are quite powerful. They can implicitly represent a series of
induction hypotheses in mechanical induction proof about the
properties of mutually recursive concepts. A formal definition of
hypothesis terms is described as follows. A subterm is a call of f in
the term s if the subterm beginning with the function symbol f occurs
in the terms. (P, x, ... Xy KoL X)), ey (Pd Xy e Xy Xy x,) are

the hypothesis terms of f,, ..., £, with Pc replacing {,, ..., fj 1<j<d,
if

1. fl’ ey 4 are the following mutually recursive functions

based on a weli-founded reiation R and a measure function
M of n arguments,

(EQUAL(f, x, ... x, X, ... X)) body,),
(EQUAL(f, x, ... X X1 - %) body,),
(EQUALCE, x; ... X, X ., ... X.) bodyy);

2. (l:’0 Xy oo Xy X4y e xt) is a term; and

3. (P x; o xp Xpgp o Xgh oo Py xp o x) X g - %) are
obtained in the following way.
(EQUALCP, x, ... x X ., ... X)) body')),
(EQUAL(P, X, ... X X ., - X.) body’,),

(EQUAL(Py x, ... X X x,) body’,),
where body’=(HT body,) for 1<i<d and HT is

recursively defined as follows:

a. Suppose the term s has the form (ALL_EX(z) v),
then (HT s)=(ALL_ EX(z)(HT v)).

b. Suppose the term s has the form (IF ¢ u v).. Then
(HT s)=(IF ¢ (HT u)(HT v)) if the term c is fAree,
1<i<d; (HT s)=(IF (HT ¢)(HT u)(HT v)) otherwise.

c. Suppose the term s is fi-free, 1<i<d, then (HT
s)=T.

d. Suppose s’ is a term obtained by replacing every
occurrence of f. (for 1<k<j) as a function symbol in

the term s with the symbol P,, and by replacing
every occurrence of f, (for j<k<d) as a function
symbol in the term s with the symbol P,. Then (HT
8)==(AND all calls of P, for 0<i<d in the term '),
if there is more than one call of P, or (HT s)= a
call of P‘. for 0<i<d in the term s’, if only one call
exists.

Example Q2:To find out the hypothesis terms of FOO and
FOOLIST with P0 replacing FOO.

(EQUAL(P, 1) (IF(LISTP L)
(P,(CDR L))

T))
(EQUAL(P, L) (IF(LISTP L)

(AND (P, (CAR L)) (P,(CDR L)))
T))

From the bodies of FOO and FOOLIST, the hypothesis terms (P, L)

and (P, L) are constructed as above. Symbol T comes from step 3(c).
The term (AND(PO(CAR L))(P2(CDR L))) in the body of P,L)is
obtained by step 3(d) from the term (CONS(FOO(CAR
L))(FOOLIST(CDR L)H) in the body of (FOOLIST L). In step 3(d), s’
is (CONS(P,(CAR L))(P,(CDR L))), and (HT s)=(AND ail calls of P,
for 0<i<d in the term s')=(AND(P (CAR L))(P,(CDR L))).

A formal description of the generalized induction principle is
contained in Appendix I. The key point in the generalized induction
principle is to allow hypothesis terms, in addition to (Po Xy o xt), to

be instantiated in the induction hypothesis. This extension will make
the strong induction forms possible in the hypotheses. The soundness
proof of this principle was shown in [Liu 86]. The principle extends
the weak induction schemes [Boyer 79] [Brown&Liu 85] to include the
strong one. While strong induction schemes are shown to have a close
relationship to mutually recursive concepts, weak induction schemes
are related to the self-recursive concepts. In the next section, we focus
on strong induction schemes and interactions between strong and
weak schemes. For the pure weak induction schemes, we refer the
readers to prior work [Boyer 79] [Brown&Liu 85] [Brown 86] [Liu 86}.

D. Illustrations of Mixing Induction Hypotheses

Once each induction scheme is suggested by any term in the
conjecture, we begin to heuristically combine the individual schemes
to synthesize the best one for the conjecture. Smooth interactions
between induction schemes suggested by self-recursive and mutually
recursive concepts are shown below in the synthesis of the final
induction scheme.

Suppose that we try to prove the conjecture (ALL L(EQUAL
(FOOLIST L)FOO L))). Note that it contains two mutually recursive
concepts. Let (P L) be (EQUAL(FOOLIST L)(FOO L)). (P, L) and
(P2 L) are the hypothesis terms of (FOO L), (FOOLIST L) with P,
replacing FOO, FOOLIST.

