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ABSTRACT 
This paper presents a parallel version of the 
Iterative-Deepening-A* (IDA*) algorithm. 
Iterative-Deepening-A* is an important admissible 
algorithm for state-space search which has been 
shown to be optimal both in time and space for a 
wide variety of state-space search problems. Our 
parallel version retatins all the nice properties of the 
sequential IDA* and yet does not appear to be lim- 
ited in the amount of parallelism. To test its effec- 
tiveness, we have implemented this algorithm on 
Sequent Balance 21000 parallel processor to solve 
the 15-puzzle problem, and have been able to obtain 
almost linear speedups on the 30 processors that are 
available on the machine. On machines where 
larger number of processors are available, we ex- 
pect that the speedup will still grow linearly. The 
parallel version seems suitable even for loosely 
coupled architectures such as the Hypercube. 

1. INTRODUCTION 

Search permeates all aspects of AI including problem 
solving, planning, learning, decision making, natural language 
understanding. Even though domain-specific heuristic 
knowledge is often used to reduce search, the complexity of 
many AI programs can be attributed to large potential solution 
spaces that have to be searched. With the advances in 
hardware technology, hardware is getting cheaper, and it 
seems that parallel processing could be used cost-effectively 
to speedup search. Due to their very nature, search programs 
seem naturally amenable to parallel processing. Hence many 
researchers have attempted to develop parallel versions of 
various AI search programs (e.g., Game Tree search [KANAL 
811 [LEIFKER 851 [FINKEL 821 [FINKEL 831 [MARS- 
LAND 821, AND/OR graph search [KUMAR 841 [KIBLER 
831, State-Space Search [RAO 871 [IMAI 791 [KORNFELD 
811). 

Even though it may seem that one could easily speedup 
search N times using N processors, in practice, N processors 
working simultaneously may end up doing a lot more work 
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than a single processor. Hence the speedup can be much less 
than N. In fact, early experience in exploiting parallelism in 
search was rather negative. For example, Fennel and Lesser’s 
implementation of Hearsay II gave a speedup of 4.2 with 16 
processors [FENNEL 771 (Kibler and Conery mention many 
other negative examples in [CONERY 851). This early 
experience led to a pessimism that perhaps AI programs in 
general have very limited effective parallelism. 

We have developed a parallel version of Iterative- 
Deepening-A* (IDA*) [KORF 851 that does not appear to be 
limited in the amount of parallelism. To test its effectiveness, 
we have implemented this algorithm to solve the 15-puzzle 
problem on Sequent Balance 21000 parallel processor, and 
have been able to obtain almost linear speedup using upto 30 
processors that are available on the machine. On machines 
where larger number of processors are available, we expect 
that the speedup will still grow linearly. 

Iterative-Deepening-A* is an important admissible 
state-space search algorithm, as it runs in asymptotically 
optimal time for a wide variety of search problems. Further- 
more, it requires only linear storage. In contrast, A* [NILS- 
SON 801, the most known admissible state-space-search algo- 
rithm, requires exponential storage for most practical prob- 
lems [PEARL 841. From our experience in parallelizing IDA* 
and A*k[RAO 871 we have found that IDA* is more amenable 
to parallel processing than A* in terms of simplicity and over- 
heads. The parallel version of IDA* is also efficient in 
storage. 

In Section 2, we present an overview of IDA*. In Sec- 
tion 3, we discuss one way of parallelizing IDA* and present 
implementation details. In Section 4, we present speedup 
results of our parallel IDA* for solving the 15-puzzle problem 
on Sequent Balance 21000. Section 5 contains concluding 
remarks. Throughout the paper, we assume familiarity with 
the standard terminology (such as “admissibility”, “cost- 
function”, etc.) used in the literature on search [NILSSON 801 
[PEARL 841. 

