
Robert D. McCartney 
Department of Computer Science 

Brown University 
Providence, Rhode Island 02912 

Abstract 
This paper describes MEDUSA, an experimental al- 
gorithm synthesizer. MEDUSA is characterized by its 
top-down approach, its use of cost-constraints, and its 
restricted number of synthesis methods. Given this 
model, we discuss heuristics used to keep this process 
from being unbounded search through the solution 
space. The results indicate that the performance cri- 
teria can be used effectively to help avoid combinato- 
rial explosion. The system has synthesized a number 
of algorithms in its test domain (geometric intersec- 
tion problems) without operator intervention. 

o Synthesis should be done without user intervention 

Algorithms will be produced to meet some given per- 
formance constraints 

o The synthesizer should be reasonably efficient, i.e., it 
should be considerably better than exhaustive search. 

Algorithm synthesis in general is very difficult; it requires 
large amounts of domain and design knowledge, and much 
of design appears to be complex manipulations and intu- 
itive leaps. We have attempted to circumvent these prob- 
lems by working with a restricted set of synthesis methods 
in a restricted domain. The underlying hypothesis is that 
a fairly restricted set of methods can be used to produce 
algorithms with clean design and adequate (if not optimal) 
performance. 

The domain to develop and test MEDUSA is pla- 

nar intersection problems from computational geometry. 
This domain has a number of characteristics that make it 
a good test area: 

Nearly all objects of interest are sets, so most algorith- 

mic tasks can be defined in terms of set primitives. 

f This work owes a lot to the continuing support, encouragement. 
and advice of Eugene Char&k, and has been supported in part by 
the Office of Naval Research under grant N00014-79-C-0529 

There exist a number of tasks that are not very hard 

( i.e. linear to quadratic complexity); algorithms in 
this range are practical for reasonably large problems. 

Although all of the objects are ultimately point sets, 
most can be described by other composite structures 
(e.g. lines, planar regions), so object representation is 
naturally hierarchical. 

Problems in this domain are solvable by a variety of 
techniques, some general and some domain-specific. 
Choosing the proper technique from a number of pos- 
sibilities is often necessary to obtain the desired per- 
formance. 

The test problems (with associated performance con- 
straints) used in developing this system are given in ta- 
ble 1. These problems have many similarities (minimiz- 
ing the amount of domain knowledge needed), but differ 
enough to demand reasonable extensibility of techniques. 
MEDUSA is implemented in LISP. It uses and modifies a 
first-order predicate calculus database using the deductive 
database system DUCK. [7]. The database contains knowl- 
edge about specific algorithms, general design techniques, 
and domain knowledge, and is used as a scratchpad during 
synthesis. Useful DUCK features include data dependen- 
cies, datapools, and a convenient bi-directional LISP inter- 
face. 

. esis C@SS 
The synthesis process is characterized by three features: 
it proceeds top-down, it is cost-constrained, and subtasks 
can only be generated in a small number of ways. 

A. To own: 
Synthesis proceeds top-down, starting from a functional 
description of a task and either finding a known algo- 
rithm that performs its function within the cost constraint, 
or generating a sequence of subtasks that is functionally 
equivalent; this continues until all subtasks are associated 
with a sequence of known algorithms (primitives). This 
leads quite naturally to a hierarchical structure in which 
the algorithm can be viewed at a number of levels of ab- 
straction. Furthermore, it allows the synthesis process to 
be viewed as generation with a grammar (with the known 
algorithms as terminals). 
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Table 1: Test problems for algorithm synthesizer. 