(EQUAL (P, L) (IF(LISTP L)
(P, (CDR L))
)

(EQUAL(P2 L) (IF (LISTP L)

(AND (P, (CAR L)) (P, (CDR L)))

)
Therefore, the induction scheme suggested by (FOO L) is: (ALL
L(IMPLIES(AND(LISTP L)P, (CDR L))(P, L)), and the scheme
suggested by (FOOLIST L) is: (ALL L(IMPLIES(AND(LISTP
L)(AND(P (CAR L)) (P(CDR L))))(P L)))- An interesting thing is
shown in this case. Two mutually recursive concepts are supposed to
suggest the strong induction schemes. However, since both concepts
appear in the conjecture, the strong schemes are collapsed into the
weak induction schemes. By merging these two induction hypotheses,

we provide one induction step and one base case to cover all the
relevant recursive aspects as follows.

Base case: (ALL L(IMPLIES(NOT(LISTP L)) (POL) »
Induction step: (ALL L(IMPLIES(AND(LISTP L)
(AND (PO (CAR L))
(P, (CDR L))))
®, L))
In the second example, there are self-recursive and mutually recursive
concepts in the conjecture (ALL L{EQUAL(FOO L)(COPY L))), where

§COPY L) is defined as (IF(LISTP L) (CONS (COPY(CAR L))
COPY(CDR L))) L). Let (P, L) be (EQUAL(FOO L)(COPY L)).

Thus, the weak induction scheme suggested by the function (COPY
L)is: (ALL LIMPLIES(AND(LISTP L)AND (P, (CAR L))(P, (CDR

L)) ®, L)), and the strong induction scheme for the function (FOO
L)is: (ALL L(IMPLIES(AND(LISTP L)(P, (CDR L))) (P, L)), where

(EQUAL (P, L) (IF(LISTP L)
(P, (CDR L))
T))
(EQUAL (P, L) (IF(LISTP L)
(AND (P, (CAR L)) (P,(CDR L)))
™)

The final induction scheme is obtained by mixing one strong induction
scheme and one weak induction scheme as follows.

Base case: (ALL L(IMPLIES(NOT(LISTP L)) (P, L)))
Induction step: (ALL L(IMPLIES(AND(LISTP L)
(AND (P, (CDR L))
(AND (P, (CAR L))
(P, (CDR L)))))
(P,L)))

Once the above induction hypotheses are set up, the rest of the proofs
will become straightforward. In the research [Boyer 79| [Liu 86},
many heuristics are provided to manipulate the induction schemes
and formulate the best one.

IV. Conclusions

A generalized induction principle is provided for the conjectures
involved with both self-recursive and mutually recursive concepts.
Mechanical induction under the principle could be used as a proof
strategy for a theorem prover or logic program interpreter. Two
results are shown in this paper for proving properties of recursive
concepts: (1) mutually recursive concepts need to suggest strong
induction hypotheses, and (2) the relationship between the strong
induction scheme and the weak induction scheme in mechanical
structural induction.

Appendix I: A Formal Description of the Induction Principle

Suppose:
(A) p, is the term (p*0 X, ... X X ., ... X.)
with t distinct free variables, 1<n<t%;
(B) r 1s a well-founded relation;
(C) m is a measure function of n arguments;
(D) (p*1 L P A xt_), ..., (pxd x,
X, Xp. x,) are hypothesis terms of

any given mutually recursive functions
based on r and m with p*0 replacing a

subset of {p*1, ., p*d};
(E) by, ..., b, are non-negative integers;
(F) for each i 1<i<k, variables Zygs s
zi'b1 are distinct and different from x,,
T S
@) q,, -, q, aTe terms;
h,, ., by are positive integers; and

i

(1) for 1<i<k and 1<j<h,, s f is a
substitution and it is a theorem that

(ALL__LIST (x, ... x,)(ALL_LIST(z, , ... zi'bi)
(IMPLIES q,
amx ... xn>/51,](m X, ... x2))).

Liu and Chang 147

Then

(A). (ALL_LIST (x, ... X.) p,) is a theorem if

for the base case,
(ALL__LIST(x, ... X}
(IMPLIES (AND (NOT(ALL_EX, (z, , ... z, ,)q,))
. .by

(NOT(ALL_EX, (z, , ...

Py)?
is a theorem and

1
2,5)02

for each 1<i<k induction step,
(ALL__LIST(x, ... x.)

(IMPLIES (ALL_EX,(z, , -.. 2, ,)

1.by
(aND q, p"l/sL1
Py)?

i,h 2
P l/si'hi))

is a theorem.