2. ITERATIVE-DEEPENING-A” (IDA*) 

Iterative Deepening consists of repeated bounded 
depth-first search (DFS) over the search space. In each itera- 
tion, IDA* performs a cost-bounded depth-first search, i.e., it 
cuts off a branch when its total cost (f = g + h) exceeds a 
given threshold. For the first iteration, this threshold is the 
cost (f-value) of the initial state. For each new iteration, the 
threshold used is the minimum of all node costs that exceeded 
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the (previous) threshold in the preceding iteration. The algo- 
rithm continues until a goal is expanded. If the cost function is 
admissible, then IDA* (like A*) is guaranteed to find an 
optimal solution. 

For exponential tree searches, IDA* expands asymptoti- 
cally the same number of nodes as A*. It is quite clear that 
the storage requirement of IDA* is linear with respect to the 
depth of the solution. For a detailed description of IDA* and 
its properties, the reader is referred to [KORF 851. In the fol- 
lowing figure we give an informal description of IDA*. 

Fig. 1 
IDA*(startstate,h,movegen) 

/* h is an admissible heuristic function for the problem */ 
/* movegen(state,fun) generates all sons of state and returns 

them ordered according to heuristic function fun. 
Such an ordering is not essential for admissibility, but 
may improve performance in last iteration */ 

/* cb is cost bound for current iteration “I 
/* nextcb is cost bound for next iteration */ 
nextcb = h(startstate) ; 
while (not solutionfound) 

cb = nextcb ; 
nextcb = +m ; 
PUSH(startstate,movegen(startstate,h)) ; 
depth = 1 ; 

while (depth > 0) 

if there are no children in the TOP element of the stack 
POP ; 
depth = depth - 1 ; /* BACKTRACK “/ 

else 
remove nextchild from TOP ; 
if (nextchild.cost I cb) 

if nextchild is a solution 
solutionfound = TRUE ; 

Qurr; 
PUSH(nextchild,movegen(nextchild,h)) ; 
depth = depth + 1 ; /* ADVANCE */ 

else 
nextcb = MIN(nextcb,nextchild.cost) ; 

P POP, PUSH and TOP are operations on the DFS stack */ 
/* The elements of the stack are state-children pairs */ 
/* The children are ordered according to h. This ensures that 
the the children of a node are explored in increasing h order */ 
P The cost function used is f(n) = g(n) + h(n) */ 

{ End of Fig. I} 

3. A PARALLEL VERSION OF IDA” (PPDA”) 

3.1 Basic Concepts 
We parallelize IDA* by sharing the work done in each 

iteration ( i.e., cost-bounded depth-first search) among a 
number of processors. Each processor searches a disjoint part 
of the cost-bounded search space in a depth-first fashion. 
When a process has finished searching its part of the (cost- 
bounded) search space, it tries to get an unsearched part of the 
search space from the other processors. When the cost- 
bounded search space has been completely searched, the pro- 
cessors detect termination of the iteration and determine the 
cost bound for the next iteration. When a solution is found, all 
of them quit. 

Since each processor searches the space in a depth-first 
manner, the (part of) state-space available is easily 
represented by a stack (of node-children pairs) such as the one 
used in IDA* (see Fig. 1). Hence each processor maintains its 
own local stack on which it performs bounded DFS. When the 
local stack is empty, it demands work from other processors. 
In our implementation, at the start of each iteration, all the 
search space is given to one processor, and other processors 
are given null space (i.e., null stacks). From then on, the 
state-space is divided and distributed among various 
processors. 

The basic driver routine in each of the processors is 
given in Fig. 2. 