Task Cost Constraint 

Detect intersection between 2 convex polygons N 
Report intersection between 2 convex polygons N 
Detect intersection between 2 simple polygons NlogN 
Report intersection between 2 simple polygons (N+S)logN 
Report connected components in a set of line segments (N+S)logN 
Report connected components in a set of isothetic line segments NlogN+S 
Report intersection among N k-sided convex polygons Nk log N 
Report intersection of N half-planes NlogN 
Report intersection of N half-planes N2 
Report intersection of N isothetic rectangles N 
Report intersection of N arbitrary rectangles NlogN 
Report the area of union of set of isothetic rectangles NlogN 
Report the perimeter of union of set of isothetic rectangles NlogN 
Report the connected components of set of isothetic rectangles NlogN+S 
Detect any three collinear points in a point set N2 
Detect any three collinear points in a point set N3 
Detect any three lines in a line set that share an intersection N2 
Report all lines intersecting a set of vertical line segments NlogN 
Report all lines intersecting a set of x-sorted vertical line segments N 

El. Cost-constrained: 
Synthesis is cost-constrained; included in the task speci- 
fication is a performance constraint (maximum cost) that 
the synthesized algorithm must satisfy. We take the view 
that an algorithm is not known until its complexity is 
known with some (situation dependent) precision. We 
chose asymptotic time complexity on a RAM (big-Oh) as 
the cost function for ease of calculation, but some other 
cost measure would not change the synthesis process in a 
major way. 

Two reasonable alternatives to using a cost-constraint 
that are precluded by practical considerations are having 
the synthesizer produce 1) optimal (or near-optimal) al- 
gorithms, or 2) the cheapest algorithm possible given its 
knowledge base. To produce an optimal algorithm, the 
system be able to deal with lower bounds, which is very 
difficult [l], so not amenable to automation. Producing the 
cheapest possible algorithm is probably equivalent to pro- 
ducing every possible algorithm for a task. This is at best 
likely to be exponential in the total number of subtasks, 
making it impractical for all but the shortest derivations. 

C. Subtask generation: 
A key function in MEDUSA is subtask generation; given a 
description of a task, return a sequence of subtasks that 
is functionally equivalent. One of the ways we simplify 
synthesis in this system is by using only four methods to 
generate subtasks. 

The first method is to use an equivalent skeletal al- 
gorithm. A skeletal algorithm is an algorithm with known 
function, but with some parts incompletely specified (its 
subtasks); e.g. an algorithm to report all intersecting pairs 
in a set of objects may have as its subtask a two object in- 
tersection test. The cost of a skeletal algorithm is specified 
as a function of its subtask costs. These algorithms range 
from quite specific algorithms (e.g. a sort algorithm with a 
generic comparison function) to quite general algorithmic 
paradigms (e.g. binary divide-and-conquer). These are a 
convenient way to express general paradigms, and allow 
generalizations of known algorithms whose subtasks can 
be designed to exploit specific task characteristics. 

The second subtask generation method is to trans- 
form the task into an equivalent task one using explicit 
domain information. This allows the use of logical equiv- 
alence in decomposing tasks e.g. the fact A contains B if 
and only if B is a subset of A and their boundaries do not 
intersect allows the decomposition of a containment test of 
two polygons into a conjunction of the tests for subset and 
boundary intersection. 

The third subtask generation method uses case de- 
composition. Suppose that there is some set of disjoint 
cases, at least one of which is true (a disjunction). An 
equivalent algorithm is determine which case holds, then 
solve the task given that case is true. The necessary 
subtasks for each case is an algorithm to test whether 
the case holds, and an algorithm to do the original task 
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A subset of B ? 

one of A’s vertices 
member of B 7 

Figure 1: Synthesis of polygon intersection algorithm. Tasks are represented by rectangles, known and skeletal algorithms 
by ovals. 

given the case holds. We restrict this by considering only 
disjunctions where exactly one disjunct is true (termed 
oneofdisjunction by de Kleer [6]). Care must be taken 
to ensure that the case decomposition chosen is relevant 
to the task at hand. 

