
rehminary 

Raymond Reiterl 
Department of Computer Science 

University of Toronto 
Toronto, Ontario, Canada M5S-lA4 

Johan de Kleer 
Intelligent Systems Laboratory 

XEROX Palo Alto Research Center 
3333 Coyote Hill Road 

Palo Alto, California 94304 

ABSTRACT 

In this paper we (1) d e fi ne the concept of a Clause Man- 
agement System (CMS) - a generalization of de Kleer’s 
ATMS, (2) motivate such systems in terms of efficiency of 
search and abductive reasoning, <and (3) characterize the 
computation affected by a CMS in terms of the concept of 
prime imp1icants.l 

1. A Problem-Solving Architecture 

Figure 1 illustrates an architecture for a problem solving 
system consisting of a domain dependent Reasoner cou- 
pled to a domain independent Clause Management System 
(CMS). For our present purposes, the Reasoner is a black 
box which, in the process of doing whatever it does, oc- 
casionally transmits a propositional clause2 to the CMS. 
The Reasoner is also permitted to query the CMS any time 
it feels so inclined. A query takes the form of a proposi- 
tional clause C. The CMS is expected to respond with 
every shortest clause S for which the clause S V C is a log- 
ical consequence, but S is not a logical consequence, of the 
clauses thus far transmitted to the CMS by the Reasoner. 
In Section 2 we show why obtaining such S’s is important 
for many AI systems. For example, for abductive reason- 
ing 1s will be an hypothesis, which, if known, sanctions 
the conclusion C. For efficient search 1s defines a most 
general context in which C holds. 

A traditional ATMS/TMS is a restricted CMS in which 
(1) the clauses transmitted to the CMS are limited to be 
either Horn (i.e., justifications) or negative (i.e., nogoods), 

’ l?ellow of the Canadian Institute for Advanced Reserch. This 
research was funded by the Canadian National Science and Engineer- 
ing Research Council under grant A0044. 

a In actual fact, the reasoner may transmit an arbitrary predicate 
calculus clause (containing variables for example), but this clause 
would be treated propositionally by the CMS. In other words, dif- 
ferent atomic formulas are treated as different propositional symbols 
by the CMS. 

‘and (2) the queries (C) are always literals. The funda- 
mental TMS problem is to identify the contexts in which 
a given singleton clause C holds - this is equivalent to 
querying the CMS for the shortest clauses S of the pre- 
ceding paragraph, as the negation of each such S implies 
C. 

Minimal 
Supports 

for c 

REASONER 

I CLAUSE MANAGEMENT SYSTEM 

Figure 1 : A problem-solving architecture 

2. Motivation and Formal Preliminaries 

We shall assume a propositional language with countably 
infinitely many propositional symbols and with the logical 
connectives V, 7 The connectives A, 1 are defined in 
terms of V, 1 in the usual way, as itre the formulas of the 
language. The definition of the entailment relation, I=, is 
also standard: If S is a set of formulas and w a formula 
then S f= w just in case every assignment of truth values 
to the propositional symbols of the language which makes 
each formula of S true also makes w true. 

Reiter 183 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



2.1. Definitions 

A literal is a propositional symbol or the negation of a 
propositional symbol. A clause is a finite disjunction Lr V 
. . . V L, of literals, with no literal repeated. We shall often 
represent a clause by the set of its literals. The empty 
clause, denoted by {} is the clause with no literals. A 
clause is a tautology iff it contains a propositional symbol 
and the negation of that propositional symbol. Let C be 
a set of clauses, and C a clause. A clause S is a support 
for C with respect to C iff C /& S and C b S U C. S is 
a minimal support for C with respect to C iff no proper 
subset of S is a support for C with respect to C. 

