
Revised D ected Backtracking

Charles J. Petrie, Jr.
Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive
Austin, TX 78759

Abstract
Default reasoning is a useful inference technique
which involves choosing a single context in which
further inferences are to be made. If this
choice is incorrect, the context may need to be
switched. Dependency-directed backtracking pro-
vides a method for such context switching. Doyle’s
algorithm for dependency-directed backtracking is re-
vised to allow context switching to be guided by
the calling inference system using domain knowledge.
This new backtracking mechanism has been imple-
mented as part of software for developing expert sys-
tems.

.

Doyle presented an algorithm for performing contradic-
tion resolution by dependency-directed backd;rack-
ing(DDB) in a Truth Maintenance System (TMS)[5, 61.’
Doyle’s algorithm performs an abductive inference [16]. It
takes a special state, denoted by a set of conflicting be-
liefs, and finds some currently disbelieved assertion, belief
in which would resolve the conflict. Doyle’s algorithm pro-
vides a search method for finding such an assertion and
for constructing a reason for its belief. This paper derives
another algorithm more suitable as a general method for
revising the results of default reasoning.

We perform default reasoning when we have a set
of disjoint alternatives and heuristics allow us to make a
choice without doing all of the computation necessary to
ensure that that choice is correct. Commonsense reason-
ing as well as tasks which involve incremental construction,
design [9], or decision making often require default reason-
ing. In contrast to tasks involving parallel computation
in hypothetical worlds and comparison of the results, in
default reasoning a single context is preferred.

A TMS maintains a single context and switches it
when a conflict is signaled by the assertion of a contradic-
tion. When such a switch is made, contradiction resolution
constructs a reason for at least one new belief which then
provides an explanation for the change. For example, a
circuit designer may prefer to use flip-flops with totempole

1 This was later renamed a Reason Maintenance System [7], but
a TMS was defined to mean a class of algorithms by [13] and this
historic usage is continued here.

output and to base his design on that choice unless it later
causes a conflict. If this default choice later must be re-
jected in favor of an alternative, the designer can always
discover why he is using tristate output flip-flops instead
of his original preference by inspecting the reasons for the
current belief.

This paper proposes semantics for the justifications
generated by contradiction resolution and revises Doyle’s
algorithm to conform to them. This technical revision
has important consequences for default reasoning. Doyle’s
algorithm restricts the set of beliefs subject to revision
through a domain-independent strategy of “minimal re-
vision”, but does not provide a general method of fur-
t her specifying the revision. The dependency-directed
backtracking method presented here eliminates domain-
independent search constraints because they are insuffi-
cient to determine correct belief revisions for a given do-
main and they may even eliminate that revision from con-
sideration. Instead, a syntax is presented for representing
domain knowledge that can be used by the calling infer-
ence system to reason about belief revision and to generate
new alternatives as needed to resolve the contradiction.

0 E?SCD

A. Justification Criteria
In [6], a network of assertions is maintained along with
reasons for their belief or disbelief. Each node in the net-
work has associated with it a set of jusMications.2 A
justification is composed of two sets of nodes: an IN-Iis&
and an OUT-k& Each node also has associated with it
a spIppor& status. A justification is valid if each node in
its IN-list has a status of IN and each node in its OUT-list
is similarly OUT. (A justification with empty IN-list and
OUT-list is valid and called a premise.) An assignment of
statuses to a TMS network is consisted when each node
is assigned a status of IN iff it has at least one valid justifi-
cation, and OUT otherwise. Status assignment algorithms
for a TMS network attempt to find assignments in which
the network is consistent and well-founded: no node is
in its own believed repercussions [22]. Alternatives to
Doyle’s original algorithm, which did not always terminate,

2The first use of TMS technical terms will be printed in boldface.
Some defined in [6] are not redefined here.

Petrie 167

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

are given in 122, 11, 191. Doyle also gave an algorithm for
resolution of contradictions using dependeucy-directed
backtracking [23].

