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s&ract Multiple possible solutions can arise in 
many domains, such as scene interpretation and speech 
recognition. This paper examines the eficiency of multiple- 
context TM%, such as the ATMS, in solving a scene rep- 
resentation problem which we call the Vision Constraint 
Recognition problem. The ATMS has been claimed to be 
quite eficient for solving problems with multiple possible 
solutions, even for problems with large databases. Rowever, 
we present evidence that for large databases with multiple 
possible solutions (which we argue occur frequently in prac- 
tice), such multiple-context TMSs can be very o’neficient. 
We present a class of problems for which using a multiple- 
context TMS is both intrinsically interesting and ideal, but 
which will be computationally infeasible because of the ex- 
ponential size of the database which the TMS must explore. 
To circumvent such infeasiblity, appropriate control must 
be exerted by the problem solver. 

1 

The TMS is one of the most important general AI algo- 
rithms developed, and has been applied to a wide range 
of areas, including qualitative process theory-[4]; circuit 
analysis- [6]; analog circuit design-SYN [5]; and vision- 
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In this paper we examine more closely the performance 
of multiple-context TMSs ([2], [10],[12]) on certain prob- 
lems which generate a large number of contexts. Problems 
with a large number of contexts and multiple possible so- 
lutions are not artificial, and can arise in many domains, 
such as scene interpretation ([1],[7], [8]) and speech recog- 
nition/understanding [9]. In vision, one is typically deal- 
ing with noisy, ambiguous data with complex local/global 
constraint interactions. In text understanding, each sen- 
tence may, on its own, have many different interpretations, 
and one is attempting to piece together many such local- 
ized interpretations to develop an holistic meaning. Many 
equally plausible solutions arise in the presence of ambigu- 
ous constraints, giving rise to multiple possible local inter- 
pretations for each such constraint. And typically, these 
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local interpretations interact in complex manners to pro 
duce many feasible global interpretations. 

We investigate the use of the TMS in solving high- 
level vision problems as a means of better understand- 
ing multiple-context TMSs. High-level vision is an ideal 
domain for studying multiple-context TMSs, and specifi- 
cally the ATMS ([2],[3]) b ecause of the ubiquity of multi- 
ple simultaneous interpretations. It is precisely this abil- 
ity to generate multiple simultaneous solutions that has 
prompted the use of the ATMS in a variety of areas, e.g. 
[4], 161. S in d e-context TMSs, also known as Justification- 
based TMSs (JTMSS), e.g. [ll], are less well-suited to 
solving such problems because their strict adherence to a 
single consistent context (interpretation) represents an in- 
adequate method of attacking the problem. 

Regarding the ATMS, de Kleer, in [2] states: “ the ob- 
served efficiency of the ATMS is a result of the fact that it is 
not that easy to create a problem which forces the TMS to 
consider all 2n environments without either doing work of 
order 2n to set up the problem or creating a problem with 
2n solutions.n We present the Vision Constraint Recogni- 
tion System (VCRS) [13] (1) as a novel means of solving 
certain high-level vision problems, but (2) also as evidence 
that there naturally exist domains in which multiple con- 
text TMSs are forced to consider an exponential number 
of solutions. Also, we state results of a complexity analysis 
of multiple context TMSs corroborating the VCRS’s evi- 
dence that, for complex visual recognition problems, such 
TMSs are often forced to explore a number of contexts ex- 
ponential in the size of the database, this number of con- 
texts generated by problems with an exponential number 
of either final or partial solutions. As a consequence, such 
TMSs will be inefficiently slow in solving such problems. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we briefly describe the VCRS, discussing the reasons 
for and advantages gained by using an ATMS for a visual 
recognition system which instantiates a figure in an im- 
age consisting of overlapped rectangles. Then, we conduct 
a simple combinatorial analysis of the effect of nogoods 
in reducing the search space explored by multiple-context 
TMSs, and hence comment on the efficiency of such TMSs. 
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2 vision Constraint 
System (VC 

Perception can be considered an interpretive process, and 
a key problem is interpreting descriptions computed for a 
scene against a (typically large) database of models. Many 
examples such as Rubin’s vase, Necker’s cube etc. teach 
us that a single image (e.g. perfect line drawing) can have 
several equally plausible perceptual interpretations. The 
problem we are solving exemplifies these characteristics. 
We use a multiple-context TMS precisely because of its 
ability to generate multiple possible interpretations. 

