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Abstract 
A model of purely reactive planning is proposed based 
on the concept of reactive action packages. A reactive 
action package, or RAP, can be thought of as an in- 
dependent entity pursuing some goal in competition 
with many others at execution time. The RAP pro- 
cessing algorithm addresses the problems of execution 
monitoring and replanning in uncertain domains with 
a single, uniform representation and control structure. 
Use of the RAP model as a basis for adaptive strategic 
planning is also discussed.’ 

I. Introduction 
Automatic planning research has been concerned primarily 
with the generation of a complete list of actions to carry 
out a given set of goals. For many domains, particularly 
those created artificially as in a laboratory or on a factory 
floor, it makes sense to construct a detailed plan well in ad- 
vance of execution because the situations expected can be 
anticipated and controlled. However, it is becoming clear 
that in more dynamic worlds, where agents exist whose 
actions cannot be anticipated, the situation at execution 
time cannot be controlled, and detailed plans cannot be 
built in advance. As one would expect, the solution to this 
difficulty is to leave some, most, or even all of the planning 
to take place during execution when the situation can be 
determined directly. Systems that build or change their 
plans in response to the shifting situations at execution 
time are called reactive planners. 

The choice of which detailed actions to put in a plan 
usually depends on the context in which they will be exe- 
cuted. If that context cannot be computed in advance then 
the actions cannot be chosen appropriately. For example, 
planning the arm motions for the loading and unloading 
portions of a delivery task is both pointless and impossible 
before the cargo and the loading docks have been exam- 
ined. More generally, having to choose actions at execution 
time is unavoidable in any domain where there is uncer- 
tainty about what will be encountered after an action is ex- 
ecuted. Such uncertainty arises when independent agents 
or processes can change the world, when actions might not 
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work exactly right, or when there are just too many inter- 
acting variables involved in predicting the future. 

Reactive planning concerns itself with the difficulties 
of direct interaction with a changing world and must con- 
front many of the outstanding issues from conventional, 
strategic planning research. In particular, the problems of 
execution monitoring and low-level replanning cannot be 
avoided when constructing a reactive planner. The world 
state must be monitored continually at execution time if 
actions are to be chosen based on that state. Furthermore, 
if the system is to adapt to any situation encountered on 
the way to a goal, selecting the next step in the plan be- 
comes indistinguishable from changing the plan because of 
a problem with the last step. Problems will make them- 
selves apparent in the new world state and choosing an 
appropriate next step will automatically take them into 
account. 

This paper describes an investigation into reactive 
planning that takes the extreme position of using no pre- 
diction of future states at all. Plan selection is done en- 
tirely at execution time and is based only on the situation 
existing then. This approach was chosen, not because an 
extreme system would be a good planner by itself, but be- 
cause reactive plan execution must occur at some level in 
every system; the static action list generated by previous 
planners lacks the flexibility to confront the dynamic do- 
mains of current interest. By studying the problems of 
reactive plan execution without the complexities of look- 
ahead, this study strives to define a form and content for 
the representation of more adaptive plans. A traditional 
strategic planner working with this representation should 
exhibit a more robust behavior than is possible with static 
actions lists. 

A. elated Work 
A great deal of research has been done in the field of plan- 
ning and good reviews of this work exist in [Joslin and 
Roach, 19861 and [Chapman, 19851. In general these in- 
vestigations have examined the problem of constructing a 
fixed, static plan for a highly predictable world in which no 
sensory feedback is required at execution time. The prob- 
lem of verifying that the execution of such a plan unfolds 
as expected in a less predictable domain was recognized 
early and discussed by Sacerdoti [Sacerdoti, 19751 (among 
others), and recently researchers have been attacking the 
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problem with systems that add sensory verification activ- 
ities to otherwise static plans. Brooks [Brooks, 19821 uses 
models of domain uncertainty and expected error accumu- 
lation to decide where to insert monitoring tasks, while 
Gini [Gini et al., 19851 uses a model of planner intent to 
decide when expected situations should be verified. Doyle 
[Doyle et al., 19861 presents a system for inserting sen- 
sory verification tasks into a plan to check that expected 
world states really hold and Tate [Tate, 19841 has also cast 
some light on this subject. All of these systems assume 
that planning involves putting together only effector ac- 
tions and that sensor actions should be spliced into the 
plan afterwards as seems appropriate. 