The fourth way to generate a subtask is to use some 
dual transform; specifically, we transform a task and its 
parameters into some dual space and solve the equivalent 
task there. This can be a “powerful” technique [3], al- 
lowing the use of algorithms and techniques from related 
problems and domains. For example, suppose we want to 
detect whether any three points in a finite point set are 
collinear. Given that we have a transform that maps lines 
to points and vice-versa, and if two objects intersect in the 
primal if and only if they intersect in the dual, then we 
can recast this problem as 1) map the points in the input 
set to a set of lines, then 2) detect whether any three lines 
in this line set share an intersection. 

: etect intersection 
8 convex Ywns 

The synthesis process can be illustrated with an example 
(shown graphically in Figure 1.): determine whether two 
convex polygons (A and B) intersect, time linear in the 
total number of vertices. 

First, the task is decomposed into four cases: the 
boundaries intersect, A contains B, B contains A, or the 
polygons do not intersect. Since the cost of the task is the 

sum of its subtasks, each subtask has the linear time con- 
straint. This simple propagation of the parent’s constraint 
will hold for the rest of the subtasks in this example as 
well. 

Working first on the boundaries intersect case, we syn- 
thesize an algorithm to see if the boundaries intersect. We 
use a skeletal algorithm, a sweep-line algorithm to detect 
line-segment intersection [8], which applies since a polygon 
boundary is a set of line-segments. It has two components 
(subtasks): one to sort the vertices of the segments in X- 
order, one to perform a dynamic neighbor-maintain on the 
segments in Y-order. To sort the vertices, we use a skeletal 
mergesort algorithm: its subtasks are 1) sort A’s vertices, 
2) sort B’s vertices, and 3) merge the two sorted vertex 
sets. The two sorts are each equivalent to a known algo- 
rithm that sorts the vertices of a convex chain in linear 
time, the third is equivalent to the standard linear merge 
algorithm (with constant-time comparisons). 

The dynamic neighbor-maintain is a dictionary algo- 
rithm. Set items are line-segments; they are to be put 
into some structure on the basis of their relative Y po- 
sitions. The input to this algorithm is a linear number 
of queries; the queries used are insert, delete, and report- 
neighbors (i. e., for a given segment, return the segments 
directly above and below it). This is equivalent to a known 
algorithm, a dictionary implemented with a 2-3 tree. The 
cost of this algorithm is the sum of its query costs, each 
of which is equal to the log of the working set (the excess 
of inserts over deletes). The working set here is bounded 
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by the number of line segments in the two sets that in- @ Use 2-3-tree dictionary during scan. 

tersect some vertical line; since the polygons are convex, If detect-segment-intersections returns true, report true 
the number of segments intersecting any line is bounded 
by a constant. Since the number of queries in the neighbor 

else Do a polygon-point-inclusion for polygon A, any ver- 

maintain is linear, and the working set is always constant 
tex of B. 

bounded, this algorithm satisfies the linear constraint. if that shows intersection, report true 

Detecting whether the polygons intersect given that else Do a polygon-point-inclusion for polygon B, any 
the the boundaries intersect is equivalent to the known al- vertex of A. 
gorithm “report true”, since boundary intersection implies 
intersection. 

if that shows intersection, report true 

Next, we work on the A contains B case, first trying 
else report false. 

to get an algorithm to see if the case holds, with the ad- 

algorithm, which is linear in the number of vertices, fin- 

ditional precondition that the boundaries do not intersect 

ishing the algorithm to detect whether A contains B. The 

(since we already tested that case, and would only reach 
here if it were false). By definition, A contains B if and only 
if B is a subset of A and their boundaries do not intersect. 
Since the boundary intersection is null, an equivalent task 

second part of this case, determining whether the polygons 

is to determine whether B is a subset of A, which is equiv- 
alent to determining whether B’s boundary is a subset of 

intersect given that A contains B, is equivalent to “report 

A, since A and B are bounded regions. Since the bound- 
aries are closed chains, and they do not intersect, either B’s 
boundary is a subset of A, or B’s boundary and A are dis- 
joint. Therefore, it suffices to check whether any non-null 
subset of B is a subset of A, so for simplicity we use a sin- 
gleton subset of B (any member) and test for inclusion in 
B. This is equivalent to a known polygon-point-inclusion 