The specific high-level vision problem we have stud- 
ied is called the Constraint Recognition problem, and is a 
generalization of the PUPPET problem, first studied by 
Hinton [8]. The problem solved by the VCRS is as follows: 
given a set of (2-D) randomly overlapping rectangles and 
a relational and geometric description of a figure (as de- 
scribed by a set of constraints over the overlap patterns 
of k of these rectangles), find the best figure if one exists. 
Our use of a TMS generalizes Hinton’s integer relaxation- 
based techniques by recognizing that the set of justifica- 
tions which the TMS maintains for any database assertion 
is isomorphic to an explicit perceptual interpretation for 
that assertion. 

Our plan for applying 
problem is as follows: 

a multiple-context TMS to this 

A TMS generates a justification structure for each 
node, the structure indicating how that node was 
assigned a label. This justification structure corre- 
sponds to a perceptual structure (e.g. rectangle A 
is seen us a trunk, because rectangle B is seen as a 
neck) by appropriate spatial relationships, etc. 

Different perceptual interpretations correspond to dif- 
ferent contexts. 

Locally plausible visual fragments can be interpreted 
in many ways and each interpretation is accorded a 
context. 

Taken together, the above points imply a large number 
contexts even for moderately complex visual input. 

of 

2.1 Advantages of Using a TMS for Vi- 
sual Interpretation 

Let us now outline the advantages over relaxation-based 
methods (e.g. [8]) afforded by a multiple-context TMS. 

“hand,” the reason for that assignment, e.g. that 
rectangle F, labeled “forearm,” overlapped G accord- 
ing to some constraint, is stored. 

Studying many different alternative solutions. An al- 
gorithm which can explore multiple interpretations 
simultaneously is more useful than one which ex- 
plores one context at a time, as locally contradic- 
tory interpretations (which are outlawed for a single- 
context TMSs) may not necessarily indicate global 
inconsistency but multiple global interpretations. 

Utilizing updated input. The truth maintenance aspect 
of TMSs enables updating of databases with the in- 
put of new information. Both [l] and [7] use the TMS 
for creating a consistent interpretation of stereo data, 
for example. 

Constraint-exposing. Such a notion of semantics forms 
the basis for a powerful constraint-exposing process, 
one example of which is contradiction flagging. By 
tracing justification paths for the nodes in a nogood 
back to the assertions causing the contradiction, (iden- 
tical to dependency directed backtracking), we can 
identify incorrect/impossible assertions, rule these out, 
and consequently eliminate all possible solutions based 
on these global inconsistencies. In this manner, we 
can rule out large portions of the search space. 

Robust given noise. Scenes with noisy data occur fre- 
quently, and a TMS can extract interpretations from 
noisy/ambiguous situations. This is achieved by the 
TMSs’ justification structure “cutting through” noise. 
Rectangles extraneous to the figure (e.g. a puppet) 
will not be included in the justification structure and 
will be ignored by the system. 

Robust given occluded/incomplete scenes. This oc- 
curs 

1. 

2. 

via two mechanisms: 

Automatic default mechanisms: these are incor- 
porated in the TMS and can be used to fill out 
incomplete (but plausible) figures. 

Justified default mechanisms: the justification 
structure has an explicit notion of “complete- 
ness” of a figure, and can flag an almost-perfect 
figure using a “closeness relationship” with re- 
spect to this notion of completeness. This gives 
a semantics for the notion of defaults; for ex- 
ample, we might have “this default is an arm 
because this figure would be a perfect puppet if 
such an arm were presentn. 