(E). (EX_LIST (x, ... X)) p,) is a theorem if

for the base case,
(EX__LIST (x1 e xt)

(AND (AND(I\IOT(ALL__EXi(zL1 zi,bl)ql))

(NOT(ALL_EX, (z, , ...
py))

2y,)80

is a theorem or

for some 1<i<k induction step,

(EX__LIST(x, ... X)
(AND (ALL_EX,(z, , ... 2, ,)
. by
(AND q, (NOT p)/sy , ... (NOT pMM)/s, ,))
pg))

is a theorem.

‘We now illustrate an application of this induction principle to prove
the conjecture (ALL L(EQUAL L(FOO L))). The induction is obtained
by the following instantiation of this principle. p, is the term (p*0 L)

defined as (EQUAL L(FOO L)); (p*1 L) and (p*2 L) are the
hypothesis terms of FOO and FOOLIST with p*0 replacing FOO; r is
a well-founded relation PLESSP; m is LENGTH; nis 1; tis 1; k is 1;
bl i50;x, is L q is the term (LISTP L); h is Lis; is {<L, (CDR
L)>}; and one theorem required by (I) is: (ALL L{IMPLIES (LISTP
LYPLESSP(LENGTH (CDR L))(LENGTH L)))). Thus, the base case
and the induction step produced by this induction principle are (ALL
L (IMPLIES (NOT (LISTP L)) (p*0 L))) and (ALL L (IMPLIES %AND
(LISTP L) (p*2(CDR L))) (p*0 L))). The soundness of (A} and (E) in
this induction principle has been proved [Liu 86]. The proof needs two
important properties that hypothesis terms preserve: (1) They satisfy
the function definition principle based on the same R and M, since
governing conditions remain unchanged after translation, and (2) Let

<X1 ... Xt> be a t-tuple in the domain of D%, If (P, Y1 ... Yt) is not

1ALL_EX1, . ALL__E)(k could be any sequence of mixed quantifiers.
24,1 ih. * *
p"", ..., P i are chosen from any member of {(p*0 Xp e Xy Xp g xt), (r*1
*
Xy o Xy Xpg e xt)' .y (P*d Xq o X Xp g o xc)}'

148 Automated Reasoning

false for every t-tuple <Y1 ... Yt> in the domain of D that is RM-
smaller than <X1 ... Xt>, then (P, Y1 ... Yt) 1<i<d should not be

false for such t-tuples. RM is the well-founded relation defined on
n-tupl)e)zs by (RM <Z1 ... Zn><Y1 ... Yo>)=(R M Z1 ... Zn)(M Y1
... Yn)).

References

[Aubin 76} Aubin, R.
Mechanizing Structural Induction, Ph.D. Thesis.

The University of Edingburgh , 1976.

[Bourbaki 68] Bourbaki, N.
Elements of Mathematics Theory of Sets.
Addison-Wesley, Reading, 1968.

Boyer, R.S., and J S. Moore.
Proving Theorems about LISP Functions.
Journal of ACM 22(1), 1975.

[Boyer 75}

[Boyer 79] Boyer, R.S., and J S. Moore.
A Computational Logic.

New York, Academic Press, 1979.

Brotz, D.

Proving Theorems by Structural Induction, Ph.D.
Thesis.

Stan ford University , 1974.

Brown, F. M.

An Experimental Logic Based on the Fundamental
Deduction Principle.

AT Journal 30(2), 1986.

[Brown&Liu 85] Brown, F. and P. Liu.
A Logic Programming and Verification System for
Recursive Quantificational Logic.
Proceedings of IJCAI-85, Los Angeles , 1985.

Burstall, R.

Proving Properties of Programs by Structural
Induction.

Computer Journal 12(1), 1969.

[Cartwright 76] Cartwright, R.
A Practical Formal Semantic Definition and
Verification System for Typed LISP, Ph.D.
Thesis.
Stan ford University , 1976.

[Brotz 74]

[Brown 86]

[Burstall 69]

[Clark 77] Clark, K. L. and S-A Tarnlaund.
A First Order Theory of Data and Programs.
IFIP 77, North Holland , 1977.

[Hoare 75] Hoare, C.A.R.

Recursive Data Structures.
International Journal of Computer and
In formation Sciences 4(2), 1975.

[Liu 86] Liu, P.
A Logic-based Programming System, Ph.D. Thesis.
Department of Computer Sciences, The University
of Tezas at Austin , 1986.