IV. Synthesis mechanics 
Synthesis can be represented by a single routine that takes 
a task and 1) generates an equivalent decomposition (sub- 
task sequence), 2) calls itself for each subtask in its decom- 
position that is not completely specified, and 3) computes 
the cost of the task as a function of the costs in the de- 
composition. The cost constraints propagate forward from 
task to subtask, the costs percolate back from subtask to 
task. The important control mechanisms are those that 
pick from a group of possible decompositions, choose which 
active task to work on. It is also necessary to be able to 
find equivalent decompositions, propagate constraints, and 
combine costs. 

true”. 
Next, we work on the B contains A case, with the 

natorial explosion due to multiple decomposition choices, 
since it is impossible in general to know a priori that a de- 

A 
l 

Choosing among alternative decom- 
positions 

A problem inherent in synthesis is the possibility of combi- 

added preconditions that the boundaries do not intersect composition will lead to a solution within the constraint. 
and A does not contain B. It differs from the previous If a “dead-end” is reached (no decomposition possible, or 
slightly, since the task A subset of B? is equivalent to one time constraint violated), some form of backtracking must 
point of A being in B because of the added precondition 

Finally, we work on the A and B disjoint case, with 

that A does not contain B, but otherwise it is just the 
previous case with the parameters reversed. 

the added preconditions that the boundaries do not in- 
tersect and that neither contains the other. These added 

be done. Unless severely limited, backtracking will lead to - 

likely to succeed. 

exponential time for synthesis. To reduce backtracking, we 

algorithms (by unknown algorithms we mean any that are 

use a sequence of heuristics to choose the candidate most 

neither known nor skeletal)-we partition the possible de- 

The first heuristic is to favor known equivalent algo- 
rithms to everything and skeletal algorithms to unknown 

preconditions imply that A and B are disjoint, so deter- 

(always true)“, and determining whether the polygons in- 
mining whether the case holds is equivalent to “do nothing 

compositions into those three classes and pick from the 
tersect given that they are disjoint is equivalent to-“report most favored non-empty class. If a solution is known, there 
false”. is no reason to look any further; similarly if a skeletal algo- 

Therefore this question can be resolved using the fol- rithm exists, it is probably worth examining since it gives 

lowing sequence of operations (with cost proportional to a decomposition of the problem that often leads to a solu- 

the sum of the number of sides of the two polygons). tion. Although any known algorithm within the constraint 

Run detect-segment-intersections algorithm using the fol- 
is adequate, we favor one of zero cost (a no-op ) over one of 

lowing components: 
constant cost over any others, since the test is cheap and 
it is aesthetically pleasing to avoid unnecessary work. If 

e Sort the polygon vertices using mergesort with there is more than one skeletal or unknown algorithm left 
components after this filtering, the choice is dictated by the second or 
- sort each polygon’s vertices using convex- 

chain-vertex sort 
- merge the two polygon’s vertices. 

third heuristic. 
The second heuristic, which chooses among alterna- 

tive skeletal algorithms, uses the time constraint as a guide 
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to choose the algorithm most likely to succeed. For exam- ods for oneofdisjunction and disjunction): 