Wilkins [Wilkins, 19851 approaches the problems in 
plan execution by looking at what to do when execution 
verification shows that something has gone wrong. His 
work on error recovery concentrates on defining a plan 
representation that facilitates determination of the parts 
of a plan which have been compromised by a failure and 
therefore need to be rethought. Fox and Smith [Fox and 
Smith, 19841 have discussed the problems of plan failure 
and replanning in the context of shop floor scheduling. 

Miller [Miller, 19851 assumes that basic plan represen- 
tations must include sensory operations as well as effector 
actions. In contrast to adding sensory tasks after plan 
construction, his model builds explicit sensory tasks into 
the plan right from the beginning. Miller’s system uses 
a scheduling algorithm to integrate all sensor and effector 
tasks into a single coherent plan before execution. Except 
for certain limited types of servo correction however, exe- 
cution time verification and replanning are not dealt with 
after the initial plan has been constructed. The FORBIN 
planner discussed in [Firby et al., 19851 builds further on 
this work. 

A markedly different approach to planning has been 
put forward by Chapman and Agre [Chapman and Agre, 
19861 based on the idea of concrete situated activity. Their 
idea is essentially one of purely reactive planning organized 
around situation-action like rules. Direct sensory input 
is used to index structures suggesting possible subsequent 
actions. Instead of using sensors sparingly to verify con- 
structed plans, sensors must always be active to supply the 
concrete information on which to base action decisions. 
Complex activity arises from the continual activation of 
appropriate actions with no anticipation of the future. 

. T eactive Action ackage 
The reactive planner described in this paper is based on the 
idea of reactive action packages or RAPS. A RAP is essen- 
tially an autonomous process that pursues a planning goal 
until that goal has been achieved. If the system has more 
than one goal there will be an independent RAP trying 
to accomplish each one. Each RAP obeys three principles 
while it is running. First, all decisions of what action to 
execute next in pursuit of a goal must be based only on the 
current world state and not on anticipated states. Second, 
when a RAP finishes successfully, it is guaranteed to have 
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satisfied its goal and to have executed all sensor actions 
required to confirm that success. Third, should a RAP fin- 
ish without achieving its goal, it will have exhausted every 
possible avenue of attack; a RAP will fail only if it does not 
know any way to reach its goal from the current state. 

To adhere to these principles, a RAP planner must 
come to grips with the problems of execution monitoring 
and low-level replanning. Execution monitoring is required 
to maintain an up-to-date current world model. Every ac- 
tion executed must return some form of feedback about its 
success or failure to ensure that the world model remains 
an appropriate basis for planning decisions. Furthermore, 
some RAPS may need to issue sensor operations in addition 
to this feedback in order to monitor the progress of their 
actions in more detail. Some form of low-level replanning 
must also take place within a RAP to ensure that it explores 
all approaches to achieving its goal before returning fail- 
ure. The reactive planner described in this paper consists 
of a RAP execution environment and processing algorithm 
that exhibits these characteristics. The planner is used to 
manage a robot. 

ask RAP nler 
Each RAP should be thought of as an independent entity, 
pursuing its goal in competition with the other RAPS in 
the system by consulting the current world state and is- 
suing commands to alter that state. The RAP execution 
environment shown in figure I supports this view of RAP 
execution. The world model holds the system’s under- 
standing of the current world state, the hardware interface 
controls communication with the real world, and the RAP 
interpreter and execution queue provide a mechanism for 
coordinating competition between RAPS. A RAP waits on 
the execution queue to be selected by the interpreter for 
its turn to run. When it does run, a RAP consults the 
world model and issues commands to the hardware inter- 
face. The interface passes those commands on to the robot 
hardware, interprets feedback, such as sensor reports or ef- 
fector failures, and makes appropriate changes to the world 
model. Interleaved RAP execution arises when the running 
RAP stops and returns to the queue to wait for a subgoal 
to complete and the interpreter chooses another to run in 
its place (see section III.). 

An important aspect of this architecture is the rela- 
tionship between the world model and the hardware inter- 
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face. The RAP interpreter must strive to run in real time 
and therefore all automatic inference within the system 
must be kept tightly under control. To meet this require- 
ment, the world model remains strictly static: no forward 
inference is allowed when facts are added or changed and 
no backward inference is allowed when queries are made. 
All changes to the model must be handled explicitly by the 
hardware interface or by the RAPS themselves. 