Explicit (domain dependent) constraints. An exphcit 

Explicit semantics for images via justifications. TMSs notion of domain-dependent constraints has been found 
explicitly store justifications for all labeling assign- necessary to provide a powerful means of reducing 
ment 5. Thus if rectangle G is assigned the label the search space. For example, in the detection of 
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puppet figures, such constraints include the repre- 
sentation of geometric structure in terms of posture 
and global scaling. A puppet having a right and left 
side, an upright or reclining posture introduces much 
more powerful constraints (which can significantly re- 
duce the search space) than if those concepts were 
not present. Hence, an arm being a right arm rather 
than a left arm determines the allowable angle of the 
elbow joint quite specifically. A sense of global scal- 
ing is also crucial, as a thigh can be a thigh only in 
proportional relation to the trunk and calf to which 
it is attached. 

2.2 Performance of T S within the VC 

Let us now briefly outline some simple examples of prob- 
lems the VCRS can solve. 2 In Figure 1, we see a sample 
input for the VCRS, randomly overlapping rectangles in 
which the target figure, a puppet, is distinguishable. Fig- 
ure 1 shows a much-simplified example of the program’s 
operation. Here we have a situation in which four orienta- 
tions can produce a puppet, taking either A, B, 6, or D as 
a head. For example, if B is chosen as a head, the partial 
puppet (head, neck, trunk) consists of rectangles B, B’, 
E. Moreover, it is ambiguity such as shown in this Figure 

that gives rise to multiple contexts during search for a solu- 
tion, as well as multiple possible solutions. When process- 
ing complicated scenes in searching for puppets, a multiple 
context TMS builds a context for each possible puppet fig- 
ure interpretation. Even for relatively simple cases we have 
discovered that the number of contexts formed can be un- 
reasonably large. In the above example, four environments 
are necessary for just a small number of rectangles (A, A’, 
B, B’, C, C’, D, D’, E). 

Let us now look at two inter-related reasons why a very 
large number of environments will need to be constructed 
for this problem, which results in the ATMS creating an 
exponentially large number of contexts. 

Size of nogoods expected For complex figures, once we 
have found a seed, it is reasonably easy to form the 
first few elements of the figure, and it then becomes 
increasingly difficult, with inconsistencies more liable 
to occur. This means that, of the seeds found, the 
majority of the nogoods found will be of size 2 k, 
with k dependent on the complexity of the problem. 
Thus, if there are 100 seeds found and k w 10, the ac- 

tual space which must be searched is extremely large, 
as the nogoods of large size, as shown in Section 3, 
will not reduce the search space very much even if 
there are many such nogoods. 

Expected number of partial solutions The number of 
environments constructed increases rapidly as problem- 

2Forfulldetails consult [13]. 

Figure 1: VCRS Example for Detecting a 15-element Pup- 
pet 

solving progresses. Consider a partial puppet consist- 
ing of a head, neck and trunk (A, A’, E respectively). 
As in Figure 1, if this trunk has 4 overlaps which 
could be upper arms and 4 which could be thighs, 

42 we can have 2 0 = 36 possible interpretations. Now, 
if an upper arm and a thigh have 2 possible fore-arms 

52 and calves respectively, this gives 2 0 = 100 inter- 
pretations. Even for this very simple example we can 
already see the combinatorial explosion of the num- 
ber of necessary environments. This combinatorial 
explosion grows even faster (i.e. is more serious) the 
more complex the scene and the figure for which we 
are looking. This points out that, even if we end up 
finding just a few full figures, there may be an expo- 
nential number of environments for the partial figures 
at an intermediate stage of the solution process. 