ple, suppose the constraint is N log N; likely candidates 
are divide-and-conquer and sweep-line (or some other al- 
gorithm involving a sort preprocess). To implement this we 
have associated a “typical cost” with each of the skeletal al- 
gorithms, that is, the cost that the skeletal algorithm usu- 
ally (or often) takes. The mechanism used is to choose the 
alternative whose typical cost most closely approximates 
the constraint. We do not choose the alternative that is 
typically cheapest; in fact we want the most expensive pos- 
sibility within the constraint, based on the hypothesis that 
less efficient algorithms are typically simpler. More con- 
cretely, suppose we have as a task reporting the intersec- 
tion of N half planes with alternative constraints N log N 
and N2. In the first case, the decision to use divide-and- 
conquer based on the time constraint leads to an N log N 
solution; in the second, the looser constraint would lead 
to a different choice, to process the set sequentially, build- 
ing the intersection one half-plane at a time (linear cost 
for each half-plane addition). The step in the sequential 
reduction, computing the intersection of a half-plane with 
the intersection of a set of half lanes in linear time is sim- 
pler than the merge step in the divide-and-conquer, which 
is to intersect two intersections of half-plane sets in linear 
time. If more than one skeletal algorithm has the same 
typical cost, and none has a cost closer to the constraint, 
the third heuristic is used to choose the best one. 

Given a set of conjunctive tasks cl, c2,. . . , ck : 

1. Find and report an algorithm to teat one of 
these (say ci). 

2. Use this method to solve conjunctive tasks 
Cl I Ci, C2 1 Ci,*--yCk 1 Ci- 

These algorithms will be combined in the order they 
were synthesized into a nesting of if-then-else’s in the ob- 
vious way. (The combination of the cases in the exam- 
ple shows this combining for the disjunctive case.) This 
method is guaranteed to find an order of the subtasks if 
one exists without interleaving (that is, if there is a se- 
quence such that the synthesizer could find an algorithm 
for each conjunct given the previous conjuncts in the se- 
quence were true); adding a precondition to a task can only 
increase the number of equivalent decompositions. 

The most efficient use of this method is to work depth 
first on the the tasks in the proper order. If the order 
is incorrect, a fair amount of effort may be expended on 
tasks that fail; in the worst case, the number of failed con- 
juncts is quadratic in the number of conjuncts. Working 
breadth first can lower the number of failures, those with 
longer paths than successful siblings, but since precondi- 
tions are added to active tasks whenever a sibling finishes, 
the partial syntheses done on these active tasks may also be 
wasted work. In MEDUSA, work is done primarily depth- 
first, but if a path too far ahead of its siblings, another 
path is worked on basically depth-first with some catch up 
to avoid long failing paths. 

The third heuristic, which is used if the others lead to 
no choice, is to compare all of the alternatives, choosing 
the one with the most specific precondition. The intuition 
is that a less-generally applicable algorithm is likely to be 
more efficient than a more generally applicable one. The 
specificity of a precondition is the size of the set of facts 
that are implied by the precondition; this definition gives 
equal weight to each fact, but is reasonably simple concep- 
tually. We approximate this measure by only considering 
certain geometric predicates, which is more tractable com- 
put at ionally. 

. rdering subtasks in synthesis 

For this method to be reasonably efficient, the tasks 
must be tried in something close to the proper order. We 
currently use a three-level rating scheme for subtasks, top 
preference to simple set predicates (like null tests), low- 
est preference to predicates involving a desired result, and 
middle preference for the rest. This is the rating that led 
to the order of the cases in the example: the boundaries- 
intersect case was done first since it is a simple set pred- 
icate (is the intersection of A and B null?), the A and B 
disjoint case was done last since it is the desired result, 

If all subtasks in a decomposition were independent, the and the two containment tests were done second and third 

order in which the subtasks were performed in the algo- (with equal preference), since they are not in either of the 

rithm would be unimportant. This is not always the case; other categories. 

consider the case determination tasks in the example. The 
fact that the boundaries did not intersect was important c. Finding equivalent osit ions 
to the solution of the containment determinations, -and the A basic function in the synthesizer is to find an algorithm 

fact that the boundaries did not intersect and neither poly- equivalent to a task using one of the methods given in 1I.C. 

