
easoning About Exce

Carol A. &overman and W. Bruce Croft
Department of Computer and Information Science

University of Massachusetts
Amherst, Massachusetts 01003

Abstract
In a cooperative problem-solving environment; such
as an office, a hierarchical planner can be incorpo-
rated into an intelligent interface to accomplish tasks.
During plan execution monitoring, user actions may
be inconsistent with system expectations. In this pa-
per, we present an approach towards reasoning about
these exceptions in an attempt to accommodate them
into an evolving plan. We propose a representation
for plans and domain
ing about exceptions.

objects facilitates reason-

I. Interactive planning and
tional occurrences

TT. nierarchicai pianners incrementaiiy deveiop a pian at dif-
ferent levels of abstraction, imposing linear orderings at
each stage of the expansion to eliminate subgoal interac-
tions [Sacerdoti(1977)) Tate(1977)) Wilkins(1984)]. The
--_----A.: -- -I Ll-- -I--,- --:--1L1--- --A.---- _-----I L- execubwn 01 bne plan s prmu~ive acblons must oe moni-
tored to ensure success. Exceptions and interruptions are
common occurrences, and the planner must react to new
information made available during the various stages of
plan construction and execution. Existing plans may re-
quire modification or new plans may have to be generated.

We are concerned with using a pianner as a sup-

port tool in a cooperative problem-solving environment
such as an office [Broverman and Croft(1985)) Croft and
Lefkowitz(1984)]. I n such an environment, the planner is
not viewed as an omnipotent agent with complete knowl-
edge of the domain and procedures for accomplishing all
plan steps. Rather, it aids the user in performing correct
and consistent tasks . The operation of the planner depends
heavily on interaction with the user in order to allow user
controi and to draw On the usels’ domain lrnowiedge. IIlter-
active planners necessarily interleave plan generation and
execution since user actions determine the course of future
events.

Previous planners have provided general replanning
actions which are invoked in response to problems in

iThis work is supported by the Air Force Systems Command,
Rome Air Development Center, Griffiss Air Force Base, New York
13441-5700, the Air Force Office of Scientific Research, Bolling Air
Force Base, District of Columbia 20332, under contract F30602-85-
C-0008, and by a contract with Ing. C. Olivetti & C.

the plan resulting from the introduction of an arbitrary
state predicate or “fact” (Hayes(1975), Sacerdoti(l977)!
Wilkins(1985)]. In these systems, the replanning tech-
niques provided do not attempt to reason about failing
conditions or possible serendipitous effects of the excep-
tion. These methods simply make use of the explicitly
linked plan rationale to detect problems and determine
what violated goals need to be reachieved. We view this
type QfrepianniQ 2s $ "rc=mrt.innatQ tactic invnlvinrr little - ..-- "=----a J 1-x 1-1 . "'6 ‘1 u "nx,

intelligence, and reserve its use for exceptions generated by
external agents2.

To address the problems associated with interactive
planning, we propose extending the traditional replanning
approach. When a user action deviates from the planner’s
predictions, the system should exploit available knowledge
in an attempt to expiain the exceptionai behavior. Such
a constructive approach is preferred to replanning, since
replanning, in this case, would attempt to achieve goals
that the user deliberately chose not to pursue. This paper
discusses reasoning about exceptionai occurrences as an ap-
proach towards incorporating exceptions into a consistent
plan. In the next two sections, we describe an interactive
planner and the elements of our representation which are
used to support the reasoning process. We then outline
the types of exceptions that can occur and algorithms for
handling them, within the context of an example taken
from the domain of real estate.

Input to our interactive planner is provided as an abstract
goal specification, and the output is a partially or fully
expanded procedural net, with partial temporal ordering
(similar to other hierarchical planners [Sacerdoti(l977),
Tate(1977)) Wilkins(1984)]). A procedural net contains
goal nodes? action nodes? and phantom nodes (goal nodes
which are trivially true), along with links representing the
causal structure of the plan. Since complete expansion of
the initial goal may require additional information from
the user, only action nodes are considered primitive, and
thus executable.

2The planner attempts to satisfy a number of agents. The user(s)
are regarded as internal agents, while agents are considered to be
e&err& if the system lacks a model for their behavior (e.g., the real
world).