In Doyle’s TMS, contradictions have no logical im-
port. They denote a user designated conflicting set of be-
liefs represented by a valid justification for the contradic-
tion. Doyle’s $gorithm resolves contradictions by invali-
dating the reason for belief in-an underlying assumption:
a belief based upon the disbelief of some other node in the
database of propositions. A belief is an assumption if its

supporters include nodes which are OUT (disbelieved).
In the TMS, the assumption selected for disbelief is

known as the culprit. It is retracted by constructing a
valid justification for the elective: the OUT supporter of
the culprit which is chosen for belief in preference to belief
in the culprit. We propose the following desiderata for the
justification constructed for the elective:

1. The justification should be sufficient: it should allow
a consistent and well-founded assignment of support
statuses such that the contradiction is OUT.

2. The justification should be safe: it should not in-
troduce an unsatisflable circularity into the TMS
data. (This has also been independently noted by Re-
infrank 1211.)

3. The justification should be complete: whenever the
contradiction is OUT, either the elective is in any pos-
sible transitive closure of the supporters of the contra-
diction or the justification is invalid. (I.e., if it is pos-
sible for the contradiction to be resolved without the
elective being IN, then the justification should become
invalid.)

The justifications constructed by Doyle’s contradic-
tion resolution algorithm are sufficient but can be greatly
simplified and are neither safe nor complete.

Es. evision of the Elective Justification
Doyle’s algorithm for contradiction resolution determines
a maximal assumption set (MAS): the largest subset
of the set of all assumptions in the foundations of the
contradiction such that no member of the subset is in the
foundations of another subset member. If the MAS is A,
an element Ai is chosen as the culprit, Ai has IN support-
ers I and OUT supporters D, then the chosen elective Dj
will receive the justification with an IN-list composed of

IU{NG}UA - {Ai} and an OUT-list with D - {Oj},
where NG is a specially constructed nogood node with
a conditional-proof (CP) justification, both of which we
briefly describe below. We first note that previously pub-
lished algorithms [6, l] h ave failed to include the IN-list of
the culprit in the justification of the elective. This minor
error causes the justification to be incomplete.

The nogood node asserts that simultaneous belief in
the members of the MAS is inconsistent. The justifica-
tions described so far are support-&t justifications in
contrast to the CP justification required for the nogood
node. Rather than describe the CP justification, it is only

necessary to note that it is a significant disadvantage of
the TMS. The CP justifications are actually represented
by equivalent support-list justifications requiring contin-
ued validity checks by the TMS. Not only is this emulation
expensive, but also the nodes with CP justifications are IN
only in a subset of cases in which they could be [6]. Other
types of TMS’s have been proposed that require no such
justification [12, 13, 11. In the case of [l], this means that
the elective justification is incomplete. For the others, it
means that the calling logic must be integrated into the
TMS [17], which at the least alters the intent of the TMS.
In the case of [13], nonmonotonic reasoning is not permit-
ted. A different implementation of CP justifications has
also been proposed in [ll]. However, a slight alteration of
the status assignment algorithm completely removes the
necessity for CP justifications.

It is possible to create dependency networks in which
there are at least two distinct consistent and well-founded
assignments of support statuses. For instance, consider the
network of nodes with single justifications: node A has a
node B in its justification’s OUT-list, node B has node C
in its justification’s OUT-list, and node C has node A in
its justification’s IN-list. Either nodes A and C are IN and
B is OUT, or just the inverse. Either assignment of sta-
tuses is acceptable. We now require the status assignment
mechanism to prefer the consistent and well-founded state
in which all contradictions are OUT, if one exists. In this
example, the status assignment mechanism would make A
and C IN and B OUT, if node B were the contradiction
and these were the only nodes and dependencies involved.

Now let each contradiction in the TMS be unique:
each can have only one justification. Then the elective for
a contradiction will have the same justification as described
with two exceptions. The most important change in the
justification is that we substitute the contradiction in the
0 UT-list for th e nogood node in the IN-list and the latter is
eliminated. This will always create an ambiguity in status
assignment if the contradiction can be consistently labeled
OUT. Then the status assignment mechanism will so label
the contradiction. Now belief in the elective rests directly
on lack of belief in the contradiction. The semantics of this
are that we are assuming belief in the elective in preference
to belief in the contradiction. The justification directly
represents this explanation for belief in the elective.

