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Abstract 
Default reasoning is a useful inference technique 
which involves choosing a single context in which 
further inferences are to be made. If this 
choice is incorrect, the context may need to be 
switched. Dependency-directed backtracking pro- 
vides a method for such context switching. Doyle’s 
algorithm for dependency-directed backtracking is re- 
vised to allow context switching to be guided by 
the calling inference system using domain knowledge. 
This new backtracking mechanism has been imple- 
mented as part of software for developing expert sys- 
tems. 

. 

Doyle presented an algorithm for performing contradic- 
tion resolution by dependency-directed backd;rack- 
ing(DDB) in a Truth Maintenance System (TMS)[5, 61.’ 
Doyle’s algorithm performs an abductive inference [16]. It 
takes a special state, denoted by a set of conflicting be- 
liefs, and finds some currently disbelieved assertion, belief 
in which would resolve the conflict. Doyle’s algorithm pro- 
vides a search method for finding such an assertion and 
for constructing a reason for its belief. This paper derives 
another algorithm more suitable as a general method for 
revising the results of default reasoning. 

We perform default reasoning when we have a set 
of disjoint alternatives and heuristics allow us to make a 
choice without doing all of the computation necessary to 
ensure that that choice is correct. Commonsense reason- 
ing as well as tasks which involve incremental construction, 
design [9], or decision making often require default reason- 
ing. In contrast to tasks involving parallel computation 
in hypothetical worlds and comparison of the results, in 
default reasoning a single context is preferred. 

A TMS maintains a single context and switches it 
when a conflict is signaled by the assertion of a contradic- 
tion. When such a switch is made, contradiction resolution 
constructs a reason for at least one new belief which then 
provides an explanation for the change. For example, a 
circuit designer may prefer to use flip-flops with totempole 

1 This was later renamed a Reason Maintenance System [7], but 
a TMS was defined to mean a class of algorithms by [13] and this 
historic usage is continued here. 

output and to base his design on that choice unless it later 
causes a conflict. If this default choice later must be re- 
jected in favor of an alternative, the designer can always 
discover why he is using tristate output flip-flops instead 
of his original preference by inspecting the reasons for the 
current belief. 

This paper proposes semantics for the justifications 
generated by contradiction resolution and revises Doyle’s 
algorithm to conform to them. This technical revision 
has important consequences for default reasoning. Doyle’s 
algorithm restricts the set of beliefs subject to revision 
through a domain-independent strategy of “minimal re- 
vision”, but does not provide a general method of fur- 
t her specifying the revision. The dependency-directed 
backtracking method presented here eliminates domain- 
independent search constraints because they are insuffi- 
cient to determine correct belief revisions for a given do- 
main and they may even eliminate that revision from con- 
sideration. Instead, a syntax is presented for representing 
domain knowledge that can be used by the calling infer- 
ence system to reason about belief revision and to generate 
new alternatives as needed to resolve the contradiction. 

0 E?SCD 

A. Justification Criteria 
In [6], a network of assertions is maintained along with 
reasons for their belief or disbelief. Each node in the net- 
work has associated with it a set of jusMications.2 A 
justification is composed of two sets of nodes: an IN-Iis& 
and an OUT-k& Each node also has associated with it 
a spIppor& status. A justification is valid if each node in 
its IN-list has a status of IN and each node in its OUT-list 
is similarly OUT. (A justification with empty IN-list and 
OUT-list is valid and called a premise.) An assignment of 
statuses to a TMS network is consisted when each node 
is assigned a status of IN iff it has at least one valid justifi- 
cation, and OUT otherwise. Status assignment algorithms 
for a TMS network attempt to find assignments in which 
the network is consistent and well-founded: no node is 
in its own believed repercussions [22]. Alternatives to 
Doyle’s original algorithm, which did not always terminate, 

2The first use of TMS technical terms will be printed in boldface. 
Some defined in [6] are not redefined here. 
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are given in 122, 11, 191. Doyle also gave an algorithm for 
resolution of contradictions using dependeucy-directed 
backtracking [23]. 