190 Planning

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

We distinguish between those primitive action nodes
which the system is able to carry out using available tools
(system-executable) and those which must be executed by
the user (user-eseczltable). An action node may be both
system-executable and user-executable, in which case au-
tomation is preferred. An example of an action which may
be solely user-executable could be the cancellation of an
order; the decision to cancel must be initiated by the user
and thus can be modeled as a decision action occurring
“offline” [Broverman et al (1986)]. Transferring informa-
tion from a purchase request to an order form, however, is
a primitive action which may either be performed by the
user or automated.

At any point during the planning and execution of
a task, an expected-action list contains the set of user-
executable primitive actions which are not preceded by
unexpanded goal nodes. This is the set of actions which
are predicted by the system to occur next. As each system-
executable or user-executable action is performed, the pro-
cedural net is expanded further, producing an updated
expected-actions list. A user action may be inconsistent
with system expectations, in which case it is flagged as an
exceptional occurrence.

III. A representation for plans
and domain objects

An important part of our approach is a uniform object-
based representation of activities, objects, agents and re-
Zationships3 [Broverman and Croft (1985)]. An integrated
abstraction hierarchy (see Figure 2) combined with a pow-
erful constraint language facilitates the representation and
use of more sophisticated knowledge about plans, such
as the policies of McDermott [McDermott(l978)]. The
reasoning process described in the next section exploits
this object-based representation. A similar approach has
been used by Alterman [Alterman(1986)] and Tenenberg
[Tenenberg(1986)] t o represent old plans that are adapted
to new situations.

The major features of our representation are a tax-
oitomic knowledge, aggregation, decomposition, resources,
plan rationale and relationships. Each of these is defined
and illustrated using an example from the domain of house-
purchasing, shown in Figures 1 and 2. Figure 1 depicts a
partially expanded procedural net fragment which repre-
sents the portion of a house-buying task which remains
after a house has been selected for purchase.’ Figure 2
shows a portion of the domain knowledge relevant to this
task.

Any complex entity can be viewed as a composition of
several other objects as well as an aggregation of proper-
ties. An abstract activity object which can be decomposed
into more detailed substeps has a steps property containing
a partial ordering of more detailed activity steps. Decom-

31n the remainder of the paper, we refer tQ plan descriptions as
activities and objects of the domain simply as objects.

I

I

.

.

.
I
.

. ,............................, 8 : : . 8
0 : :

: I

. . :
: I

, I : i ,

I

Figure 1: Example procedural net fragment

object

dater
number:

fiPPlY
Steps8 (follow <go-to-place <place>?

<fill-out-form
application-form>>)

Resources~ <application-foonn>
Effectst pendin&<application-form>)

application-form
app11cant:
manipulated-byr

upPlY> 5-T 1
mortgage-
application-
form

Apply-for-mortgage
steps: (follovs <go-to-place <bank>>

<fill-out-form
<mortgage-

wplkation-fofm> > 1

Figure 2: Fragment of knowledge base

,

Broverman and Croft 191

position of a domain object into other objects is expressed
as a set of object types named in a parts property. The ag-
gregation of all properties of either an activity or domain
object, including decomposition information, constitutes
the object definition.

All entities are represented in a type hierarchy, with
inheritance along is-a links between types and their sub-
types. Entities inherit the properties and constraints of
their supertypes. For example, a mortgage-upplicution-
form has various fields which are inherited from the more
general form object, and obeys the constraint stating that
it can be manipulated by an apply type of activity (in-
herited from application-form). Activities inherit the pre-
conditions and effects of their supertypes, as well as de-
composition information. For example, any apply activity
may be decomposed into an activity of type go-to-place
followed by fill-out-form. Apply-for-mortgage is a sub-
type of apply and thus inherits and specializes this de-
“,-...#.“:4.:,., A ,,I.. r,.. ,,.A,,,, ,.I..., :-L-,:4.- AL- -Ir--L -I LulllpuDIllIull. flppLy-jv7 -71.507 Lyuyt: CLISU IllllCl Ibb bllt? e11ecll 01

pending(applicution-form).