The second change is that, to be complete, we must
also include additional elements in the justification that
were previously used in the CP justification. However,
the work of finding these nodes can be eliminated, as well
as the work of generating the MAS. We are led to this
conclusion by noting that our elective justification, like
Doyle’s justification, is not safe.

C. Odd Loop Checking
If an element of the IN-list of the justification is in the be-
lieved repercussions of the elective, then obviously it will
cause a problem. If some element of this set is a believed
repercussion, then we must choose a different elective. If

168 Automated Reasoning

there are no more, we must choose a different assumption.
Similarly, it is clear that no element of the OUT-list may
be in the repercussions of the elective. Actually, the sit-
uation is worse than this. An unsatisfiable circularity may
be created if any element of the justification of the elec-
tive is only in the transitive closure of its consequences
(TCC). This is evident for the case when the elective oc-
curs in the OUT-list of an already invalid justification of
an element in the justification of the elective.

The proposed justification will not introduce an unsat-
isfiable circularity if it does not introduce any o&I loops
[l]. If an element of the justification of the elective is con-
tained in the TCC of the elective and there are only “even
loops” containing that element and the elective, the elec-
tive is still “safe”. Determining this adds negligible com-
putation to that involved in generating the TCC. Also,
we only need to do a partial closure in that we need not
consider the consequences of contradiction nodes. But the
requirement for this determination leads to elimination of
the creation of the MAS.

For a contradiction C, the MAS contains those as-
sumptions which are nearest to C in its foundations and
none of which are in the foundations of another element of
the set. This set implements the strategy of “minimal revi-
sion” : retract the assumption that causes the least change
in the database. Retraction of a maximal assumption is
guaranteed to cause fewer changes than retraction of a
nonmaximal assumption. We must check the TCC of the
elective even when we have a maximal assumption set, but
this check also allows us to avoid choosing an assumption
which is not maximal. Suppose that we pick some set T of
assumptions, not necessarily maximal, in the foundations
of the contradiction. If we pick a culprit A and an elective
E, we can easily determine if A is in the foundations of any
other element of T by examining the TCC of E.

Generating the MAS requires that we completely ex-
amine the foundations of the contradiction. We must also
examine the transitive closure of the consequences of the
elective to be safe. Thus, the foundation examination rep-
resents unnecessary work. We now present an algorithm
which eliminates such work, avoids deriving the nodes cor-
responding to the CP justification, still permits minimal
revision, and generates a safe and complete justification

. evised I3 -based Contradiction
esohtion

Let set S be the supporters of contradiction C. (As-
sume for now that contradiction nodes have empty
OUT-lists.) Th e contradiction is resolved iff function

MAKEOUT(S,nil,{C)) t re urns a justification for an elec-
tive. If so the justification will satisfy the three properties
of section 1I.A.

Define MAKEOUT (A, IJ, OJ):

1. If A is null, return “false”.

2. Pick Ai E A. Construct the TCC of Ai and save it. If
some element of A - Ai is in the repercussions of Ai,

3.

4.

1.

2.

3.

4.

then go to step 4. Otherwise, let Ji be the support-
ing jt&ificatio~ of Ai. If MAKEIN(OUT-list of Ji,
IJ U IN-list of Ji U A - {Ai}, OJ), then return it.

If MAKEOUT(A - {Ai), IJ lJ {Ai), OJ) then return
it.

Return MAKEQUT(IN-list of Ji) IJ U A - { Ai}, OJ
U OUT-list of Ji).

Define MAKEIN (A, IJ, OJ):

If A is null, return ‘false’.

Pick Ai E A. If Ai is a contradiction, return
MAKEIN(A-{Ai}, IJ, OJ U {Ai}).

Construct justification J, for Ai with an IN-list con-
sisting of IJ, and an OUT-list consisting of OJ to-
gether with A - {Ad}. C onstruct the TCC of Ai mak-
ing use of the TCCs of elements of IJ already con-
structed so far. If the new justification will not create
any odd loops, return it and the elective.