We can think of the CMS as a repository for C - some 
(not necessarily all) of the conclusions derived thus far by 
the Reasoner3. A support clause S for C with respect to 
C has the properties: 
1. CbSUCi.e. Cb+3C. 
2. C p S i.e. C U (4’) is satisfiable. 
Property 1 tells us that the conjunction of literals + is 
an hypothesis which, if known to C (and hence to the Rea- 
soner) would sanction the conclusion C. Property 2 pre- 
cludes hypotheses inconsistent with C since these would 
sanction any conclusion whatsoever. Finally, a minimal 
support clause S defines a shortest hypothesis +’ which 
sanctions C 
c follows. 

or, as it were, a simplest 
_- 

conjecture from which 

We are now in a position to specify the task which 
a CMS is to achieve. Recall that a’ CMS receives clauses 
transmitted to it by the Reasoner. Let C be the set of such 
clauses. Recall also, that the Reasoner may query the CMS 
with a clause C. The task of a CMS is to determine all 
minimal support clauses for C with respect to C. Ex<ample: 

C = W4 4, rl, -h -cd, b, -9, {-P, q, 4, {q, r, -t}} 
Minimal supports for {p} : {}. 
Minimal supports for {} : none. 
Minimal supports for {q} : {s}, {r, -t}, {-a). 
Minimal supports for {p, q} : {} 
Minimal supports for {s, r} : (q}, (1s}, (Tr). 

It is important to observe that S being a minimal sup- 
port clause for C is relative to C. In other words, 4 is a 
simplest conjecture from which C follows with respect to 
what the CMS has been told about the knowledge avail- 
able to the Reasoner. -S need not be a simplest conjecture 
so far as the Reasoner is concerned, since the Reasoner 
may have information relevant to this question of simplic- 
ity which it has failed to transmit to the CMS, or perhaps 
the Reasoner has failed to derive such relevant informa- 
tion. Why should a Reasoner find this notion of a minimal 
support clause of any value to it all? There are at least 
two reasons: 

2.2. Abductive Reasoning 

Imagine a reasoning system with some knowledge base KB 

3 Remember that the Reasoner decides, on its own pragmatic 
grounds, which conclusions it transmits to the CMS and which it 
withholds. 

184 Automated Reasoning 

which, for simplicity of exposition, we take to be a set 
of first order sentences. Imagine further that the Rea- 
soner has some goal formula g which it hopes to establish 
by a back-chaining inference procedure using KB as its 
premises, but that these premises ,are insufficient to prove 
g. Suppose the Reasoner recognizes this by its inability to 
expand any of the leaf nodes in the search tree of Figure 
2, which we shall use by way of an example4. From this 
the Reasoner can conclude: 

) An “or branch” 

} “and branches” 

Figure 2 : A back-chaining search tree. 
KBkp//q~r~gi.e.KB+~pv~qV~-Vg 
KB k=pAqxgi.e. KB bpv~qvg 
MB klqAr3gi.e. /=qVvVg 
Now, suppose the reasoner is concerned with perform- 

ing abduction, which is to say that it is seeking an explana- 
tion for g. Perhaps g is some observation of the world and 
KB, the Reasoner’s current theory of the world, is inade- 
quate to explain g (i.e., KB p g). The explanation which 
the Reasoner seeks is an hypothesis which, together with 
its background knowledge KB, entails g. Trivially, for the 
example of Figure 2, there are three such explanations im- 
mediately at hand: p A q A r, up A q and lq A r. But these 
are not the simplest possible explanations. It is the job of a 
CMS to provide such simplest explanations. Accordingly, 
the Reasoner transmits to the CMS the three clauses it 
inferred from Figure 2. The CMS now contains the set of 
clauses C = &P, 1s --, d, {P, -a d, {a, Try dl- If the 
Reasoner now queries the CMS with the clause {g} the 
CMS returns three minimal support clauses of {g} with 
respect to C, namely: (lg), {p, lq}, (lr>. This means 

C /= g 1 g and hence KB /= g 1 g, 
CklpAq3gandhenceKB /==pAqXg,and 
C b r I g and hence KB /= r 1 g. 

Thus, aside from the trivial explanation g, there are two 
simplest explanations for g, namely up A q and r. 

Notice that we have in mind here quite specific no- 
tions of “exnlanation” and “simplest.” Explanations are 
conjunctions of ground literals. A simplest explanation is 
one for which no proper sub-conjunct is an explanation. 
Finally, we insist that explanations be consistent with C, 

4 We are assuming here that g is a ground literal, and that, al- 
though KB is a set of first order sentences, the leaf nodes of Figure 
2 are-all ground literals. 



for otherwise we could explain anything! 
Notice also that a CMS, as defined, is capable of pro- 

viding simplest explanations only for q’s which are disjunc- 
tions of ground literals. This is clearly not as general as 
one might like. For example, the Reasoner could have two 
observations g1 and g2 of the world for which it wishes 
simplest explanations i.e., it wishes minimal conjuncts e 
such that C /= e 1 gi A g2 and C p le. Our CMS is not 
defined to handle this setting. In the full paper we show 
how a CMS can. 