Fig. 2 
PROCESSOR(i) 

while (not solutionfound) 

if work is available in stack[i] 
perform Bounded DFS on stack[i] ; 

else if (GETWORK = SUCCESS ) 
continue ; 

else if (TERMINATION = TRUE) 
P determine cost bound for the next iteration */ 

cb=MIN [ nextcb[k] / 1 SklN } ; 
/* k varies over set of processors */ 

initialize stack depth,cb and nextcb 
for the next iteration 

{ End of Fig. 2 } 
Since the cost bounds for each iteration of PIDA* are 

identical to that of IDA*, the first solution found by any pro- 
cessor in PIDA* is an optimal solution. Hence all the proces- 
sors abort when the first solution is detected by any processor. 
Due to this it is possible for PIDA* to expand fewer or more 
nodes than IDA* in the last iterationl, depending upon when a 
solution is detected by a processor. Even on different runs for 
solving the same problem, PIDA* can expand different 
number of nodes in the last iteration, as the processors run 
asynchronously. If PIDA* expands fewer nodes than IDA* in 
the last iteration, then we can observe speedup of greater than 
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N using N processors. This phenomenon (of greater than N 
speedup on N processors) is referred to as acceleration ano- 
maly [LA1 831. In PIDA* at least one processor at any time is 
working on a node n such that everything to the left of n in the 
(cost bounded) tree has been searched. Suppose IDA* and 
PIDA* start an iteration at the same time with the same cost 
bound. Let us assume that IDA* is exploring a node n at a 
certain time t. Clearly all the nodes to the left of n (and none 
of the nodes to the right of n) in the tree must have been 
searched by IDA* until t. It can be proven that if overheads 
due to parallel processing (such as locking, work transfer, ter- 
mination detection) are ignored, then PIDA* should have also 

searched all the nodes to the left of n (plus more to the right of 
n) at time t. This guarantees absence of deceleration anomaly 
(i.e., speedup of less than 1 using N>l processors) for PIDA*, 
as PIDA* running on N processors would never be slower 
than IDA* for any problem instance. 

3.2 Pmplementation Details. 
As illustrated in Fig. 2, PIDA* involves three basic pro- 

cedures to be executed in each processor: (i) when work is 
available in the stack, perform bounded DFS; (ii) when no 
work is available, try to get work from other processors; (iii) 
when no work can be obtained try to check if termination has 
occured. Notice that communication occurs in procedures (ii) 
and (iii). The objective of our implementation is to see that (i) 
when work is being exchanged, communication overheads are 
minimized, (ii) the work is exchanged between processors 
infrequently; (iii) when no work is available termination is 
detected quickly. Fig. 3 illustrates the bounded DFS per- 
formed by ‘each processor. This differs slightly from bounded 
DFS performed by IDA* (Fig. 1). 

Fig. 3 
Bounded DFS (startstack,movegen,h) 

/* Work is available in the stack and depth, cb, 
nextcb have 

been properly initialized. */ 
excdepth[i] = -1 ; 
while ((not solutionfound) and (depth > 0)) 

if there are no children in the 
top element of the stack 

POP ; 
depth[i] = depth[i] - 1 ; /* BACKTRACK */ 
if (depth c excdepth[i] ) 

lock stack[i] ; 
excdepth[i] = depth[i]/2 ; 
unlock stack[i] ; 

else 
remove nextson from TOP[i] ; 
if ( nextchild.cost < cb ) 

* PIDA* expands exactly the same nodes as IDA* upto the last 
but one iteration, as all these nodes have to be searched by both 
PIDA* and IDA”. 

if nextchild is a solution 
solutionfound = TRUE ; 
send quit message to all other processors ; 

c?-Jn ; 
PUSH[i] ( nextchild, movegen(nextson, h) ; 
depth[i] = depth[i] + 1 ; /* ADVANCE */ 
excdepth = MAX(depth[i]d, excdepth[i]) ; 

else 
nextcb[i] = MIN(nextcb[i], nextson.cost) ; 