In Doyle’s TMS, contradictions have no logical im- 
port. They denote a user designated conflicting set of be- 
liefs represented by a valid justification for the contradic- 
tion. Doyle’s $gorithm resolves contradictions by invali- 
dating the reason for belief in-an underlying assumption: 
a belief based upon the disbelief of some other node in the 
database of propositions. A belief is an assumption if its 

supporters include nodes which are OUT (disbelieved). 
In the TMS, the assumption selected for disbelief is 

known as the culprit. It is retracted by constructing a 
valid justification for the elective: the OUT supporter of 
the culprit which is chosen for belief in preference to belief 
in the culprit. We propose the following desiderata for the 
justification constructed for the elective: 

1. The justification should be sufficient: it should allow 
a consistent and well-founded assignment of support 
statuses such that the contradiction is OUT. 

2. The justification should be safe: it should not in- 
troduce an unsatisflable circularity into the TMS 
data. (This has also been independently noted by Re- 
infrank 1211.) 

3. The justification should be complete: whenever the 
contradiction is OUT, either the elective is in any pos- 
sible transitive closure of the supporters of the contra- 
diction or the justification is invalid. (I.e., if it is pos- 
sible for the contradiction to be resolved without the 
elective being IN, then the justification should become 
invalid.) 

The justifications constructed by Doyle’s contradic- 
tion resolution algorithm are sufficient but can be greatly 
simplified and are neither safe nor complete. 

Es. evision of the Elective Justification 
Doyle’s algorithm for contradiction resolution determines 
a maximal assumption set (MAS): the largest subset 
of the set of all assumptions in the foundations of the 
contradiction such that no member of the subset is in the 
foundations of another subset member. If the MAS is A, 
an element Ai is chosen as the culprit, Ai has IN support- 
ers I and OUT supporters D, then the chosen elective Dj 
will receive the justification with an IN-list composed of 

IU{NG}UA - {Ai} and an OUT-list with D - {Oj}, 
where NG is a specially constructed nogood node with 
a conditional-proof (CP) justification, both of which we 
briefly describe below. We first note that previously pub- 
lished algorithms [6, l] h ave failed to include the IN-list of 
the culprit in the justification of the elective. This minor 
error causes the justification to be incomplete. 

The nogood node asserts that simultaneous belief in 
the members of the MAS is inconsistent. The justifica- 
tions described so far are support-&t justifications in 
contrast to the CP justification required for the nogood 
node. Rather than describe the CP justification, it is only 

necessary to note that it is a significant disadvantage of 
the TMS. The CP justifications are actually represented 
by equivalent support-list justifications requiring contin- 
ued validity checks by the TMS. Not only is this emulation 
expensive, but also the nodes with CP justifications are IN 
only in a subset of cases in which they could be [6]. Other 
types of TMS’s have been proposed that require no such 
justification [12, 13, 11. In the case of [l], this means that 
the elective justification is incomplete. For the others, it 
means that the calling logic must be integrated into the 
TMS [17], which at the least alters the intent of the TMS. 
In the case of [13], nonmonotonic reasoning is not permit- 
ted. A different implementation of CP justifications has 
also been proposed in [ll]. However, a slight alteration of 
the status assignment algorithm completely removes the 
necessity for CP justifications. 

It is possible to create dependency networks in which 
there are at least two distinct consistent and well-founded 
assignments of support statuses. For instance, consider the 
network of nodes with single justifications: node A has a 
node B in its justification’s OUT-list, node B has node C 
in its justification’s OUT-list, and node C has node A in 
its justification’s IN-list. Either nodes A and C are IN and 
B is OUT, or just the inverse. Either assignment of sta- 
tuses is acceptable. We now require the status assignment 
mechanism to prefer the consistent and well-founded state 
in which all contradictions are OUT, if one exists. In this 
example, the status assignment mechanism would make A 
and C IN and B OUT, if node B were the contradiction 
and these were the only nodes and dependencies involved. 