Return MAKEIN(A-{Ai}, IJ, OJ U {Ai)).

In this algorithm, we start by trying to make OUT
some IN supporter of the contradiction using MAKEOUT.
To make a node OUT with this function, we first try to
make some element of the OUT-list of the supporting jus-
tification IN using MAKEIN. If that fails, we first try to
make another element of the first argument of MAKEOUT
OUT. As a last resort, we try to make some element of the
IN-list of the supporting justification OUT using MAKE-
OUT recursively. A contradiction node cannot be made
IN. Any other node can be made IN by giving it the con-
structed justification.

Sufficiency is acheived by an OUT-list-first search fol-
lowed by a depth-first seach of the contradiction’s foun-
dations. Safety is guaranteed by step 3 of MAKEIN. The
actual check for odd loops by examination of the TCC can
be implemented cheaply. Completeness is ensured by the
additions to IJ and OJ in recursive calls to MAKEOUT
and MAKEIN. The algorithm also collects other relevant
contradictions to be placed in the OUT-list of the justifi-
cation of the elective.

. ase

Because of the elimination of the MAS in the above al-
gorithm, the search space can be extended to include the
entire foundations of the contradiction rather than being
restricted to the maximal assumptions. In an experimental
expert application development system called “Proteus”
[2013, the above algorithm has been extended in the fol-
lowing ways.

3There are two commercial design applications [25, 241 using Pro-
teus. Other design applications are experimental and internal to
MCC.

A. Extended Backtracking
The elective may already have at least one justification, al-
though it has no valid one. Adding a new justification may
implicitly violate domain rules. For instance, the reason
a particular elective is OUT is because some exception is
IN. Simply adding another justification, as dictated by the
strategy of minimal revision, ignores this exception. In the
current implementation, a proof attempt is first made on
each candidate elective. If it is not successful, then either
domain knowledge or the user must indicate that it is per-
missible to construct a new justification for the elective.
If this is not the case, an attempt is made to make one
of the existing justifications, if any, valid. This is accom-
plished by recursively calling MAKEOUT on the elements
of the OUT-list and MAKEIN on the elements of the IN-
list. This may result in justifications being constructed for
more than a single elective. Contradictions resolved earlier
are prevented from coming IN again by recursively calling
MAKEOUT on those found in the TCC of the elective.
If the current contradiction cannot be resolved, or cannot
be resolved without bringing IN some previously resolved
contradiction, it is left unresolved and marked as such. An
extended algorithm for this is given in [18].

B. Depth-First Guidance

The extended algorithm is essentially a depth-first search
biased toward the OUT-lists. It is easily modified to use
domain knowledge to guide the search for electives. In step
two of the algorithm for MAKEOUT, some element of the
set of candidate culprits, which is the first argument to
MAKEOUT, is chosen. An attempt will be made to find a
reason to disbelieve the chosen culprit. It would be a less
than optimum choice to select a candidate which is more
strongly believed than some other candidate. It is desir-
able, then, to provide a general mechanism for representing
domain knowledge about the relative rankings of beliefs in
the various assertions under different circumstances and
be able to use the same rule system to reason about this
knowledge as is used in the rest of the application.

A two argument predicate PREFER has been imple-
mented which states that belief in the assertion of its first
argument is preferred to belief in that of the second for
the purposes of belief revision. When choosing a candi-
date culprit from the MAKEOUT set, an attempt is made
to prove that this culprit is preferred to some other ele-
ment of the set. If a less preferred element is found, then
it becomes the candidate culprit and the process recurses.
PREFER thus enforces a partial ordering on the candi-
date culprits such that none of them will be chosen before
others which are more suspect. Similarly, in MAKEIN,
PREFER is used to ensure that no candidate elective is
chosen before some other for which belief is preferred.