gon contained the other made the test for A and B disjoint This is done by queries to the database, unifying variables 
trivial. In general, the testing of any conjunction, dis- and checking for equivalence. There is a certain amount of 
junction, or oneof disjunction of predicates is highly order- deductive effort involved in getting all of the equivalent de- 

dependent, since each predicate test is dependent on which compositions, much of it on decompositions that will be fil- 
predicates were already tested. It may be that not all or- tered out by the heuristics. Our system tries to reduce this 

derings lead to a solution within the time constraint, so wasted effort via a “lazy fetching” approach; rather than 
part of the synthesis task is to determine this order of ex- fetching all of the equivalent decompositions, it fetches all 
ecution. equivalent known algorithms and sets up closures to fetch 

The method we use to get the subtask algorithms in the others (skeletals and unknowns). This fits well with 

the conjunctive case is the following (with analogous meth- our known/skeletal/ un k nown filter heuristic explained in 
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the previous section: if a known algorithm exists, the ac- the previous section: if a known algorithm exists, the ac- 
tual fetching of the others is never done, similarly with tual fetching of the others is never done, similarly with 
skeletals vs. unknowns. skeletals vs. unknowns. Since we get closures for all of Since we get closures for all of 
the equivalent decompositions, we can always fetch them the equivalent decompositions, we can always fetch them 
if they are needed during backtracking. if they are needed during backtracking. 

D. Propagating constraints and cornbin- D. Propagating constraints and cornbin- 
ing costs ing costs 

Since much of the control of the system is based on costs, it Since much of the control of the system is based on costs, it 
is necessary to manipulate and compare cost expressions. is necessary to manipulate and compare cost expressions. 
Costs are symbolic expressions that evaluate to integers; Costs are symbolic expressions that evaluate to integers; 
they are arithmetic functions of algorithm costs, set car- they are arithmetic functions of algorithm costs, set car- 
dinalities, and constants. We have an expression manipu- dinalities, and constants. We have an expression manipu- 
lator that can simplify expressions, propagate constraints, lator that can simplify expressions, propagate constraints, 
and compare expressions. The use of asymptotic costs sim- and compare expressions. The use of asymptotic costs sim- 
plifies the process considerably. plifies the process considerably. 

V. V. Results and planned Results and planned 
extensions extensions 

Currently, MEDUSA will synthesize all of the problems Currently, MEDUSA will synthesize all of the problems 
in table one. in table one. In doing so, In doing so, it uses a variety of “stan- it uses a variety of “stan- 
dard” algorithmic paradigms (generate-and-test, divide- dard” algorithmic paradigms (generate-and-test, divide- 
and-conquer, sweep-line), and uses such non-trivial algo- and-conquer, sweep-line), and uses such non-trivial algo- 
rithm/data structure combinations as priority queues and rithm/data structure combinations as priority queues and 
segment trees. segment trees. In general, the choice heuristics work ef- In general, the choice heuristics work ef- 
fectively to pick among possible decompositions; the most fectively to pick among possible decompositions; the most 
common reason for failure is that the “typical cost” given common reason for failure is that the “typical cost” given 
for skeletal algorithms is different from the attainable cost for skeletal algorithms is different from the attainable cost 
due to specific conditions. due to specific conditions. The rating scheme for order- The rating scheme for order- 
ing dependent subtasks works adequately since usually the ing dependent subtasks works adequately since usually the 
number of subtasks is small, but as it fails to preferentially number of subtasks is small, but as it fails to preferentially 
differentiate most predicates the order is often partially in- differentiate most predicates the order is often partially in- 
correct. More specific comparisons are being examined. correct. More specific comparisons are being examined. 