Finally, with reference to Figure 2, notice that we have 
taken the Reasoner to generate abductive inferences by a 
back-chaining mechanism which terminates with leaves of 
the search tree which cannot be expanded further. While 
this is one possible mechanism, others are also possible. 
For example, the Reasoner may have defined some distin- 
guished set of literals which, in a back-chaining search, 
are never expanded. For the Reasoner, such literals de- 
fine a class of acceptable assumptions which the Reasoner 
is prepared to make. Back-chaining is not essential; one 
can define resolution theorem-provers with suitable termi- 
nation conditions. The unresolved literals of the uncom- 
pleted refutations can support abductive inferences (e.g., 
[Cox and Pietrzykowski, 19861). Again, such unresolved 
literals may be determined by a prespecified class of as- 
sumptions acceptable to the Reasoner. 

There are many systems and proposals for abductive 
reasoning along the lines sketched above. Representative 
examples are residue resolution [Finger, 19851, the THE- 
ORIST system of [Poole, 19861, the hypothesis genera- 
tion formalism of [Cox and Pietrzykowski, 19861, and the 
NLAG system for learning by analogy by [Greiner, 19861. 

2.3. Efficient Search 

By exploiting the CMS to organize and control search, 
much of the computation of the Reasoner can be avoided. 
Consider the following sequence of statements (from [de 
Kleer, 861): 

A:z~{o,i} 
.l? : a = cl(x) 
c : y E {O,l} 
D: b= e2(y) 
E : x E (0,l) 
F:c=eg(z) 
G:b#c 
H:a#b 

The functions ei require expensive computations, for ex- 
ample, ei(z) = (z + lOOOOO)!. 

Suppose that the Reasoner is based on chronological 
backtracking: it processes the statements A through Hone 
at a time until an inconsistency is detected in which case 
it backtracks to the most recent vcariable assignment it can 
change. The sequence of steps it might follow to End the 
two solutions are as follows: 

1 : Let 5 = 0, compute a = er(0). 
2 : Let y = 0, compute b = ez(0). 

3 : Let z = 0, compute c = es(O). As b = c backtrack to 
R 

4 : Let z = 1, compute c = es(l), b # c but a = b so 
backtrack to 2. 

5 : Let y = 1, compute b = ez(1). 
6 : Let z = 0, compute c = es(O), b # c, a # b, solution. 
7 : Let z = 1, compute c = es(l). As b = c backtrack to 

1. 
8 : Let x = 1, compute a = er(l). 
9 : Let y = 0, compute b = e2(0). 

10 : Let z = 0, compute c = es(O). As b = c backtrack to 
10. 

11 : Let z = 1, compute c = es(l), b # c, a # 6, solution. 
12 : Let y = 1, compute b = en(l). 
13 : Let z = 0, compute c = es(O), b # c, as a = b back- 

track to 13. 
14 : Let z = 1, compute c = es(l), as b = c stop. 
Notice that this approach requires 14 expensive computa- 
tions and 6 backtracks. 

Now consider how a CMS might be used to improve 
this search. The CMS propositional symbols all represent 
equalities (e.g., ‘x = 1’). The new search is the same a; 
the chronological one with the following changes. Every 
time the Reasoner does some computation, it constructs a 
clause representing it (e.g., the computation of a = ei(x) 
from x = 0 is represented by x # OVa = el(0)) and conveys 
this to the CMS. Before performing any computation, the 
Reasoner checks to determine whether the computation 
has been done previously. Before choosing (indicated by a 
‘Let’ in the trace) a value for a variable, the Reasoner first 
queries the CMS to see whether the variable is determined 
by the current choices. If the variable is determined, no 
choice is necessary and processing proceeds. If the vari- 
able is not determined, it chooses a value which can be 
consistently added to the current choice set. The resulting 
problem-solving trace is: 

1 : Let x = 0, transmit x = 0 V x = 1, x # 0 V a = el(0). 
2 : Let y = 0, transmit y = 0 V y = 1, y # 0 V b = ez(0). 
3 : Let z = 0, transmit z - 0 V 2 = 1, 2 # 0 V c = es(O), 

b # e2(0) V c # es(O). Th e current choice set is now 
inconsistent, so backtrack to 3. 