An activity has an associated set of eflects which are
asserted upon its completion. Effects are represented as
predicates on domain objects. The goal of the activity is a
distinguished main effect and is used for matching during
plan expansion. An activity schema also includes a decla-
ration of the types of domain objects it may manipulate.
The inverse of this resources property is the munipuluted-
by property expressed in domain objects to indicate which
types of activities may affect them. The union of an activ-
ity schema with the descriptions of associated object types
provides a rich semantic representation of the domain, in-
corporating objects and operators.

Causal knowledge is represented by goal properties
and purpose links. Goals are of a global nature, in that
they relate an activity to a representation of its intent;
that is +ls,,, cl,-tr\ . ..h.t th:” .x#.t:..:t., .3s.el\-r,l:,.h‘.” ..--m...A , u1r-z;y uuavz YYl‘aII lrlllii a&uvrlly aLLuIII~llDllcz:D lc~adu-
less of the context of the current procedural net. Purpose
links may be placed between two plan substep nodes in
both static and dynamic plan representations, to indicate
that a substep of a plan produces a state required for the
proper execution of a later substep, much like NONLIN’s
goal structure [Tate(1977)]. The purpose links prove to be
particularly important in determining whether or not an
exception can easily be incorporated into an existing plan.

Arbitrary relationships may also exist between do-
main objects. For example, a seller relation may be de-
picted between an individual and a certain house, express-
ing the fact that someone is selling a particular house. A
special type of relationship which may exist between two
objects is a transformation relation, which contains a pro-
cedural attachment for producing the correct instance of
one type of object associated with the instance of the sec-
ond object type. For example, the abstract class object
address may be related ice telephone-number through a
special transformation specification which indicates that
a phone call using a phone-number may produce the cor-
responding address.

A user action occurs within the context of predictions
made by the system. Exceptions can be generated by
unanticipated user actions. Because of the inherent open-
endedness of the domain, an unexpected occurrence may
in fact be a valid semantic action, not recognized as such
because of an inaccurate or incomplete activity descrip-
tion.

Referring back to our example depicted in Figures l-2:
we can imagine the following possible scenarios:

Suppose receive-mortgage-approval has occurred. We
are expecting an inspect-house action by the user. In-
stead, the user executes the first step of the cbose-on-
home procedure, go-to-closing-locution. This is an in-
stance of a step-out-of-order exception, since this step
is expected, but not until later in the plan.

Suppose the purchase-and-sale-agreement has been
signed, and the system next expects the user to start
carrying out the steps to obtain a mortgage (go-to-
bank). Instead, a sell-stock action is taken by the
user, generating an unexpected-action exception.

Suppose that while the user is waiting for his mort-
gage to be approved, his friend from the bank stops
in the office and hands him a hard-copy of the ap-
proval. Since the normal way of receiving approval is
in the form of an electronic message, the user simply
offers a user-assertion by introducing the predicate
upproved(mortguge).

Suppose, that while executing the fill-out-form sub-
step of the apply-for-mortgage step, the user fills in
the address field with a phone-number instead of an
address, triggering a constraint violation. This is a
case of an expected action, unexpected parameter type
of exception, where a static object constraint violation
has occurred. Unexpected parameters can result in vi-
olations of other types of constraints, such as a static
constraint in the activity schema, or a constraint dy-
namically posted on a domain-object by an activity
instance.

The above scenarios illustrate the classes of unex-
pected occurrences which can arise. Actions can be out-
of-order or completely unexpected. A user-assertion arbi-
trarily introduced to the system may have implications for
the current plan. A user assertion is modeled as an unex-
pected action with the assertion as its main effect, and is
treated as an unexpected action. An expected action may
occur with an unexpected parameter, resulting in the vio-
lation of a static or dynamically posted object constraint,
or the violation of a constraint within the plan itself. In
the foiiowing sections, we deveiop aigorithms ior reason-
ing about the various types of exceptions, and show how
each of the above scenarios can be resolved, resulting in a
consistent plan.