The hardware interface has detailed expectations 
about the way primitive hardware commands will change 
the world. It uses this knowledge to interpret the successes 
and failures returned by actual hardware operations and 
make appropriate changes to the world model. For exam- 
ple, if a command is issued to grasp a specific object and 
the hardware returns success, then the interface updates 
the world model to reflect that the object has been grasped. 
On the other hand, when the hardware returns some rea- 
son for failure, that reason is used to try and straighten 
out inconsistencies in the world model (Le., noting that 
the object is too slippery to grasp, that the gripper is bro- 
ken, etc.). This requires that enough real world feedback 
come from the hardware to ensure that the interface can 
maintain a reasonable model of the true world state. 

Although it is fair to expect the hardware interface 
to keep the world model consistent and up-to-date with 
respect to facts tied closely to direct sensor feedback data, 
it is unreasonable to assume that it will infer more ab- 
stract truths or initiate goals to explain complex failures. 
Such abstract properties and failures must be derived or 
explained by the RAPS themselves. For example, a RAP 
might be responsible for running the dishwasher. Pushing 
the start button should start the machine and, given ap- 
propriate feedback, the hardware interface can update the 
world model to reflect that the button was pressed. How- 
ever, before noting in the world model that the dishwasher 
is running, the “on” light should be checked as confirma- 
tion. This sort of high-level knowledge about dishwashers 
belongs in the dishwasher RAPS and not in the hardware in- 
terface charged with monitoring primitive actions. Thus, 
the dishwasher starting RAP would issue a command to 
push the start button, a command to check the “on” light 
and, if both succeeded, would update the world model to 
reflect that the dishwasher was running. 

This division of labor in the RAP execution environ- 
ment has two desirable characteristics. First, a natural 
coupling is made between the world model and the real 
world through hardware level feedback that occurs irre- 
spective of the commands in any particular RAP. Second, 
any additional complex inference that is required becomes 
the responsibility of one or more RAPS and thus falls under 
the same control mechanisms as any other robot activity. 

111. Issues in RAP Execution 

As a RAP runs and issues commands, it is doing a real-time 
search through actual world states looking for a path to 
its goal. In complex domains where general heuristics for 

Figure 2: An Illustration of RAP Execution 

deciding on the applicability of a given command are not 
well developed, a simple, blind search from state to state 
can be very inefficient. To limit the search performed, a 
RAP holds a predefined set of methods for achieving its 
goal and only needs to choose between these paths rather 
than construct new ones. A typical method consists of a 
partially ordered network of subtasks called a task net and 
each subtask in the net is either a primitive command or a 
subgoal that will invoke another RAP. To allow interleaved 
RAP execution, a RAP runs by consulting the world state, 
selecting one of its methods and issuing that method’s task 
net all at once. The RAPS and commands in the task net 
are added to the execution queue and the running RAP is 
suspended until they have been completed. 

This hierarchical style of RAP execution is achieved 
with the interpreter algorithm illustrated in figure 2. First, 
a RAP is selected by the interpreter from the RAP execu- 
tion queue. Selection is based on approaching temporal 
deadlines and on the ordering constraints placed on RAPS 
by task nets. If the chosen RAP corresponds to a prim- 
itive command it is passed directly on to the hardware. 
Otherwise the interpreter executes it. As shown in the il- 
lustration, each RAP consists of two parts: a goal check and 
a task net selector. RAP execution always begins with the 
goal check consulting the world model to see if its goal has 
already been accomplished. If it has the RAP finishes im- 
mediately with success. Otherwise, the RAP tries to choose 
an appropriate task net. If no net is applicable in the cur- 
rent situation, the RAP must signal failure, but one usually 
is and the RAP sends it to the execution queue. At this 
point the RAP has selected a plan for achieving its goal and 
must wait to see how things turn out. To wait, the RAP 
is placed back on the execution queue by the interpreter 
to run again once its task net has finished. When the RAP 
comes up again, it executes exactly as before. Thus, a RAP 
keeps choosing task nets until either its goal is achieved, 
as determined by its goal check, or the world state rules 
out every task net that it knows about. 

This method of specifying and running RAPS allows for 
a hierarchical and parallel pursuit of RAP goals, but raises 
the problem of coordination among the different subRAPs 
in a task net. If an early member of a task net fails, then 
it is probably pointless to execute those that follow; the 
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method the task net represents simply isn’t working out. 
To deal with this situation, the system keeps track of task 
net dependencies and removes all the members of a task 
net from the queue when any one of them fails to achieve 
its goal. 