4 : z = 1 follows, transmit a # el (0) V b # e2(0). The 
current choice set is inconsistent, so backtrack to 2. 

5 : y = 1 foll ows, transmit y # 1 V b = ez(1). 
6 : T,et z = 0, solution. 
7 : Let 2 = I, transmit 2 # 1 V c = es(l), b # ez(I) V 

c # es(l). Th e current choice set is inconsistent, so 
backtrack to 1. 

8 : Let x = 1, transmit x # 1 Vu = cl(l). 

9 : Let y = 0. 
10 : 2 = 1 follows, solution. 
11 : Let y = 1, transmit a f el(l)Vb # ez(I). The current 

choice set is inconsistent, so stop. 
From this example we can see some of the advantages of 
a CMS-guided search. Intuitively, the CMS is functioning 
as an intelligent cache. For this example, CMS-approach 
requires 6, not 14 expensive computations, 3, not 5 back- 
tracks, and 8, not 14 choices. Note that this particular 

Reiter 185 



search example exploits only a few of the capabilities of 
a CMS - we present it only as an illustration of how a 

Unfortunately, the converse of Theorem 2 is false, as 
the following example shows: 

CMS could be utilized. It is relatively simple to invent 
a strategy for this particular problem which achieves the 
same efficiency, however, the CMS provides a general fa- 
cility that achieves these advantages for <any Reasoner. 

The CMS performs many of the functions of a conven- 
tional TMS [Doyle, 791 [Doyle, 831 [McAllester, 801. Their 
advantages (and disadvantages) have been extensively dis- 
cussed elsewhere (e.g., [de Kleer, 861). 

c = {{Pl, 4&l, Pa, c2)) 

c = lc*.c3J I -I a, 
The prime implicants of c are: 

{Pi9C1)7 -IPisP2,C2), {Pl,Tl}, {p2,7p2}, etc. 
The prime inlplicant II = {pl, ~2, c2} satisfies II n c + (1, 
but II - C = {pl,p2} is not a minimal support clause for 
C with respect to C. 

3. Prime Implicants 

Definition. A prime implicant of a set C of clauses is a 
clause C such that 

There is, however, an important partial converse of 
Theorem 2: 

1. C j= C, and 
2. For no proper subset C’ of C does C k C’. 

The concept of a prime implicant arises in solving the 
problem of two-level Boolean minimization of switching 
circuits [Birkoff and Bartee 1970, Ch. 61. In this set- 
ting, one is required to synthesize a given Boolean function 
in sum-of-products form using the fewest total number of 
and-gates and or-gates. Our definition of prime implicant 
is the dual of that used in Boolean minimization, basically 
because for us, the Boolean function is represented by C, 
a set of clauses, and hence is in product-of-sums form. De- 
spite this difference, we shall use the same terminology 
“prime implicant” since formally both concepts share the 
same properties modulo the duality between V and A. 

Notice that if C p p and C b lp for some propo- 
sitional symbol p, then the tautology p V lp is a prime 
implicant of C. 

The following result is straightforward: 

Proposition 1. If C is a set of clauses and C a clause, 
then C /= C iff there is a prime implicant of C which is a 
subset of C. 

Theorem 2. Suppose C is a set of clauses and C a clause. 
If S is a minimal support clause for C with respect to C 
then there is a prime imp&ant II of C such that IInC # () 
andS==H-C. 

Proof. We know that C /= S U C. Moreover, by the 
minimality of S, we know that SnC = (1. By Proposition 
1, there is a prime implicant II of C such that II C S U C, 
say II = S’ U C’ where S’ C S and C’ C C. We prove 
first that C’ # {} f rom which it follows that II n C # {}. 
For if C’ = {} th en II C S and since C + II it must be 
that C k S which contradicts S being a support clause 
for C with respect to C. Finally, we prove that S’ = S, so 
that II = S U C’ and since S n C = {} and C’ C C it will 
follow that S = II - C. To prove S’ = S we assume the 
contrary and obtain a contradiction. So, suppose S’ is a 
proper subset of S. Since C F S then C k S’. Moreover, 
since C k II and C’ C C then C /= S’ U C. But then S’ 
is a smaller support clause for C with respect to C than is 
S, which contradicts the minimality of S. QED. 