Now let each contradiction in the TMS be unique: 
each can have only one justification. Then the elective for 
a contradiction will have the same justification as described 
with two exceptions. The most important change in the 
justification is that we substitute the contradiction in the 
0 UT-list for th e nogood node in the IN-list and the latter is 
eliminated. This will always create an ambiguity in status 
assignment if the contradiction can be consistently labeled 
OUT. Then the status assignment mechanism will so label 
the contradiction. Now belief in the elective rests directly 
on lack of belief in the contradiction. The semantics of this 
are that we are assuming belief in the elective in preference 
to belief in the contradiction. The justification directly 
represents this explanation for belief in the elective. 

The second change is that, to be complete, we must 
also include additional elements in the justification that 
were previously used in the CP justification. However, 
the work of finding these nodes can be eliminated, as well 
as the work of generating the MAS. We are led to this 
conclusion by noting that our elective justification, like 
Doyle’s justification, is not safe. 

C. Odd Loop Checking 
If an element of the IN-list of the justification is in the be- 
lieved repercussions of the elective, then obviously it will 
cause a problem. If some element of this set is a believed 
repercussion, then we must choose a different elective. If 
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there are no more, we must choose a different assumption. 
Similarly, it is clear that no element of the OUT-list may 
be in the repercussions of the elective. Actually, the sit- 
uation is worse than this. An unsatisfiable circularity may 
be created if any element of the justification of the elec- 
tive is only in the transitive closure of its consequences 
(TCC). This is evident for the case when the elective oc- 
curs in the OUT-list of an already invalid justification of 
an element in the justification of the elective. 

The proposed justification will not introduce an unsat- 
isfiable circularity if it does not introduce any o&I loops 
[l]. If an element of the justification of the elective is con- 
tained in the TCC of the elective and there are only “even 
loops” containing that element and the elective, the elec- 
tive is still “safe”. Determining this adds negligible com- 
putation to that involved in generating the TCC. Also, 
we only need to do a partial closure in that we need not 
consider the consequences of contradiction nodes. But the 
requirement for this determination leads to elimination of 
the creation of the MAS. 

For a contradiction C, the MAS contains those as- 
sumptions which are nearest to C in its foundations and 
none of which are in the foundations of another element of 
the set. This set implements the strategy of “minimal revi- 
sion” : retract the assumption that causes the least change 
in the database. Retraction of a maximal assumption is 
guaranteed to cause fewer changes than retraction of a 
nonmaximal assumption. We must check the TCC of the 
elective even when we have a maximal assumption set, but 
this check also allows us to avoid choosing an assumption 
which is not maximal. Suppose that we pick some set T of 
assumptions, not necessarily maximal, in the foundations 
of the contradiction. If we pick a culprit A and an elective 
E, we can easily determine if A is in the foundations of any 
other element of T by examining the TCC of E. 

Generating the MAS requires that we completely ex- 
amine the foundations of the contradiction. We must also 
examine the transitive closure of the consequences of the 
elective to be safe. Thus, the foundation examination rep- 
resents unnecessary work. We now present an algorithm 
which eliminates such work, avoids deriving the nodes cor- 
responding to the CP justification, still permits minimal 
revision, and generates a safe and complete justification 

. evised I3 -based Contradiction 
esohtion 

Let set S be the supporters of contradiction C. (As- 
sume for now that contradiction nodes have empty 
OUT-lists.) Th e contradiction is resolved iff function 

MAKEOUT(S,nil,{C)) t re urns a justification for an elec- 
tive. If so the justification will satisfy the three properties 
of section 1I.A. 

Define MAKEOUT (A, IJ, OJ): 

1. If A is null, return “false”. 

2. Pick Ai E A. Construct the TCC of Ai and save it. If 
some element of A - Ai is in the repercussions of Ai, 

3. 

4. 

1. 

2. 

3. 

4. 

then go to step 4. Otherwise, let Ji be the support- 
ing jt&ificatio~ of Ai. If MAKEIN(OUT-list of Ji, 
IJ U IN-list of Ji U A - {Ai}, OJ), then return it. 

If MAKEOUT(A - {Ai), IJ lJ {Ai), OJ) then return 
it. 

Return MAKEQUT(IN-list of Ji) IJ U A - { Ai}, OJ 
U OUT-list of Ji). 