We now present theoretical 
empirical results. 

evidence to corroborate these 

Questions concerning the complexity of the ATMS were 
first mentioned with reference to a parity problem ([3], 
[ 111). We will now analyse some issues raised by problems 
such as the parity and visual constraint recognition prob- 
lems. But before beginning this analysis, we shall formally 
state the problem. 
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3.1 Problem Definition 

Consider that we have a problem with n distinct facts, 
forming the fact set A. We call the set of environments 
the power set of A, A = PA. Within this power set there 
are subsets which are inconsistent. We call such inconsis- 
tent subsets nogoods, and the consistent subsets contexts. 
We denote the set of contexts C & A. There are 2” envi- 
ronments and (;) environments with k facts. A minimal 
nogood is a subset B from which removing a single fact 
will leave either the null set or a context. It is important 
to note that all supersets of a nogood set are also nogood 
sets. Let us call the size of the minimal (or “seed”) nogood 
set Q, size meaning the number of facts contained in the 
nogood. 

In the following discussion, we shall be referring to a 
general algorithm which attempts to determine all maxi- 
mal contexts, where a maximal context is a set C* C C such 
that either: (1) ] C* ] = n, or (2) C*U{U} is inconsistent for 
all facts a E A \ C*. Such an algorithm proceeds by form- 
ing all subsets (representing partial solutions), first of size 
1, then of size 2, etc. until we produce maximal contexts. 
Nogoods are used to prune the search space by eliminating 
all supersets of minimal nogoods from the search space. It 
must be noted that, in its full generality, this algorithm, 
referred to as interpretation construction in [2], is isomor- 
phic to the minimum set covering problem (which is NP- 
complete). The ATMS utilizes the most efficient method 
of interpretation construction given the specific problem, 
but for certain problems the exponential complexity is un- 
avoidable, and is unavoidable for any algorithm searching 
multiple contexts. 

The example of algorithm which we shall be using is 
the ATMS, although this analysis is equally valid for algo- 
rithms which use a similar multiple-context approach. We 
will now isolate the factors necessary to avoid exponential 
growth of the search space. In this analysis, we show the 
power of nogoods of small size in cutting down the number 
of contexts, and hence the size of search space. We also see 
that even for problems in which the number of solutions is 
non-exponential in the problem size n, the number of par- 
tial solutions could still be very large, and hence produce 
an unreasonably large number of contexts. 

3.2 Analysis of Search-Space Reduction 
Using Nogoods 

We begin this combinatorial analysis by looking at how 
nogoods reduce the search space. We introduce the prob- 
lem with the simplest case, that in which the seed nogoods 
are non-overlapping. An overlap occurs between two seed 
(or minimal) nogoods ngl and ng2 if ngl n ng2 # 0. A 
non-overlapping problem is one in which none of the seed 
nogoods have overlaps: for the set U of seed nogoods, 
wi n ngj = 0, Vngi,ngj E U, i # j. We then proceed 

to more general cases, analyzing the complex nogood in- 
teractions when we have overlapping of seed nogoods. Due 
to space limitations, we provide just a sample of our results 
without proofs, and refer the reader to [13] for these proofs 
and a more intelligible analysis. 

3.2.1 Non-overlapping Nogood Analysis 

Lemma 1 For a problem with n distinct facts, x “seed” 
(minimal) non-overlapping nogoods each of size Q produces 
Q(x, oz) total nogoods, where 

@(x, a) = 2,-,( 2 - 2F”b4)+“1(1- 

Lemma 1 describes the size of space 
overlapping nogoods all of equal size. 

generated by non- 

Lemma 2 For a non-overlapping problem with a nogoods 
of size cy, b nogoods of size p, c nogoods of size 7, etc., an 
upper bound for the number of nogoods formed is given by 

@((~,a), (b,p), (c,7), ..) 5 2”(~2-~ + b2-a + ~2-~+ . . . . ). 

Lemma 2 extends Lemma 1 to cases of non-overlapping 
nogoods of different sizes. 

Given that we know the search-space reduction achieved 
by non-overlapping nogoods, we next investigate the reduc- 
tion achieved by nogoods of specific sizes. 

Corollary 1 For cdl n, (Y > 0, if A, = $$$, x 1 2, 
then, to a close approximation, A,, 

1. & is constant independent of n, 

2. The eect of a nogood in reducing the search space is 
inversely proportional to its size, 

3. qy$ = I/2. 

