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1. Introduction 
We introduce path dissolution, a rule of inference that 
operates on quantifier-free predicate calculus formulas in 
negation normal form (NNF). We use techniques first 
developed in [Murray & Rosenthal 1985a], and in 
[Murray & Rosenthal 19871 employing a representation 
of formu1a.s that we call semantic graphs. Dissolution is a 
generalization to NNF of the Prawitz matrix reduction 
rule, which operates on formulas in conjunctive normal 
form (CNF). One important distinction between dissolu- 
tion and most other rules of inference is that one cannot 
restrict attention to CNF: A single application of dissolu- 
tion generally produces a formula that is not in CNF 
even ij the original formula is. 

For almost a decade, the connection-graph resolution 
procedure had been conjectured to be strongly complete, 
i.e., to converge under any sequence of inferences for all 
contradictory ground formulas. Norbert Eisinger [Eis- 
inger 19861 recently discovered counterexamples. Path 
dissolution is strongly complete: Each dissolution step 
strictly reduces the number of c-paths in a formula. The 
procedure always terminates, producing (in effect) a list 
of the formula’s models. (If the formula is unsatisfiable, 
the empty graph results, representing the empty set of 
models.) 

Bibel has presented several algorithms for determin- 
ing whether a propositional formula is unsatisfiable 
[Bibel 19821. He built on the work of Prawitz 
[Prawitz 19701 and later work of his own [Bibel 19791, 
[Bibel 19811 and of Andrews [Andrews 19811. His 
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approach was to search for paths containing links (com- 
plementary literals). The technique developed in this 
paper also employs links, but they are used to remove the 
paths through them. 

Dissolution, unlike most resolution-based inference 
rules, does not directly lift into first-order logic; tech- 
niques for employing dissolution at the first order level 
are discussed. 

Dissolution is quite different from other rules of 
inference, which is not surprising in view of its strGng 
completeness and of the fact that it forces formulas away 
from CNF. As a result, we omit proofs and present exten- 
sive examples. 

2. Preliminaries 
We briefly summarize semantic graphs, including only 
those results that are necessary for the analysis of path 
dissolution. We assume the reader to be familiar with 
the notions of atom, literal, formula, resolution, and 
unification. We will consider only quantifier-free formu- 
las in which all negations are at the atomic level. 

A semantic graph is empty, a single node, or a triple 
(N, C,O) of nodes, c-arcs, and d-arcs, respectively, where 
a node is a literal occurrence, a c-arc is a conjunction of 
two non-empty semantic graphs, and a d-arc is a disjunc- 
tion of two non-empty semantic graphs. Each semantic 
graph used in the construction of a semantic graph will 
be called an explicit subgraph. We use the notation 
(G ,H), for the c-arc between G and H and similarly use 
(G ,H )d for a d-arc. We will consider an empty graph to 
be an empty disjunction, which is a contradiction. If 
G = (X, Y), observe that every other arc is an arc in X 
or in Y, we call (X, Y) the final arc of G. 

As an example, the formula 

((A r\ B) V C) A ( --A V (D A C)) 

is the graph 

A+B ;;I 

1 --) 1 
C D+C 

Note that horizontal 
arrows are d-arcs. 

arrows are c-arcs, and vertical 

The formulas we are considering are in negation nor- 
mal form (NNF) in that all negations are at the atomic 
level; the only connectives used are AND and OR. 
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Lemma 1. Let G be a semantic graph, and let A 
and B be nodes in G. Then there is a unique arc connect- 

ding A and B. 
One of the keys to our analysis is the notion of path. 

Let G be a semantic graph. A partial c-path through G is 
a set c of nodes such that any two are connected by a c- 
arc. A c-path id a partial c-path that is not properly con- 
tained in any partial c-path. We similarly define d-path 
using d-arcs instead of c-arcs. Several other authors have 
employed paths; for example see [Andrews 19811, 
[Bibel 19791, [Bibel 19811, [Bibel 19821, [Eisinger 19861, 
[Murray 19821, [P rawitz 19701. They generally concen- 
trated on c-paths. 

Lemma 2. Let G be a semantic graph. Then an 
interpretation I satisfies (falsifies) C 8 I satisfies (falsifies) 
every literal on some c-path (d-path) through G. 