192 Planning

architecture for
~~~~gy-A6,im-l Jy -a--- 

While this paper focuses primarily on the reasoning process 
used to handle exceptions, a general architecture designed 
to accommodate exceptional occurrences is shown in Fig- 
ure 3. Several of the modules are similar to those described 
in other hierarchical planners, specifically [ Wilkins( 1985)]. 
We have extended the basic replanning model to include 
additional modules (highlighted in Figure 3) to address 
exception handling. Exceptions are detected by the exe- 
cution monitor and classified by the exception classifier. 
Violations in the plan caused by the introduction of an ex- 
ception are computed by the plan critic. Real-world (not 
user-generated) exceptions are handled by the replanner. 
ml-- ---l--f---------L ___- L---- -1--L-1 ?--Z---II--A- AL-L I ne repranning approacn we nave aaopLea IS simuar 60 wit6 
of [Wilkins(1985)], where one or more of a set of general 
replanning actions is invoked in response to a particular 
type of problem introduced into a plan by an exceptional 
occurrence. For interactive planning, we extend the set of 
general replanning actions to include the insertion of a new 
goal into the plan. 

The exception analyst applies available domain knowl- 
edge in an attempt to construct an explanation of an excep- 
tion. Its primary function is to determine the relationships 
and compatibility of the actual events to the expected ac- 
tions, goals and parameters. The particular entity relation- 
ships investigated by the exception analyst are determined 
by the type of internal exception. The exception analyst 
may be triggered by both external and internal exceptions, 
although it is primarily used for internal exceptions. 

The paradigm of negotiation [Fikes(1982)] has been 
Used a;Q a mzOdel for reaching apA agreement; RTTlnTlD ntwnts .aL’L’.sa‘e -b-““” 

on a method for accomplishing a task. We propose to use 
negotiation for establishing a consensus among agents who 
are affected by an exception. The negotiator determines 
t.hP set nf affortd n0ent.s and IICPC t.ho infnrmntinn nmvic-ld “&IV uvu VI . ..nll”Y “VU ..mb”“‘” -**.A uvvv “IA” 1ALIVA AL-IYUIVII =A v 1 .U”U 

by the exception analyst to present suggested changes to 
the original plan. 

We distinguish between eflecting and aflected agents 
with regard to the occurrence of an exception. The eflect- 
ing agent is that agent who has caused the exception. An 
ufected agent is one whose interests are influenced (either 

., . 
positrveiy or negativeiy) by the exception. Affected agents 
are those who are “responsible” for the parts of the plan 
where problems are detected by the plan critic. An exter- 
nal agent can never be an afected agent, since the system 
has no modei of an externai agent’s interests or behavior. 

Using information provided by the exception analyst 
about relationships between actuai and expected vaiues, 
the negotiator initiates an exchange between the effecting 
agent and the affected agents. The negotiator and plan 
critic execute in a loop in which the plan critic analyzes 
changes suggested by the negotiator to detect any probiems 
introduced. This loop is exited when no further problems 
are detected by the plan critic and all affected agents are 
satisfied. 

Figure 3: An architecture for a cooperative planner 

‘The negotiator aiso directs the acquisition of iniorma- 
tion from the user, if required, again using a trace of the 
exception analyst’s search to guide the questioning. Nego- 
tiation may also be invoked upon the failure of replanning. 
If the negotiator or repianner produces a consistent expia- 
nation of the exception, control is returned to the planner 
to continue plan execution and generation. A successful 
negotiation can result in a system which has “learned,” 
that is, the static domain plans may be augmented with 
knowledge about the exception and thus enhances the sys- 
tem’s capability to handle future similar exceptions. 

The behavior 0i the exception anaiyst is guided by some 
general principles derived from the type of the exceptional 
occurrence. A step-out-of-order exception, for example, 
may imply that the user may be attempting a short-cut, 
while an unexpected action exception may be eventually 
recognized as an intentional substitution of the unantici- 
pated action for the expected action. The exception an- 
alyst performs a controlled exploration throughout the 
knowledge base which is guided by the current state of 
the procedural network as well as the type of exception 
which has occurred. If a number of strategies are possi- 
ble, the least costly is attempted first. In the following 