Corollary 1 shows that the size of the nogood has a sig- 
nificant effect on this reduction. More importantly, Corol- 
lary 1 implies that the reduction in the size of the search 
space is inversely proportional to the size of the seed no- 
good, and in fact diminishes by l/2 as the size of the no- 
good is increased by 1. This means that, for the largest 
reduction of the search space, it is best to have nogoods as 
small as possible. 

We have completed a simulation of this combinatorial 
analysis which provides empirical confirmations to our an- 
alytic results. Namely, the % reduction is independent of 
n, the size of the problem, and it is most advantageous to 
have minimal nogoods of as small a size as possible. 

3.2.2 Overlapping Nogood Analysis 

We now turn to an analysis of multiple overlapping no- 
goods. The difficult aspect is modeling the complex in- 
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teractions of the nogoods, namely taking account of the 
complicated manner in which overlapping of nogoods oc- 
curs when several nogoods are present; it is important not 
to double-count supersets of nogoods. 

Lemma 3 A problem in which overlaps of nogoods occur 
is convertible to one in which they do not occur. 

Lemma 3 implies that many of the results which we 
have obtained so far for non-overlapping problems can be 
used for this more complicated case. Let us now state one 
of the major results of [13], an upper bound on the size of 
the search space reduction by a set of nogoods. 

Theorem Ih An upper bound for a problem defined by the 
purumeters (( a+), (b,BL(c,7),..), with the nogoods over- 
lapping randomly, is given by 

@((a,a), (b,@, (c,7),..) < 2n(a2-Q + b2-@ + ~2-~+ . . . . ). 

Our (worst-case) problem is still 0(2n) over a wide 
range of nogood parameters ((a, cy), (b, p), . ..). It must be 
emphasized that the value of 2n for n = 100 is 1.26 x lOso, 
so even for relatively large search-space reductions, a huge 
amount of the search-space still remains. From the pre- 
vious section, we see that nogoods cut down this number. 
However, any problem which forces the ATMS to construct 
a substantial portion of the environment lattice will cause 
inefficient ATMS performance. 

The real problem is that ATMS interpretation con- 
struction is intrinsically NP-complete. We have just de- 
scribed a problem which brings out this exponential be- 
haviour. The solution to such a combinatorial explosion 
of the solution space is either ensuring the constraints will 
generate small nogoods or carefully controlling the problem- 
solving. The principal aim of this latter course of action is 
to constrain the ATMS to look at one solution at a time, us- 
ing a dependency-directed backtracking mechanism or em- 
ploying consequent reasoning and stopping when a single 
solution is found (i.e. to revert to JTMS-style behaviour). 
This, however, appears to be an extreme reaction, since for 
problems such as this, exploring multiple solutions would 
be ideal. 

Our two main complexity results are the following: first, 
problems such as the visual constraint recognition problem 
described here can have a very large number of solutions, 
and such problems are not pathological (as claimed by de 
Kleer in [2]) b u occur naturally. To the contrary, we argue t 
that the most challenging problems facing AI are exactly 
those with multiple possible solutions. Second, as again 
cited by deKleer [2], y ou do not need a problem with 2” 
solutions to make the ATMS infeasibly slow. Even with a 
fraction of these solutions the ATMS can “blow up.” This 
is because cases exist in which problems with a moder- 
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ate number of complete solutions may have an exponential 
number of partial solutions, forcing the ATMS to construct 
an exponential number of intermediate contexts. 

One important contribution of this research is the be- 
ginning of a classification of problems for which different 
TMSs are suited. The performance of JTMSs and ATMSs 
is highly problem-specific, and as yet little or no empiri- 
cal or theoretical work has been done to define a better 
problem classification based on TMS efficiency. 

There is no doubt that for moderately-sized problems 
there are many cases for which the ATMS is the most ef- 
ficient TMS algorithm. However, for large and complex 
problems (e.g. vision and speech-understanding problems), 
this efficiency can be lost in constructing an environment 
lattice whose size is often exponential with respect to the 
database size. 
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