{ End of Fig. 3 } 
To minimize the overhead involved in transferring work 

from one processor to another, we associate a variable 
excdepth[i] with the stack of processor i. The processor i 
which works on stack[i] permits other processors to take work 
only from below excdepth[i]. (We follow the convention that 
the stack grows upwards). The stack above excdepth[i] is 
completely it’s own and the processor works uninterrupted as 
long as it is in this region. It can increment excdepth[i] at 
will, but can decrement it only under mutual exclusion. 
Access to regions under excdepth[i] needs mutual exclusion 
among all processors. A deeper analysis of the program in Fig 
3 shows that this scheme gives almost unrestrained access to 
each processor for it’s own stack. 
The rationale behind keeping excdepth = depth/2 is to see that 

only a fraction of the work is locked up at any time by proces- 
sor i. In a random tree with branching factor b, if the stack i 
has depth d then the fraction of work exclusively available to 
processor i is l/(b**ld/21), which is quite small. But this work 
is big enough for one processor so that it can keep .working for 
a reasonable amount of time before locking the whole stack 
again. This ensures that work is exchanged between proces- 
sors infrequently. 

Fig. 4 
GETWORK 

for (i = 0;j c NUMRETRY ; j++) 

increment target ; 
if work is available at target below excdepth[target] 

lock stack[target] ; 
pick work from target. 
unlock stack[target] ; 
return (SUCCESS) ; 

return (FAIL) ; 

/* When GETWORK picks work from target the work avail- 
able in target stack is effectively split into 2 stacks. We need 
to copy path information from startstate in order to allow later 
computations on the two stacks to proceed independently 
*I 

{ End of Fig. 4 } 
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The procedure GETWORK describes the exact pattern 
of exchange of work between processors. The processors of 
the system are conceptualized to form a ring. Each processor 
maintains a number named target, the processor from which it 
is going to demand work next time. (Initially target is the 
processor’s neighbour in the ring). Starting at target, GET- 
WORK ties to get work from next few processors in a round 
robin fashion. If no work is found after a fixed number of 
retries, FAIL is returned. 

The termination algorithm is the Ring termination algo- 
rithm of Dijkstra [DIJKSTRA $31. This algorithm suits our 
implementation very well and it is very efficient. Due to lack 
of space, we omit the exact details of the algorithm here. 

4. lPE 

We implemented PIDA* to solve the 15-puzzle problem 
on Sequent Balance 21000, a shared memory parallel proces- 
sor. We ran our algorithm on all the thirteen problem 
instances given in Korf’s paper [KORF 851 for which the 
number of nodes expanded is less +han two million2. Each 
problem was solved using IDA* on one processor, and using 
PIDA* on 9,6 and 3 processors. As explained in the previous 
section, for the same problem instance, PIDA* can expand 
diffemt number of nodes in the last iteration on different runs. 
Hence PIDA* was run 20 times in each case and the speedup 
was averaged over 20 runs. 

The speedup results vary from one problem instance to 
another problem instance. For the 9 processor case, the aver- 
age speedup for different problem instances ranged from 3.46 
to 16.27. The average speedup over all the instances was 9.24 
for 9 processors, 6.56 for 6 processors and 3.16 for 3 proces- 
sors (Fig. 5). Even though for the 13 problems we tried, the 
average speedup is superlinear (i.e., larger than N for N), in 
general we expect the average speedup to be sublinear. This 
follows from our belief that PIDA* would not in general 
expand fewer nodes than IDA* (otherwise the time sliced ver- 
sion of PIDA* running on a single processor would in general 
perform better than IDA*). Our results so far show that 
PIDA* does not appear to expand any more nodes than IDA* 
either. Note that the sample of problems we used in our exper- 
iment is unbiased (Korf generated these instances randomly). 
Hence in general we can expect the speedup to be close to 
linear. 