As expected, controlling the use of duality has been As expected, controlling the use of duality has been 
difficult. The problem is that transforming the task is difficult. The problem is that transforming the task is 
rather expensive (in terms of synthesis), and the possibil- rather expensive (in terms of synthesis), and the possibil- 
ity of one or more dual transforms exists for nearly any ity of one or more dual transforms exists for nearly any 
task. Our current solution is to only allow duality to be task. Our current solution is to only allow duality to be 
used as a “last resort”; used as a “last resort”; subtask generation using duality is subtask generation using duality is 
only enabled after a synthesis without duality has failed at only enabled after a synthesis without duality has failed at 
the top level. Although this works, it has the undesirable the top level. Although this works, it has the undesirable 
features that features that 

1. synthesis of an algorithm involving duality 1. synthesis of an algorithm involving duality can take a can take a 
long time, as it first has to fail completely, long time, as it first has to fail completely, and and 

2. an algorithm not involving duality will always be pre- 2. an algorithm not involving duality will always be pre- 
ferred to one using duality, even if the latter is much ferred to one using duality, even if the latter is much 
simpler and more intuitive. simpler and more intuitive. 

We are examining less severe control strategies to better We are examining less severe control strategies to better 
integrate duality as a generation method. integrate duality as a generation method. 

VI. Related work VI. Related work 
A number of researchers are examining the algorithm syn- A number of researchers are examining the algorithm syn- 
thesis problem; some of the recent work (notably CYPRESS thesis problem; some of the recent work (notably CYPRESS 
[g], DESIGNER [4], [g], DESIGNER [4], and DESIGNER-SOAR [lo]) has similar and DESIGNER-SOAR [lo]) has similar 

goals and uses computational geometry as a test domain. 
MEDUSA differs most in the central role that efficiency has 
in its operation, and the relatively higher-level tasks that 
it is being tested on. It uses a more limited set of methods 
than DESIGNER and DESIGNER-SOAR, which both consider 
things like weak methods, domain examples, and efficiency 
analysis through symbolic execution. The use of design 
strategies in CYPRESS is similar to our use of skeletal al- 
gorithms, but are more general (and formal), leading to 
a greater deductive overhead; we chose to have a larger 
number of more specific strategies. In some respects our 
goals have been more modest, but MEDUSA was designed 
to automatically design algorithms in terms of its known 
primitives, while the others are semi-automatic and/or do 
partial syntheses. 

This work is influenced by LIBRA[5] and PECOS[2], 
which interacted in the synthesis phase of the PSI auto- 
matic programming system. The primary influences were 
the attempt to substitute knowledge for deductions and 
the use of efficiency to guide the synthesis process. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

efesences 
Aho, A., J. Wopcroft, and J. Ullman, The Design and 

Anabysis of Computer Algorithms. Addison-Wesley, 
1974. 

Barstow, David R. “An experiment in knowledge-based 
automatic programming,” _ Arti$cial Intelligence 12, 
pp.73-119 (1979). 

Chazelle, Bernard, L.J. Guibas, and D.T. Lee. “The 
power of geometric duality,” PTOC. 24th IEEE Annual 
Symp. on FOG’S, 217-225, (November 1983). 

Kant, Elaine. “Understanding and automating algo- 
rithm design,” IEEE Transactions on Software Engi- 
neering, Vol. SE-11, No. 11, 1361-1374. (November 
1985). 

Kant, Elaine. “A knowledge-based approach to using 
efficiency estimation in program synthesis,” Proceed- 
ings IJCAI-79, Tokyo, Japan, 457-462 (August 1979). 

de Kleer, Johan. “An assumption-based TMS,” Artifi- 
cial Intelligence 28, pp.127-162 (1986). 

McDermott, Drew. The DUCK manual, Tech. Rept. 
399, Department of Computer Science, Yale Univer- 
sity, June 1985. 

Preparata, Prance P., and Michael Ian Shames. Com- 
putational Geometry: An Introduction , Springer- 
Verlag, 1985. 

Smith, Douglas R. “Top-down synthesis of divide-and- 
conquer algorithms,” Artificial Intelligence 27, pp. 
215-218, (1985). 

10. Steier, David. “Integrating multiple sources of knowl- 
edge into an automatic algorithm designer,” Unpub- 
lished thesis proposal, Carnegie-Mellon University, 
September 1986. 

154 Automated Reasoning 