Define MAKEIN (A, IJ, OJ): 

If A is null, return ‘false’. 

Pick Ai E A. If Ai is a contradiction, return 
MAKEIN(A-{Ai}, IJ, OJ U {Ai}). 

Construct justification J, for Ai with an IN-list con- 
sisting of IJ, and an OUT-list consisting of OJ to- 
gether with A - {Ad}. C onstruct the TCC of Ai mak- 
ing use of the TCCs of elements of IJ already con- 
structed so far. If the new justification will not create 
any odd loops, return it and the elective. 

Return MAKEIN(A-{Ai}, IJ, OJ U {Ai)). 

In this algorithm, we start by trying to make OUT 
some IN supporter of the contradiction using MAKEOUT. 
To make a node OUT with this function, we first try to 
make some element of the OUT-list of the supporting jus- 
tification IN using MAKEIN. If that fails, we first try to 
make another element of the first argument of MAKEOUT 
OUT. As a last resort, we try to make some element of the 
IN-list of the supporting justification OUT using MAKE- 
OUT recursively. A contradiction node cannot be made 
IN. Any other node can be made IN by giving it the con- 
structed justification. 

Sufficiency is acheived by an OUT-list-first search fol- 
lowed by a depth-first seach of the contradiction’s foun- 
dations. Safety is guaranteed by step 3 of MAKEIN. The 
actual check for odd loops by examination of the TCC can 
be implemented cheaply. Completeness is ensured by the 
additions to IJ and OJ in recursive calls to MAKEOUT 
and MAKEIN. The algorithm also collects other relevant 
contradictions to be placed in the OUT-list of the justifi- 
cation of the elective. 

. ase 

Because of the elimination of the MAS in the above al- 
gorithm, the search space can be extended to include the 
entire foundations of the contradiction rather than being 
restricted to the maximal assumptions. In an experimental 
expert application development system called “Proteus” 
[2013, the above algorithm has been extended in the fol- 
lowing ways. 

3There are two commercial design applications [25, 241 using Pro- 
teus. Other design applications are experimental and internal to 
MCC. 



A. Extended Backtracking 
The elective may already have at least one justification, al- 
though it has no valid one. Adding a new justification may 
implicitly violate domain rules. For instance, the reason 
a particular elective is OUT is because some exception is 
IN. Simply adding another justification, as dictated by the 
strategy of minimal revision, ignores this exception. In the 
current implementation, a proof attempt is first made on 
each candidate elective. If it is not successful, then either 
domain knowledge or the user must indicate that it is per- 
missible to construct a new justification for the elective. 
If this is not the case, an attempt is made to make one 
of the existing justifications, if any, valid. This is accom- 
plished by recursively calling MAKEOUT on the elements 
of the OUT-list and MAKEIN on the elements of the IN- 
list. This may result in justifications being constructed for 
more than a single elective. Contradictions resolved earlier 
are prevented from coming IN again by recursively calling 
MAKEOUT on those found in the TCC of the elective. 
If the current contradiction cannot be resolved, or cannot 
be resolved without bringing IN some previously resolved 
contradiction, it is left unresolved and marked as such. An 
extended algorithm for this is given in [18]. 

B. Depth-First Guidance 

The extended algorithm is essentially a depth-first search 
biased toward the OUT-lists. It is easily modified to use 
domain knowledge to guide the search for electives. In step 
two of the algorithm for MAKEOUT, some element of the 
set of candidate culprits, which is the first argument to 
MAKEOUT, is chosen. An attempt will be made to find a 
reason to disbelieve the chosen culprit. It would be a less 
than optimum choice to select a candidate which is more 
strongly believed than some other candidate. It is desir- 
able, then, to provide a general mechanism for representing 
domain knowledge about the relative rankings of beliefs in 
the various assertions under different circumstances and 
be able to use the same rule system to reason about this 
knowledge as is used in the rest of the application. 