To study the speedup of parallel approach in the absence 
of anomaly, we modified IDA* and PIDA* (into AIDA* and 
APIDA*) to find all optimal solutions. This ensures that the 
search continues for all the search space within the costbound 
of the final iteration in both AIDA* and APIDA*; hence both 
AIDA* and APIDA* explore exactly the same number of 
nodes. In this case the speedup of APIDA* is quite con- 
sistently close to N for N processors for every problem 
instance (Fig. 6). For 9 processors, the speedup is 8.4, for 6 
processors it is 5.6, and for 3 processors it is 2.8 . We also 
solved more difficult instances of 16-puzzle (requiring 8 to 12 
million nodes) on a sequent machine with 30 processors. As 

2 Two million nodes was chosen as the cutoff, as the larger prob- 
lems take quite a lot of CPU time. Besides, we were still able to get 
13 problems, which is a reasonably large sample size. 

shown in Fig. 6, the speedup grows almost linearly even upto 
30 processors. This shows that our scheme of splitting work 
among different processors is quite effective. The speedup is 
slightly less than N, because of overheads introduced by dis- 
tribution of work, termination detection etc.. 

5. CONCLUDDG REMARKS. 

We have presented a parallel implementation of the 
Iterative-Deepening-A* algorithm. The scheme is quite 
attractive for the following reasons. It retains all the advan- 
tages of sequential IDA*, i.e., it is admissible, and still has a 
storage requirement linear in the depth of the solution. Since 
parallel processors of PIDA* expand only those nodes that are 
also to be expanded by IDA*, conceptually (i.e., discounting 
overheads due to parallel processing,) speedup should be 
linear. Furthermore the scheme has very little overhead. This 
is clear from the results obtained for the all solution case. In 
the all solution case, both sequential and parallel algorithms 
expand exactly the same number of nodes; hence any reduc- 
tion in speedup for N (> 1) processors is due to the overheads 
of parallel processing (locking, work transfer, termination 
detection, etc.). Since this reduction is small (speedup is 
“0.93N for N upto 30), we can be confident that the overhead 
of our parallel processing scheme is very low. The effect of 
this overhead should come down further if PIDA* is used to 
solve a problem (e.g. the Traveling Salesman Problem) in 
which node expansions are more expensive. Even on 15- 
puzzle, for which node expansion is a rather trivial operation, 
the speedup shows no sign of degradation upto 30 processors. 
For large grain problems (such as TSP) the speedup could be 
much more. 

Even though we implemented PIDA* on Sequent Bal- 
ance 21000 (which, being a bus based architecture, does not 
scale up beyond 30 or 40 processors), we should be able to run 
the same algorithm on different parallel processors such as 
BBN’s Butterfly, Hypercube [SEITZ 851 and FAIM-1 
[DAVIS 851. Parallel processors such as Butterfly and Hyper- 
cube can be easily built for hundreds of processors. Currently 
we are working on the implementation of PIDA* on these two 
machines. 

The concept of consecutively bounded depth first search 
has also been used in game playing programs [SLATE 771 and 
automated deduction [STICKEL 851. We expect that the tech- 
niques presented in this paper will also be applicable in these 
domains. 

We would like to thank Joe Di Martin0 of Sequent Com- 
puter Corp. for allowing us the use of their 30-processor sys- 
tem for conducting experiments. 

REFERENCES 

[CONERY 851 Conery, J.S. and Kibler, D.F. , “Parallelism in 
AI Programs”, CA1 -85, pp.53-56. 

[DAVIS 851 Davis, A.L. and Robison, S.V. , “The A 
ture of FAIM-1 Symbolic Multiprocessing System”, 
-85, pp.32-38. 

Wao, Kumar, and Ramesh 1 



[DIJKSTRA 831 Dijkstra, E.W., Seijen, W.H. and Van 
Gasteren, A.J.M. ,“Derivation of a Termination Detection 
Algorithm for a Distributed Computation”, Information Pro- 
cessing Letters, Vol. 16-5,83, pp.217-219. 

[FENNEL 771 Fennel, R.D. and Lesser, V.R. , “Parallelism in 
AI Problem Solving: A Case Study of HearsayII”, IEEE 
Trans. on Computers , Vol. C-26, No. 2,77, pp .98-l 11. 