Assertions using the PREFER predicate, called pref-
erences, can be based on object types and can be concluded
by Proteus rules with variables instantiated at run time.
Since these rules may have antecedents which are satisfied

only in certain contexts, the selection of culprits and elec-
tives can be controlled dynamically. The preferences may
be based on numbers, lists, or arbitrary domain reasoning.
We also provide for interactive control of the selection of
culprits and electives if desired. The ability to add this
domain knowledge overcomes the disadvantage of “blind”
dependency-directed backtracking.[l4]

PREFER is also used to define a terminal node in
the search. As described above, a proof attempt is made
on each candidate elective. If such a proof is not possible
using rules, but the application allows the truth of that
particular elective to be asked of the user, one of three
possible answers is allowed: “yes”, “no”, and “maybe”.
The first causes the elective to be provided with a premise
justification. The second disqualifies the elective from fur-
ther consideration. The third gives permission for a new
justification to be constructed, thus defining a leaf of the
network search. Instead of such a user query, PREFER
can be used for the same purpose. If CONTRADICTION
is the second argument of a preference, then the first argu-
ment is eligible to receive a constructed justification: the
semantics are that belief in the elective may be assumed
in preference to that in the contradiction. If CONTRA-
DICTION is the first argument, the inverse is true and the
candidate also defines a terminal but unsuccessful node in
the network. In no case will Proteus arbitrarily justify an
elective in order to resolve a contradiction.

C. Finding New Alternatives to Defaults
The capability for dynamic generation of elective candi-
dates is provided with a predicate, DEFEAT, which takes
three arguments: the candidate culprit, some element of
the IN-list of a justification of the culprit, and some new
elective. If a DEFEAT assertion can be proven, the elec-
tive may be added to the OUT-list of any justification of
the culprit identified by the IN-list element. The semantics
of DEFEAT are that some reason for believing the culprit
can be defeated by belief in some new exception or alter-
native. In step two of the algorithm for MAKEOUT, if no
member of the existing OUT-list can be made IN, then an
attempt is made to prove a DEFEAT for the culprit to add
to the OUT-list. DEFEATS are general in that they can
be concluded by rules, like preferences. Thus, they can be
used to generate arbitrary new alternatives to belief in the
culprit. Proteus also allows for the interactive acquisition
of new alternatives and even DEFEATS.

D. Focused Search
For a given domain and situation, the culprit and elective
that should be considered first may lie several levels deep
in the dependency-structure which supports the contradic-
tion. A predicate FIX has been implemented which takes
three arguments: the first is a candidate culprit, the sec-
ond a possible ancestor, and the third a possible elective
for that ancestor. The semantics of a FIX are that if the
second argument is an ancestor of the first, for the current
dependency network, and if the third can be an elective

170 Automated Reasoning

of the second (is in the OUT-list of a supporting justi-
fication or can be placed there by a DEFEAT), then an
attempt should be made to believe the elective (and a call
to MAKEIN is made on it.) Such FIXes are used to focus
first on nodes deep within the foundations of a contradic-
tion prior to performing the depth-first search described
above. Fixes are most useful when the first argument uni-
fies with a supporter of the contradiction, but may also be
used during search. The choice between which of several
FIXes to pursue first is determined by the preference order
on their various electives. FIXes may also be concluded by
rules.

E. Example

A doctor might conclude that patient Jane is dehydrated
from observation of the appropriate symptoms. That leads
to a conclusion that Jane has a low amount of water which
in turn leads to a conclusion that Jane should have a high
sodium concentration. However, the lab results indicate
that Jane actually has a low sodium concentration. There
were at least three default assumptions made in this ex-
ample, retraction of which would resolve the contradiction.
The doctor assumed that the symptoms were those of de-
hyration and not some other disease. He assumed that
Jane’s sodium level was normal. And there is an assump-
tion that the lab test is correct.

In a typical TMS dependency network produced by
this logic, a depth-first search would explore first a possi-
ble lab test error, then an abnormal sodium level, and fi-
nally a recheck of the symptoms. This does not correspond
to actual practice. Typically, the doctor first rechecks the
symptoms because it is easy to do. Then (or perhaps at
the same time), he may ask for the lab work to be redone.
He will be particularly suspicious of the lab work if a high
glucose level is indicated because this interferes with nor-
mal calculations of sodium levels. If these simple “fixes”
to the problem aren’t sufficient to resolve it, he carefully
reconsiders his thinking. The obvious alternative to a nor-
mal sodium level is either directly proven or assumed and
the doctor is led to consideration of a cause.