We will frequently find it useful to consider sub- 
graphs that are not explicit; that is, given any set of 
nodes, we would like to define that part of the graph that 
corisists of exactly the giiren set of nodes. The previous 
example is shown below on the left. The subgraph rela- 
tive to the set {A, A, D} is the graph on the right. 

A+B 7i: ic 
1 - 1 A-+ 1 
C D-+C D 

If N is the node set of a graph G, and if N ’ C N, 
we define GN I , the subgruph of G relative to N ’ , as 
follows: If N ’ = N, then GN I = G. If the final arc 
of G is (X, Y), and if no node in N ’ appears in Y (or in 
X), then GN t = X, I (or G, I = Y, I ). Other- 
wise, GN I =(xNr, Y,r ), where this arc is of the 
same type as (X, Y). In practice, we typically will not 
distinguish between N ’ and G, I . 

A c-block C is a subgraph of a semantic graph with 
the property that any c-path p that includes at least one 
node from C passes through C; that is, the subset of p 
consisting of the nodes that are in C is a c-path through 
C. A d-block is similarly defined with d-paths, and a full 
block is a subgraph that is both a c-block and a d-block. 
We define a strong c-block in a semantic graph G to be a 
subgraph C of G with the property that every c-path 
through G contains a c-path through C. A strong d-block 
is similarly defined. 

The fundamental subgraphs of a semantic graph G 
are defined recursively as follows. If G = (X, Y )c, and if 
the final arc of X is a d-arc, then X is a fundamental sub- 
graph of G. Otherwise, the fundamental subgraphs of X 
are fundamental subgraphs of G. (The dual case when 
G = (X, Y ), is obvious.) 

An isomorphism from W CA to 
(N’,C’,D’) is a bijection f: N + N ’ that 
preserves c- and d-paths such that for each A in N, 
A=f(A). We call Theorems 1 and 1’ and their corol- 
laries the Isomorphism Theorem. 

Theorem 1. Let G be a semantic graph, and let B 
be a full block in G. Then B is a, union of fundamental 
subgraphs of some explicit subgraph of G. 

Theorem 1’ . If G and H are isomorphic semantic 
graphs, then H can be formed by reassociating and com- 
muting some,of the arcs in G. 

Corollary 1. Let G be a semantic graph, and let B 
be a full block in G. Then there is a semantic graph 
G I and an isomorphism f: G - G ’ such that f(B) is 
an explicit subgraph of G ’ . 

Corollary 2. The intersection of two full blocks is 
a full block. 

Corollary 3. Given a semantic graph G and a col- 
lection of mutually disjoint full blocks, there is a graph 
isomorphic to G in which each full block is an explicit 
subgraph. Moreover, given any two of the blocks, each 
node in one is c-connected to each node in the other or 
each node in one is d-connected to each node in the 
other. 

Several additional definitions are necessary to define 
the dissolution operation. From the isomorphism theorem 
we know that any full block U is a conjunction or a dis- 
junction of fundament,al subgraphs of some explicit sub- 
graph H. If the final arc of H is a conjunction, then we 
define the c-extension of U to be Hand the d-extension of 
U to be U itself. (The situation is reversed if the final arc 
of H is a d-arc.) We define the c-path extension of an 
arbitrary subgraph H in a semantic graph G as follows 
(note that this is different from the c-extension of a full 
block): Let F,, . . . , F, be the fundamental subgraphs of 
G that meet H, and let Fkfl, . . . , F, be those that do 
not. Then 

CPE(0,G) = 0 and CPE(G,G) = G. 

CPE(H ,G) = CPE(HF,,Fl) V * - * V CPE(HFn,Fn) 
if the final arc of G is a d-arc 

CPE(H,G) = CPE(HQ’,) A - - - A CPE(HF,,Fk) A 
Fk+l A * . * A Fn 

if the final arc of G is a c-arc 

Lemma 3. The c-paths of CPE(H, G) are precisely 
the c-paths of G that pass through H. 

Using the same notation we define the strong split 
graph of H in G, denoted SS( H,G), as follows: 

SS(0,G) = G and SS(G,G)=0. 

SS(H,G) = SS(H,F,) V . . . V SS(H,F,) 
if the final arc of G is a d-arc 

SS(H,G)’ = SS(H,F,) v . . * v SS(H,Fk) A 
&+I A * * - A F, 

if the final arc of G is a c-arc 

Lemma 4. If H is a c-block in G, then SS(H, G) is 
isomorphic to the subgraph of G relative to the nodes 
that lie on c-paths that miss H. 