Theorem 3. Let C be a set of clauses and C a non-empty 
clause. If lI is a prime implicant of C such that C c SI, 
then II - C is a minimal support clause for C with respect 
to c. 

Proof. We must prove that C p II - C, which is obvious, 
and that C b (II - C) UC which is equally obvious. QED. 

Definition. A unit clause is a clause with just one literal. 

A simple consequence of Theorems 2 and 3 is the fol- 
lowing: 

Corollary 4. Let C be a set of clauses and C = (!) a 
unit clause. Then S is a minimal support clause for C 
with respect to C i$ there is a prime implicant lI of C such 
that e E IfI and S = II - {L}. 

Corollary 4 completely characterizes the minimal sup- 
port clauses in the case of unit queries issued by the Rea- 
soner to the CMS. As we shall see in Section 5, this result 
provides a characterization of de Kleer’s [1986] Assump- 
tion Based Truth Maintenance System. Moreover, it will 
allow us to generalize his system considerably. 

Notation. When C is a set of clauses and C a clause, 
qc,c> = {II - q-I is a prime implicant of C and 

JJnc # 01 
MIN-SUPPORTS(C, C) = 

{SlS E n(C, C) and no clause ofn(C, C) 

is a proper subset of S}. 

Theorem 5. (Characterization of minimal support clauses.) 
MIN-SUPPORTS (C, C) is the set of all minimal support 
clauses of C with respect to C. 

186 Automated Reasoning 



Proof. By Theorem 2, if S is a minimal support clause of 
C with respect to C then S E n(C, C). We must prove that 
no proper subset of S is in n(C, C). Suppose to the con- 
trary, for some proper subset S’ of S, that S’ E n(C, C). 
We shall prove that S’ is a support clause for C with re- 
spect to C, contradicting the minimality of S. Clearly, 
since C tfr S and S’ C S, C i# S’. It remains to show that 
C+S’uC. NowS’=I-I - C for some prime implicant II. 
Thus, S’UC = (fl-C)UC > II. Since C /= II, C k S’UC. 
Hence, S’ is a support clause for C with respect to C. 

Now suppose S E MIN-SUPPORTS (C, C). We must 
prove that S is a minimal support clause for C with respect 
to C, i.e., that 

1. c t&s, 
2. Ct=SuC,and 
3. No proper subset ,of S has properties 1 and 2. 

Proof of 1: 
Since S = II - C for some prime implicant H of C 

such that II r) C # {}, S is a proper subset of II. Because 
H is a prime implicant of C, C /# S. 
Proof of 2: 

Since S = II - C for some prime implicant II, S U C = 
(IT - C) u c z, II. s ince C b II, C + S U C. 
Proof of 3: 

Assume to the contrary that S has a proper subset S’ 
with property 2, i.e., that C k S’ U C. By Proposition 1, 
C has a prime implicant II’ C S’ UC. Since S = II - C for 
some prime implicant H of C, S fl C = {}. Since S’ G S, 
S’ 17 C = {}. Hence, since H C S’ U C, II - C C S’ which 
is a proper subset of 5’; since II’ - C E n(C, C), S $! 
MIN-SUPPORTS (C, C), contradiction. QED. 

4. Interpreted vs. Compiled 

There are two natural ways the CMS can store information 
and process queries issued to it by the Reasoner. 

4.1 The Interpreted Approach 

The simplest storage mechanism is to encode the Rea- 
soner’s clauses just as they are, possibly indexed by the 
literals they contain for more efficient content addressable 
access. Thus, updating the CMS’s database with a new 
clause is quick and simple. The price one pays for this sim- 
plicity of storage is a high retrieval cost. To find all min- 
imal support clauses for C with respect to C, the CMS’s 
database requires computing MTN-SUPPORTS (C, C) by 
Theorem 5, and this can be an expensive conlputation.5 If 
the Reasoner is expected to issue many CMS updates but 
few queries, then this interpreted approach will be war- 
ranted. In the full paper we shall describe and justify an 
algorithm for computing MIN-SUPPORTS (C, C). 