In Proteus, this problem resolution could be repre-
sented by two FIXes, one conditional preference between
them, and a DEFEAT. One FIX would say that if the con-
tradiction is supported by a conclusion which is somehow
supported by an observation of symptoms, then suspect
a mistaken observation. The other FIX would simply say
that any lab test supporting a contradiction should be re-
done tid checked for error. The preference would be to
check out the mistaken observation prior to redoing the
lab test, unless the patient were unusually difficult to ob-
serve or it was known that the patient’s glucose level was
high and the lab test under consideration was for sodium
concentration. The DEFEAT would defeat the conclusion
of a high sodium concentration by generating the possibil-
ity of an abnormal sodium level. This would occur in the
depth-first search if neither FIX were successful.

e orisons
McAllester’s RUP [13] p rovides a general purpose method
of premise control using “likelihood classes”. However, this
approach imposes a global ordering on the database which
is more complete than is actually justified. Proteus uses
the PREFER predicate to avoid this problem. Unlike Co-
hen [2], no predefined categories of preferences are defined.
In DEBACLE, Forbus [lo] 1 a so objects to likelihood classes
and instead defines “closed-world assumptions” which are
checked for invalidity before trying special purpose rou-
tines ordered in a stack.

In an extension to the ATMS [4], a simple list is used
to order the selection of culprit candidates. In WATSON
[15] , the call in in erence system is allowed to attempt g f
to prove that candidate culprits may be ordered by rele-
vance to the story being parsed. In PLANET [3], special
objects called “decision choices” are created which contain
information about alternatives and their effects on con-
strained resources. Contradictions are caused by resource
constraint violations and resolved by selecting alternatives
which are not disadvantageous to the resource in question.

Proteus provides a Lore domain-independent and dy-
namic mechanism for controlling backtracking than these
systems. Preferences may be concluded on an arbitrary
basis and alternatives need not be enumerated prior to the
occurance of the contradiction. Rather than select a set of
predefined objects from the foundations of the contradic-
tion, FIXes allow any assertion in the database to belong in
the initial focus of candidate culprits and electives. If these
are not successful, exhaustive search is used. Unlike pre-
vious algorithms, , the extended search described in section
III may result in more than one elective being justified.

Doyle’s original algorithm for contradiction resolution is -
revised to conform to proposed semantics. A new al-
gorithm for dependency-directed backtracking is derived
which allows any node in the dependency network to be
considered for inclusion in a set of assumptions to be
retracted during contradiction resolution. This allows
domain-independent search constraints to be rejected in
favor of a general backtracking control method dependent
on domain knowledge. Special predicates are defined which
allow the application builder to represent domain knowl-
edge about how to switch contexts when beliefs conflict.
The selection of the new context can be reasoned on the
basis of the current state of the database and new alterna-
tives generated dynamically. This has been implemented
as a general method for revising the results of default rea-
soning in expert systems.

Petrie 171

PI

PI

PI

PI

151

PI

171

PI

PI

PO1

WI

WI

WI

Char&k E., Riesbeck C., and McDermott

Dv “Data Dependencies,” Artificial Intel-
ligence Programming, Chap. 16, L. E. Erl-
baum, Baltimore, 1979.

Cohen, P. R., Heuristic Reasoning about
Uncertainty: An Artificial Intelligence Ap-
proach, Pitman Publishing, Marshfield,
MA, 1985.

Dhar V. and Quayle C., “An Approach to
Dependency Directed Backtracking using
Domain Specific Knowledge,” PTOC. IJCAI-
85, pp. 188-190, 1985.

De Kleer J., “Back to Backtracking: Con-

trolling the ATMS,” PTOC. of the Fijth Na-
tional Conference on Artificial Intelligence,
AAAI, pp. 910-917, 1986.