A two argument predicate PREFER has been imple- 
mented which states that belief in the assertion of its first 
argument is preferred to belief in that of the second for 
the purposes of belief revision. When choosing a candi- 
date culprit from the MAKEOUT set, an attempt is made 
to prove that this culprit is preferred to some other ele- 
ment of the set. If a less preferred element is found, then 
it becomes the candidate culprit and the process recurses. 
PREFER thus enforces a partial ordering on the candi- 
date culprits such that none of them will be chosen before 
others which are more suspect. Similarly, in MAKEIN, 
PREFER is used to ensure that no candidate elective is 
chosen before some other for which belief is preferred. 

Assertions using the PREFER predicate, called pref- 
erences, can be based on object types and can be concluded 
by Proteus rules with variables instantiated at run time. 
Since these rules may have antecedents which are satisfied 

only in certain contexts, the selection of culprits and elec- 
tives can be controlled dynamically. The preferences may 
be based on numbers, lists, or arbitrary domain reasoning. 
We also provide for interactive control of the selection of 
culprits and electives if desired. The ability to add this 
domain knowledge overcomes the disadvantage of “blind” 
dependency-directed backtracking.[l4] 

PREFER is also used to define a terminal node in 
the search. As described above, a proof attempt is made 
on each candidate elective. If such a proof is not possible 
using rules, but the application allows the truth of that 
particular elective to be asked of the user, one of three 
possible answers is allowed: “yes”, “no”, and “maybe”. 
The first causes the elective to be provided with a premise 
justification. The second disqualifies the elective from fur- 
ther consideration. The third gives permission for a new 
justification to be constructed, thus defining a leaf of the 
network search. Instead of such a user query, PREFER 
can be used for the same purpose. If CONTRADICTION 
is the second argument of a preference, then the first argu- 
ment is eligible to receive a constructed justification: the 
semantics are that belief in the elective may be assumed 
in preference to that in the contradiction. If CONTRA- 
DICTION is the first argument, the inverse is true and the 
candidate also defines a terminal but unsuccessful node in 
the network. In no case will Proteus arbitrarily justify an 
elective in order to resolve a contradiction. 

C. Finding New Alternatives to Defaults 
The capability for dynamic generation of elective candi- 
dates is provided with a predicate, DEFEAT, which takes 
three arguments: the candidate culprit, some element of 
the IN-list of a justification of the culprit, and some new 
elective. If a DEFEAT assertion can be proven, the elec- 
tive may be added to the OUT-list of any justification of 
the culprit identified by the IN-list element. The semantics 
of DEFEAT are that some reason for believing the culprit 
can be defeated by belief in some new exception or alter- 
native. In step two of the algorithm for MAKEOUT, if no 
member of the existing OUT-list can be made IN, then an 
attempt is made to prove a DEFEAT for the culprit to add 
to the OUT-list. DEFEATS are general in that they can 
be concluded by rules, like preferences. Thus, they can be 
used to generate arbitrary new alternatives to belief in the 
culprit. Proteus also allows for the interactive acquisition 
of new alternatives and even DEFEATS. 

D. Focused Search 
For a given domain and situation, the culprit and elective 
that should be considered first may lie several levels deep 
in the dependency-structure which supports the contradic- 
tion. A predicate FIX has been implemented which takes 
three arguments: the first is a candidate culprit, the sec- 
ond a possible ancestor, and the third a possible elective 
for that ancestor. The semantics of a FIX are that if the 
second argument is an ancestor of the first, for the current 
dependency network, and if the third can be an elective 
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of the second (is in the OUT-list of a supporting justi- 
fication or can be placed there by a DEFEAT), then an 
attempt should be made to believe the elective (and a call 
to MAKEIN is made on it.) Such FIXes are used to focus 
first on nodes deep within the foundations of a contradic- 
tion prior to performing the depth-first search described 
above. Fixes are most useful when the first argument uni- 
fies with a supporter of the contradiction, but may also be 
used during search. The choice between which of several 
FIXes to pursue first is determined by the preference order 
on their various electives. FIXes may also be concluded by 
rules. 