sections, we present algorithms for handling the various 

example scenarios developed in section 3. 

A. hen the action taken doesn’t match 
an expected OE‘12 

If a user performs an action which doesn’t have a match on 
the expected-actions list, the exception classifier is invoked 
to determine whether this action is entirely unexpected or 

Broverman and Croft 193 



between the object provided as the actual parameter value 
and the object which was ezpecte& as the parameter value. 
The exception analyst attempts to establish the following: 

l 

The two objects may both be manipulated-by activi- 
ties which belong to a common activity superclass. If 
so, they probably are utilized in similar fashions. 
There may be any number of other re~at~o~s~~~s be- 
tween the two objects. Specifically, a trunsjormation 
relationship may link the object provided with the ex- 
pected object, describing a method to the obtain the 
expected parameter value. 

To handle scenario (d), the exception ana- 
lyst notes that the ~~one-~u~~er object and 
&dress objects are linked through a trunsjor- 
nation relationship, specifying that a proce- 
dure call may be used on the phone number 
to produce the corresponding address. 

4, The discrepancy between the two parameters may re- 
sult from d~~er~ng quantities of the object type. If so, 
an excess may or may not be allowable. The semantics 
associated with the underlying data type are partic- 
ularly important when handling quantity discrepan- 
cies, since commonsense reasoning may be required. 
For example, if the go~to-~u~~ step was supposed to 
result in withdrawing 50 do~Zars, emerging with 100 
may not be problematic, but baking a cake in a 450 
degree oven when the recipe calls for 350 degrees may 
have unsatisfactory results, 

The two objects may have a common ancestor in the 
object hierarchy. If so, the exception analyst con- 
structs the set of features untrue to the expected ob- 
ject, since the lack of these features in the object ac- 
tually provided as the parameter value may be prob- 
lematic. 

This information collected by the exception analyst 
is used during negotiation to establish whether the ex- 
ceptional parameter should be allowed. The scope of the 
knowledge base which may be affected by the exception is 
dependent on the type of constraint. violation which has 
occurred. Modifications and consequences which may re- 
sult from a static object constraint violation, for example, 
are localized to the static knowledge base, while plan con- 
straint violations and dynamic object constraint violations 
may have more far-reaching consequences for the remain- 
der of the plan. 

VII. Status 

References 
Alterman( 1986)] Alterman, R. “An adaptive planner”, 

~~ocee~~ngs of AAA~-~6, 65-69, 1986. 
Broverman and Croft (1985)] Broverman, C,; Croft’ W.B. 

“A knowledge-based approach to data management 
for intelligent user interfaces”, Proceedings of VLDB 
11, Stockholm, 96-104, 1985. 

[Broverman et a1(1986)] Broverman, C.A., Huff, K.E., 
Lesser, V.R. “The role of plan recognition in design 
of an intelligent user interface”, Proceedings of IEEE: 
conference on bin, Muc~~ne, and Cybernetics, 863- 
868, 1986. 

[Croft and Lefkowitx(l984)] Croft, W.B.; Lefkowitz, LS 
“Task support in an office system”, ACM Truns- 
uct~ons on 0fJice ~~jor~ut~on Systems, 2: 197-212; 
1984. 

I’ Fikes( 1982)] Fikes, R.E. “A commitment-based frame- 
work for describing informal cooperative work”, Cog- 
nitive Science, 6: 331-347; 1982. 

Hayes( 1975)] Hayes, P.J. “A representation for robot 
plans”, Proceedings LJCAIJ5, 181-188, 1975. 

I McDermott (1978)] McDermott) D.V. “Planning and Act- 
ing*’ ~ogn~t~~e Science, 2, 1978. 

[Sacerdoti( 1977)] S acerdoti, E.D. A Structure for Plans 
and Be~uu~or, Elsevier North-Holland, Inc., New 
York, NY, 1977. 

[Tate(1977)] Tate, A. “G enerating project networks”, Pro- 
ceedings LJCAI-h, Boston, 888-893, 1977. 

[Tenenb~rg( 1986)] Tenenberg, J. “Planning with Abstrac- 
tion*, Proceedings of AAAI-86, 76-80, 1986. 

f Wilkins( 1984)] Wilkins, D.E. “Domain-independent 
planning: Representation and plan generation”, Ar- 
t~~e~uz ~~tez~~ge~ce, 22: 269-301; 1984. 

f Wilkins( X985)] W lk i ins, D.E. “Recovering from execution 
errors in SIPE”, SRI International Technical Report 
346, 1985. 

Implementation of a prototype which incorporates the 
ideas presented in this paper is currently underway. One 
of the major aims of this work is to augment domain plans 
with knowledge acquired during exception handling. We 
are currently looking at the issue of propagating change in 
an obiect-based representation. 

Broverman and Croft 195 