4.2 The Compiled Approach 

Under this approach, the CMS does not store the clauses 
transmitted to it by the Reasoner. Tnstead, it stores all 

5 Jn fact, it is easy to show that the general problem is NP-hard. 

the prime impliccants of these clauses. This is potentially 
an explosive approach. It can be shown that there are 
Boolean functions in n variables with exponentially (in n) 
many prime implicants. Moreover, CMS updates can be 
very expensive since, if C is the CMS’s current database 
(consisting of the prime implicants of all clauses issued by 
the Reasoner thus far), and K is a new clause issued by the 
Reasoner, we must compute all the prime implicants of CU 
{K}. The reward for the high space and time complexity 
of this approach, by Theorem 5, is that retrieval of minimal 
support clauses is cheap. 

The first thing we must show is that there is no loss 
of information in representing a set C of clauses by PI(C) 
the set of its prime implicants, i.e., that C and PI(C) are 
logically equivalent. 

Theorem 6. Suppose C is a set of clauses. Then C and 
PI(C) are logically equivalent in the sense that if C E C, 
then PI(C) b C, and if C E PI(C) then C /= C. 

Proof. Trivial. 

Theorem 6 justifies the compiled approach of storing 
only the prime implicants of the Reasoner’s clauses in the 
CMS database. 

In the full paper we shall describe and justify an al- 
gorithm for updating a compiled CMS database i.e., for 
computing the prim e implicants of C U {K} assuming we 
already have all prime implicants of C. 

5. De Kleer’s ATMS: A Reconstruction 

De Kleer’s 119861 A ssumption-Based Truth Maintenance 
System (ATMS) is a CMS constrained to process so-called 
Horn clauses. Moreover, the ATMS requires that the propo- 
sitional symbols have a distinguished subset called assump- 
tions. From the standpoint of the Reasoner, an assumption 
might be one of the distinguished propositional symbols 
which it is prepared to propose as part of an hypothesis 
to explain an observation in abductive reasoning (Section 
2), or one of the propositional symbols forming part of 
a proposed solution to a constraint satisfaction problem 
(Section 2). 

Definition. A Horn clause is a clause in which at most 
one propositional symbol occurs unnegated. 

The general form of a Horn Clause is 1~1 V -a .V ~p,Vp 
for propositional symbols p, pl, . - .p,, n 2 0, or lpi V a . . V 

744 2 0. 
Recall that, for the purposes of de Kleer’s ATMS, 

there is a distinguished subset of the propositional symbols 
called assumptions. We denote assumptions by upper-case 
A’s, usually subscripted, non-assumption propositional sym- 
bols by lower case p’s, and when the distinction + unim- 
portant by lower-case CX’S. 

In de Kleer’s approach, the Reasoner is constrained 
to transmit to the ATMS only Horn clauses. De Kleer 

Reiter 187 



calls such transmitted Horn clauses justifications. When a 
clause has the form 1~1 V - - e V T(Y~ V (Y, cx is called the 
consequent of the clause, and (~1, - * -(Y, the antecedents of 
the clause. If n = 0, the consequence cx is called a premise. 
When formulated in our terms, the task of the ATMS is 
the following: 

Given J, the set of justifications transmitted thus far 
to the ATMS by the Reasoner, and cr, a propositional sym- 
bol (which may or may not be an assumption), compute 
(Al A. . . A A,] (~AI, . . ., lAn} is a minimal support clause 
for {a} with respect to J}. 
This set is what de Kleer calls a consistent, sound, com- 
plete and minimal label for Q. Corollary 4 immediately 
provides the following: 

Theorem 7. (Characterization of de Kleer’s ATMS) 
Suppose that J is the set of justifications transmitted to 
the A TMS by the Reasoner, and that {(;Y} is a query, where 
cy is a propositional symbol (which may or may not be an 
assumption). Then the answers to this query are given by 
{Al A.. - r\A,[k>O andTA1V...VTAkVcr is a prime 
imp&cant of J). 