E. Example 

A doctor might conclude that patient Jane is dehydrated 
from observation of the appropriate symptoms. That leads 
to a conclusion that Jane has a low amount of water which 
in turn leads to a conclusion that Jane should have a high 
sodium concentration. However, the lab results indicate 
that Jane actually has a low sodium concentration. There 
were at least three default assumptions made in this ex- 
ample, retraction of which would resolve the contradiction. 
The doctor assumed that the symptoms were those of de- 
hyration and not some other disease. He assumed that 
Jane’s sodium level was normal. And there is an assump- 
tion that the lab test is correct. 

In a typical TMS dependency network produced by 
this logic, a depth-first search would explore first a possi- 
ble lab test error, then an abnormal sodium level, and fi- 
nally a recheck of the symptoms. This does not correspond 
to actual practice. Typically, the doctor first rechecks the 
symptoms because it is easy to do. Then (or perhaps at 
the same time), he may ask for the lab work to be redone. 
He will be particularly suspicious of the lab work if a high 
glucose level is indicated because this interferes with nor- 
mal calculations of sodium levels. If these simple “fixes” 
to the problem aren’t sufficient to resolve it, he carefully 
reconsiders his thinking. The obvious alternative to a nor- 
mal sodium level is either directly proven or assumed and 
the doctor is led to consideration of a cause. 

In Proteus, this problem resolution could be repre- 
sented by two FIXes, one conditional preference between 
them, and a DEFEAT. One FIX would say that if the con- 
tradiction is supported by a conclusion which is somehow 
supported by an observation of symptoms, then suspect 
a mistaken observation. The other FIX would simply say 
that any lab test supporting a contradiction should be re- 
done tid checked for error. The preference would be to 
check out the mistaken observation prior to redoing the 
lab test, unless the patient were unusually difficult to ob- 
serve or it was known that the patient’s glucose level was 
high and the lab test under consideration was for sodium 
concentration. The DEFEAT would defeat the conclusion 
of a high sodium concentration by generating the possibil- 
ity of an abnormal sodium level. This would occur in the 
depth-first search if neither FIX were successful. 

e orisons 
McAllester’s RUP [13] p rovides a general purpose method 
of premise control using “likelihood classes”. However, this 
approach imposes a global ordering on the database which 
is more complete than is actually justified. Proteus uses 
the PREFER predicate to avoid this problem. Unlike Co- 
hen [2], no predefined categories of preferences are defined. 
In DEBACLE, Forbus [lo] 1 a so objects to likelihood classes 
and instead defines “closed-world assumptions” which are 
checked for invalidity before trying special purpose rou- 
tines ordered in a stack. 

In an extension to the ATMS [4], a simple list is used 
to order the selection of culprit candidates. In WATSON 
[15] , the call in in erence system is allowed to attempt g f 
to prove that candidate culprits may be ordered by rele- 
vance to the story being parsed. In PLANET [3], special 
objects called “decision choices” are created which contain 
information about alternatives and their effects on con- 
strained resources. Contradictions are caused by resource 
constraint violations and resolved by selecting alternatives 
which are not disadvantageous to the resource in question. 

Proteus provides a Lore domain-independent and dy- 
namic mechanism for controlling backtracking than these 
systems. Preferences may be concluded on an arbitrary 
basis and alternatives need not be enumerated prior to the 
occurance of the contradiction. Rather than select a set of 
predefined objects from the foundations of the contradic- 
tion, FIXes allow any assertion in the database to belong in 
the initial focus of candidate culprits and electives. If these 
are not successful, exhaustive search is used. Unlike pre- 
vious algorithms, , the extended search described in section 
III may result in more than one elective being justified. 

Doyle’s original algorithm for contradiction resolution is - 
revised to conform to proposed semantics. A new al- 
gorithm for dependency-directed backtracking is derived 
which allows any node in the dependency network to be 
considered for inclusion in a set of assumptions to be 
retracted during contradiction resolution. This allows 
domain-independent search constraints to be rejected in 
favor of a general backtracking control method dependent 
on domain knowledge. Special predicates are defined which 
allow the application builder to represent domain knowl- 
edge about how to switch contexts when beliefs conflict. 
The selection of the new context can be reasoned on the 
basis of the current state of the database and new alterna- 
tives generated dynamically. This has been implemented 
as a general method for revising the results of default rea- 
soning in expert systems. 
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