Define the uuxilfury subgraph Aux(H, G) of a sub- 
graph H in a semantic graph G to be the subgraph of G 
relative to the set of all nodes in G that lie on extensions 
of d-paths through H to d-paths through G. 

Lemma 5. If His a non-empty subgraph of G, then 
Aux(H, G) is empty iff H is a strong c-block. Moreover: 
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Aux(H, G) cannot contain a d-path through G; if H is a 
c-block, then so is Aux(H, G). 

Lemma 6. If H is a c-block then CPE(H, G) = 
SS(Aux(H, G), G). 

3. Path Dissolution 
We define a chain in a graph to be a set of pairs of c- 
connected nodes such that each pair can simultaneously 
be made complementary by an appropriate substitution. 
A link is an element of a chain, and a chain is full if it is 
not properly contained in any other chain. A graph G is 
spanned by the chain K if every c-path through G con- 
tains a link from K; in that case, we call K a resolution 
chain for G. 

Intuitively, path dissolution operates on a resolution 
chain by constructing a semantic graph whose c-paths are 
exactly those that do not pass through the chain. Not all 
resolution chains are candidates for dissolution: A special 
type of chain that we call a dissolution chain (what else?) 
is required. Since single links always form dissolution 
chains, the class is not too specialized. The construction 
of the dissolvent from such a chain is straightforward. 

A resolution chain H is a dissolution chain if it is a 
single c-block or if it has the following form: If M is the 
smallest full block containing H, then M = (X, Y), 
where HnX and HnY are each c-blocks. 

Given a dissolution chain H, define DV(H, n4), the 
dissolvent of H in M, as follows (using the above nota- 
tion): If H is a single c-block, then DV(H, M = 
SS(H, Al). Otherwise (i.e., if H consists of two c-blocks), 
then 

’ CPE(H,X) + SS(H, Y) 

1 
DV(H,M) = SS(H, X) + CPE(H, Y) 

1 
\ SS(H, X) -+ SS(H, Y) 

Intuitively, DV(H, M) is a semantic graph whose c- 
paths miss at least one of the c-blocks of the dissolution 
chain. The only pa.ths left out are those that go through 
the dissolution chain and hence are unsatisfiable. Notice 
that we may express DV(H, AQ in either of the two more 
compact forms shown below (since CPE(H, X) U SS(H, X) 
= X and CPE(H, Y) U SS( H, Y) = Y): 

x - SS(H,Y) SS(H,X) ---, Y 
1 1 

SS(H,X) - CPE(H,Y) CPE(N,X) - SS(H,Y) 

Note that the three representations are semantically 
equivalent but are not in general isomorphic; in particular 
their d-paths need not be the same. The c-paths of all 
three representations, however, are identical; they consist 
of exactly those c-paths in M that do not pass through H. 

Theorem 2. Let H be a ground dissolution chain in 
a graph G, and let M be the smallest full block contain- 
ing H. Then it4 and DV(H , M) are equivalent. 

We may therefore select an arbitrary dissolution 
chain H in G and replace the smallest full block contain- 
ing H by its dissolvent, producing (in the ground case) an 

equivalent graph. We call the resulting graph the disso- 
lution of G with respect to H and denote it Diss(G,H); 
links are inherited in the obvious way. 

The graph formed by dissolution has strictly fewer 
c-paths than the old one: All remaining c-paths were 
present in the old graph, and the two graphs are semanti- 
cally equivalent. The original graph has only finitely 
many c-paths, and each dissolution operation preserves 
its meaning. As a result, finitely many dissolutions 
(bounded b a ove by the number of c-paths in the original 
graph) will yield a graph without links. If this graph is 
empty, then the original1 graph was spanned; if not, then 
every (necessarily linkless) c-path characterizes a model of 
the original graph. 

If we dissolve on a link {A, x} in a graph in CNF, 
then H = -{A, A}, X and Y are the two clauses contain- 
ing A and A, respectively, M = X U Y, Hx = (A\, = 
CPE(Hx , X), and HY = {x} = CPE(H,, Y ). Since 
CPE(H,, X) = CPE( Hy , Y) the Prawitz matrix reduc- 
tion rule [Prawitz 19701 may then be used. The resulting 
graph is 

CPE(H, X) + SS( H, y) 

SS(H, X) ----) CPE(H, r) 

Note that Theorem 2 does not apply in this case (i.e., the 
Prawitz rule preserves unsatisfiability but not 
equivalence). 