In the full paper we characterize the algorithm used 
by de Kleer’s ATMS, and prove its correctness with respect 
to Theorem 7. 

6. Generalizing the ATMS 

We can immediately see various ways to generalize de Kleer’s 
ATMS. To begin, justifications need not be Horn clauses. 
Thus we can define a justification to be any clause of the 
form 

fa1 v * * ’ V fa, V cy, where n > 0 and each cy is a 
propositional symbol which may or may not be an assump- 
tion. 
Moreover, the consequence (Y need not be atomic. We can 
allow la! as a consequence, or more generally, fcvr V - - - V 
fak can be taken to be a consequence. Finally, queries 
can be arbitrary clauses, not necessarily, as in de Kleer’s 
ATMS, unit clauses. In the full paper, we elaborate on such 
possible generalizations. Notice that Theorem 5 character- 
izes query evaluation for any such generalization. 

7. A Word on Computing Prime Pmplicants 

The results of this paper rely on computing all, or some, 
prime implicants of set C of propositional clauses. In the 
theory of switching circuit Boolean minimization, prime 
implicants are computed using the consensus method [Birk- 
hoff and Bartee, 1970, Ch. 61. Since our notion of prime 
implicant is the dual of that for switching theory, we are 
concerned with the dual of the conserbsus method, which 
turns out to be resolution [Robinson, 19651. A brute force 
way of computing all prime implicants of C is to resolve 
pairs of clauses of C, add the resolvents to C, delete sub- 
sumed clauses and repeat until no fresh clauses are ob- 
tained. The resulting clauses are all of the prime impli- 
cants of C. Obviously, WC prefer a more disciplined ap- 
proach to computing prime implicants. There are a few 

such approaches in the literature, e.g., [Minicozzi and Re- 
iter, 19721 [Sl gl a e et al., 19691). The full paper considers 
the appropriateness of these and other algorithms for de- 
termining prime implicants. 

References 

[Birkhoff and Bartee, 19701 G. Birkhoff ‘and T.C. Bar- 
tee. Modern Applied Algebra. McGraw-IIill, New York, 
1970. 

[Cox and Pietrzykowski, 19861 P.T. Cox and T. Pie- 
tryzkowski. Causes for events: their computation and ap- 
plications. In Proc. 8th Int. Conf. on Autom. Deduction 
and Lecture Notes in Computer Science 2.90, pages 608- 
621, Springer-Verlag, 1986. 

[de Kleer, 1986j J. de Kleer. An assumption-based 
TMS. Artificial Intelligence 28 127-162, 1968. 

[Doyle, 19791 J. Doyle. A truth maintenance system. 
Artificial Intelligence 12 231-272, 1979. 

[Doyle, 10831 J. Doyle. Some theories of reasoned as- 
sumptions: An essay in rational psychology. CS-83-125, 
Department of Computer Science, C.M.U., 1983. 

[Finger, 19851 J.J. Finger. Residue: a deductive ap- 
proach to design synthesis. Technical Report Stan-CS-85- 
1035, Knowledge Systems Laboratory, Stanford University, 
1985. 

[Greiner, 19861 R. Greiner. Learning by understand- 
ing analogies. Technical Report CSRI-188, Department of 
Computer Science, University of Toronto, 1986. 

[McAllester, 19801 D. McAllester. An outlook on truth 
maintenance. AIM-551, Artificial Intelligence Laboratory, 
M.I.T., 1980. 

[Minicozzi and Reiter, 19721 E. Minicozzi and R. Re- 
iter. A note on linear resolution strategies in consequence- 
finding. Artificial Intelligence 3 175-180, 1972. 

[Poole, 19861 D. Poole. Default reasoning and diagno- 
sis as theory formation. Department of Computer Science 
Techical Report CS-86-08, University of Waterloo, 1986. 

[Robinson, 19651 J.A. Robinson. A machine-oriented 
logic based on the resolution principle. J. ACM 12 23-41, 
1965. 

[Slagle et al., 19691 J.R. Slagle, C.L. Chang, and R.C.T. 
Lee, Completeness theorems for semantic resolution in con- 
sequence-Ending. In Proceedings IJCAI-69, pages 281--285, 
Washington, D.C., 1969. 

18% Automated Reasoning 