Doyle J., “Truth Maintenance Systems for
Problem Solving,” Technical Report AI-
TR-419, Massachusetts Institute of Tech-
nology, AI Lab., 1978.

Doyle J., “A Truth Maintenance System,”
Artificial Intelligence, Vol.12, No.3, pp.
231-272, 1979.

Doyle J., “A Model for Deliberation, Ac-
tion, and Introspection,” AI-TR-581, Mas-
sachusetts Institute of Technology, AI Lab.,
1980.

Doyle J., “Some Theories of Reasoned As-
sumptions,” CMU CS-83-125, Carnegie-
Mellon University, Dept. of Comp. Sci.,
1983.

Feldman, Y. A., and Rich, C., “Reasoning
With Simplifying Assumptions: A Method-
ology and Example,” PTOC. of the Fijth Na-
tional Conference on Artificial Intelligence,
AAAI, pp. 2-7, 1986.

Forbus, K. D., “Qualitative Process The-
ory,” Appendix, AI-TR-789, Massachusetts
Institute of Technology, AI Lab., 1984.

Goodwin, James W., “An Improved Algo-
rithm for Non-monotonic Dependency Net
Update,” LiTH-MAT-R-82-23, Linkoping
Institute of Technology, Sweden.

Martins J., “Reasoning in Multiple Belief
Spaces,” TR-203, State University of New
York at Buffalo, 1983.

McAllester D., “An Outlook on Truth
Maintenance,” A.I. Memo 551, Mas-
sachusetts Institute of Technology, AI Lab.,
1980.

[14] Morris, P. H., Nado, R. A., “Representing
Actions with an Assumption-Based Truth
Maintenance System,” PTOC. of the Fifth

172 Automated Reasoning

National Conference on Artijkial Intelli-
gence, AAAI, pp. 13-17, 1986.

[15] Orejel-Opisso, J. L., “Story Understand-
ing with WATSON: A Computer Program
Modeling Natural Language Inferences Us-
ing Nonmonotonic Dependencies,” Masters
Thesis, University of Illinois at Urbana-
Champaign, 1984.

[16] Pierce, C. S., Scientific Metaphysics,
Vol. VI, pp. 358.

[17] Petrie, C., “‘Using Explicit Contradictions
to Provide Explanations in a TMS,” Micro-
electronics and Computer Technology Cor-
poration Technical Report MCC/AI/TR-

0100-05, 1985.

[18] Petrie, C., “Extended Contradiction Res-
olution,” Technical Report, Microelectron-
ics and Computer Technology Corporation
MCC TR AI-102-86, 1986.

[19] Petrie, C., “A Diffusing Computation for
Truth Maintenance,” PTOC. of the IEEE In-
ternational Conf. on Parallel Processing,
August 1986, pp. 691-695.

[20] Petrie, C., Russinoff, R., and Steiner, D.,
‘“Proteus: A Default Reasoning Perspec-
t ive,” PTOC. 5th Generation Conj., Nat.
Inst. for Software, October, 1986.

[21] Reinfrank, M., et al., “KAPRI - A Rule-
Based Non-Monotonic Inference Engine
with ~l~l Integrated Reason Maintenance
System,” Research Report Draft, Univer-
sity of Kaiserslautern, January 1986.

[22] Russinoff, D., “An Algorithm for Truth
Maintenance,” Microelectronics and Com-
puter Technology Corporation Technical
Report AI/TR-062-85,1985.

[23] Stallman ,R. and Sussman, G., “Forward
Reasoning and Dependency-Directed Back-
tracking,” Memo 380, Massachusetts Insti-
tute of Technology, AI Lab., Sept. 1976.

[24] Steele, R., “An Expert System Applica-
tion in Semicustom VLSI Design,” PTOC.
24th IEEE/ACM Design Automation Con-
ference, Miami, 1987.

[25] Virdhagriswaran, S., et al., “PLEX: A
Knowledge Based Placement Program for
Printed Wire Boards,” PTOC. 3rd IEEE AI
Applications Con$, February, 1987.