4. A Dissolution Refutation 
The graph below is unsatisfiable and has 12 c-paths. We 
box the smallest full block containing a dissolution chain 
about to be activated. 

Links 1 and 2 form a dissolution chain; M = (X, Y ), 
where X and Y are the two leftmost fundament-al sudr 
graphs of the entire graph. Notice that SS({C,D}, X) = 
XiA,B) and SS({c,D}, Y) = YIKEj; also CPE({C,D}, X) 

ze 
X qc D). Dissolution removes 4 c-paths resulting in 
fo lo&ng \ graph ( we use the second of the two com- 

pact versions of dissolvent throughout this section): 
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The subgraph c -+ b and the single occurrence of C 
are both linkless full blocks. (We have not deleted links 
in the ordinary sense of [Bibel 19811 or 
IMurray & Rosenthal 1985b]. With path dissolution, 
links simply disappear because their associated nodes, 
although c-connected in the original graph, become d- 
connected in the dissolvent.) We may therefore apply the 
Pure Lemma [Bibel 19811, [Murray & Rosenthal 1985b], 
[Murray & Rosenthal 19871 and delete the d-extensions 
of these full blocks, which in turn renders the upper 
occurrence of A pure. The result is: 

B 

3 l 
AT 
1--+x-+ 
D 

E 

Now we activate link 3 and apply the Pure Lemma to A: 

D 

--) 1 
E 

We next dissolve on link 4 to produce: 

;D 
D 

. --+ “\z $ 

The remaining two links constitute a single strong c-block 
and they span the entire graph. Dissolving on them 
results in the empty graph. 

5. &plying dissolution to a satis%iable graph. 
We may always apply dissolution to a ground semantic 
graph until the graph is without links. The remaining c- 
paths, if any, characterize exactly the interpretations 
satisfying the graph. We must not, however, apply the 
Pure Lemma if that is our objective since it, unlike disso- 
lution, preserves only satisflability, not equivalence. 

The graph below is similar to that of the previous 
example but is satisfiable. 

6 

1 
E 

I I 

The details, which are similar to the previous example, 
are left to the reader because of space considerations. 
After six dissolutions (activating-a total of-10 lisks), the 
graph is reduced to A --* C + D + E -+ D --) B, which 
specifies those interpretations that satisfy the original 
graph. 

6. First Order Dissolution 
The usual arguments (involving the application of 
Robinson’s Unification Theorem) allow us to lift ground 
chains to the general level. More stringent conditions, 
however, must be satisfied if we wish to replace the smal- 
lest full block containing a dissolution chain by its dissol- 
vent. (Were this not the case, we would have a decision 
procedure for first order satisflability.) The difficulty 
arises from ground instances (possibly crucial to a proof) 
in which the chain does not exist, i.e., instances that are 
not consistent with the mgsu of the chain. Of course, the 
dissolvent can always be soundly conjoined to the exist- 
ing graph. Dissolution (with replacement) may then be 
applied freely to the newly inferred portion of the graph. 
A partial replacement technique may be applied to chains 
that link the old and new sections of the graph. These 
ideas are discussed in this section. 

During the construction of the mgsu of a chain, some 
care must be taken regarding the familiar process of stan- 
dardizing variables apart. If x is any variable, two 
occurrences of x cannot be standardized apart if they 
appear in d-connected nodes. In CNF this is a sufficient 
condition for determining whether variables may be 
standardized apart; in semantic graphs (NNF), this is not 
the case. What is required is the transitive closure of the 
relation ‘are d-connected’, which provides all the 
occurrences of x that are in fact the same variable. 

6.11. Partia1 replacement 
Let G be a (first order) semantic graph, and let H be 

a dissolution chain with mgsu Q in the full block M 
=(X, Y),. Let U= DV(H, M) and consider the graph 

G --) Ua 
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If we have a dissolution chain in Ua, we may dissolve 
with replacement since anything lost due to successive 
instantiations is present in G. If we have a dissolution 
chain from G to U, the smallest full block containing it 
will consist of a fundamental subgraph of G and a funda- 
mental subgraph of U. (This full block could be larger if 
the chain contains a strong c-block.) We of course cannot 
replace the fundamental in G, but we may replace the 
funda.mental in U by the entire dissolvent. The following 
example illustrates these ideas. It consists of five funda- 
mental c-connected subgraphs, labeled F, through F5 . 