[FINKEL 821 Finkel R.A. and Fishburn, J.P. ,“Parallelism in 
Alpha-Beta Search”, Artificial Intelligence , Vol. 19,82, 
pp.89-106. 

[FINKEL 831 Finkel R.A. and Fishburn, J.P. ,“Improved 
Speedup Bounds for Parallel Alpha-Beta Search”, IEEE 
Trans. Pattern. Anal. and Machine Intell. , Vol. PAMI- 
1,83, pp89-91. 

[IMAI 791 Imai, M., Yoshida, Y. and Fukumura, T. ,“A Paral- 
lel Searching Scheme for Multiprocessor Systems and Its 
Application to Combinatorial Problems”, IJCAI -79, pp.416- 
418. 

[KANAL 811 Kanal, L. and Kumar, V. ,“Branch and Bound 
Formulation for Sequential and Parallel Game Tree Searching 
: Preliminary Results”, IJCAI -8 1, pp.569-574. 

[KIBLER 831 Kibler, D.F. and Conery, J.S. , “AND Parallel- 
ism in Logic Programs”, IJCAI -83, pp.539-543. 

[KUMAR 841 Kumar, V. and Kanal, L.N. ,“Parallel Branch- 
and-Bound Formulations For And/Or Tree Search”, IEEE 
Trans. Pattern. Anal. and Machine Intell. , Vol. PAMI- 
6,84, ~~768-778. 

[KORF 851 Korf, R.E. ,“Depth-First Iterative-Deepening: An 
Optimal Admissible Tree Search”, Artificial Intelligence , 
Vol. 27,85, pp.97- 109. 

[KORNFELD 811 Kornfeld, W. ,“The Use of Parallelism to 
Implement a Heuristic Search”, IJCAI -8 1, pp.575-580. 

[LA1 831 Lai, T.H. and Sahni, S. , “Anomalies in Parallel 
Branch and Bound Algorithms”, 1983 International coufer- 
ence on Parallel Processing , pp. 183-190. 

[LEIFKER 851 Leifker, D.B. and Kanal, L.N. ,“A Hybrid 
SSS*/Alpha-Beta Algorithm for Parallel Search of Game 
Trees”, IJCAI -85, pp. 1044-1046. 

[MARSLAND 821 Marsland, T.A. and Campbell, M. ,“Paral- 
lel Search of Strongly Ordered Game Trees”, Computing 
Surveys , Vol. 14,no. 4,pp.533-551,1982. 

[NILSSON 803 Nilsson, N.J. , Principles of Artificial Intelli- 
gence, Tioga Press,80. 

[PEARL 841 Pearl, J.,Heuristics, Addison-Wesley, Reading, 
M.A, 1984. 

[RAO 871 Nageshwara Rao, V., Kumar, V. and Ramesh, K. 
, “Parallel Heuristic Search on a Shared Memory Multiproces- 
sor”, Tech. Report , AI-Lab, Univ. of Texas at AustinA 
TR87-45, January 87. 

[SEITZ 851 Seitz, C. , “The Cosmic Cube”, Commun.ACM , 
Vol28-1,85, pp.22-33. 

[SLATE 771 Slate, D.J. and Atkin, L.R. ,“CHESS 4.5 - The 
Northwestern University Chess Program”, In Frey, P.W. (ed.), 
Chess Skill in Man and Machine, Springer-Vet-lag, New 
York, pp.82-118,1977. 

[STICKEL 851 Stickel, M.E. and Tyson, W.M. ,“An Analysis 
of Consecutively Bounded Depth-First Search with Applica- 
tions in Automated Deduction”, IJCAI-85, pp. 10731075. 

Number of processors 

Fig 5: Avg speedup vs Number of processors for PIDA* Fig 6: Avg. speedup vs Number of processors for APIDA* 

(all solution case) 

182 Automated Reasoning 