A(x) - 
1 3 E(x) B7; A(dx)) 

E(x) .-+ 1 I+ 1 --, 1 -, 1 
1 B(x) 4 C(x) W) --r D(x) E(+D(x) W(x)) 

W(x)) 

Fx F2 J’s F4 F6 

Suppose that we first dissolve on link 1; the smallest 
full block containing it (F, conjoined with F, ), and its 
dissolvent, are shown below. 

Am- 

1 ’ 
Qdv)) A(&)) 

A(&)) 1 --P 1 
Et4 ---) 1 Wkb))) wv)) 

1 E@(x)) 1 
W(x)) Am + w(v)) 

Fl F5 F6 

In the original graph, several occurrences of x can be 
standardized apart (although we have not done so), but 
in the dissolvent, all occurrences of v are d-related. The 
dissolution operation has created two d-connected 
occurrences of the literal E(h(v)), both of which are 
linked to E(x) - in the original graph. Therefore these two 
links are descendants of the original link, and they form a 
dissolution chain that is somewhat easier to find (given 
the appropriate bookkeeping) than an arbitrary two-link 
chain. Shown below is F, , the result of dissolving on 
this chain. 

E(hlo) 3 E(7vj) --) A(&) 
B(W)) --) C(W)) Wdv))) 

1 

B(W) - C(W) 4 1 
AkW --) E(W)) 

There are now two d-connected occurrences of the 
c-block B( h( v)) -+ C(h(v)); the two taken together also 
form a c-block. Each is linked to (g(,), m)d, a strong 
c-block in F4. Dissolving results in replacing F7 with: 

Do) 
1 

-qqq+D(hTGIJ 
EkW) 

- Em - 1 - 4dv)) 
W&N) 

Ft3 F9 F 10 Fll 

N& a dissolvent is computed from the link 
Kw w%dv)))h we replace only F,, , the fundamental 
that meets G(f(g(v))). 

F8 FD FL2 FI, 

The c-block consisting of B(f(g(vk+D(_f(g(v))) in 
F,, is linked to the strong c-block (B(x), D(xj)d within 
F, of the original graph. Replacing F r2 by the dissolvent 
yields (we omit F8 ): 

Wtdv))) 
E@(v)) 

C&v))) f, D&ih) 
- - W(v)) 4 W&H) -+ A(dv)) 

F9 Fls F14 F16 Fll 

The proof may be completed using F,, F,, and Fr4: 
- 

E(x)----- ZBrn\ 
1 1 * EkW) 

B(x) - C(x) + G(x)-+D(X) 

J-2 

Dissolving on link 2 produces B(g(v)) ---f C(g(v)), which is 
linked to F4 by a dissolution chain that spans the entire 
graph. 

6.2. Dissolution on copies of graphs 
In the previous technique, dissolution was used once 

within the original graph to create an inferred graph on 
which replacement could safely be performed. Another 
strategy would be to create a copy of the original graph, 
and then dissolve with replacement on the copy as much 
as possible. The idea is to drive the copy toward some 
instantiated linkless consequence, which is then conjoined 
to the original graph. (If we are lucky, the consequence 
will be empty!) The process can then be repeated, with 
preference given to those links (if any) not used in previ- 
ous iterations. Note that in general, as dissolution is 
applied, some links not yet used in the copy will simply 
vanish, their literals having become instantiated in ways 
inconsistent with their original unifiers. 

Let us try this approach on the previous example. 
Links 1 through 6 are compatible. Regardless of the order 
in which they are activated, the resulting graph contains 

Murray and Rosenthal 165 



all c-paths except those through any of the six links. 

Fl F2 F3 J’4 F6 

We omit the individual 
only the result: 

dissolution steps, and present 

The semantic graph above has 6 c-pa.ths, whereas 
the original one has 48. Dissolving on links ‘7 and 8 yields 
the empty graph. 

These techniques look promising, but both are primi- 
tive; much remains to be investigated at the first order 
level. Our intuition is strong that dissolution at the 
ground level is likely to be an effective technique, and we 
cannot help but believe that, if properly lifted, it would 
also be effective for first order logic. 
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