Another problem with using task nets is that one 
might fail without changing the world enough to cause the 
RAP that spawned it to select a different one. In this situ- 
ation, the RAP will restart, note that its goal has not been 
satisfied and choose the same task net over again. If noth- 
ing intervenes to change the world in some way, such a 
loop could continue indefinitely. The best solution to this 
problem is not obvious and is still an area of active inves- 
tigation. The current system has an execution-time loop 
detector that flags any RAP that selects the same task net 
repeatedly without success. Once flagged as a repeat of- 
fender, a RAP is given low priority on the execution queue 
for a while in hope that the world will change. If that 
doesn’t happen, the RAP is eventually made to fail so its 
parent can try and choose a different task net for its goal. 
Allowing this tenacious pursuit of goals is a necessary part 
of dealing with the problem of unintentional interference 
between competing RAPS. 

A. Interactions Between Task Nets 
A classic problem with hierarchical planners is that plans 
for conjunctive goals can clobber each other unintention- 
ally. This problem manifests itself in the RAP planner when 
an early RAP in a task net sets up a particular state for 
some later RAP and a third, independent, RAP or process 
upsets that state. If execution of the task net were to con- 
tinue after this type of interference, it is likely that the 
later RAPS would fail and work would have been done for 
nothing. A standard technique for preventing such wasted 
work is to place protections on the states established by 
early RAPS and prevent their change. However, such pro- 
tections are too restrictive and difficult to manage within 
the RAP model of execution. One problem is that enforc- 
ing a state prevents many useful interactions. For example, 
one RAP might pick up a glass to move it to the kitchen, 
and another will want to put it down temporarily to switch 
the light off before leaving the room. Enforcing something 
like (hold glass) until reaching the kitchen would pre- 
vent putting the glass down to free up the hand. A second 
problem with trying to prevent a state change is that it 
requires looking into the future and thus violates our goal 
of building a purely reactive planner. To keep a state un- 
changed requires asking an action whether it will effect 
that state before it is executed rather than waiting to see 
what has changed afterwards. Finally, a state cannot be 
enforced at all if an external agent or process decides to 
change it. 

The RAP planner deals with interference between task 
nets without protections. Whenever a task net is chosen, 
the state that each RAP in the net is designed to establish 
(if there is one) is attached to the RAP it is being estab- 
lished for. These states form a validity check on the later 

RAPS which can be evaluated at their execution. After a 
RAP'S goal check, the interpreter checks all states attached 
to it by earlier RAPS to see if they are still true. If they 
are, then no interference has occurred and execution of the 
RAP is still appropriate. If not, an assumption has been 
violated and the RAP fails causing removal of the task net 
it belongs to from the execution queue. 

B. Uncertainty in the 
Another problem that can occur during RAP execution is 
for the world model to become inconsistent with the state 
of the real world. This can occur for many reasons in- 
cluding other agents changing the world, simple lack of 
information about something in the world, or failure to 
account properly for the evolution of an independent pro- 
cess. Rather than try and deal directly with the uncer- 
tainty this causes in the world model, the system just ig- 
nores it. When unquestioned faith in the world model 
results in a primitive command being attempted that can- 
not possibly succeed, the hardware and hardware interface 
are supposed to analyze the subsequent failure and correct 
the world model. For example, if a command is issued to 
lift a particular rock but it fails because the rock is too 
heavy, the hardware interface should interpret the failure 
that way and alter the world model to reflect that the rock 
is too heavy to lift. Then when the RAP attempting to lift 
the rock gets around to trying again, it will notice the rock 
is too heavy and try something else. In this way, the world 
model is made consistent through corrective feedback from 
the domain, and replanning required because of previous 
inconsistency occurs automatically. 

c. 
In summary, the RAP-based reactive planner described 
above separates each RAP into three parts: the Goal Check 
and Task Net Selector which form the predefined body of 
the RAP and a Validity Check which gets added when the 
RAP becomes part of a task net. This simple RAP struc- 
ture is interpreted according to the following algorithm, 
somewhat reminiscent of the NASL interpreter described 
in [McDermott, 19761: 

1. Choose a RAP or command to execute from those wait- 
ing on the execution queue. If a command is chosen 
simply pass it on to the hardware and choose again 
until a RAP comes up. 

2. Run the RAP’s Goal Check to see if its goal has been 
achieved. If it has then this RAP is finished and should 
return success. 

3. Run the RAP’s VaEidity Check if it has one. If the test 
fails then a task net assumption has been violated, 
this RAP is no longer appropriate and it should finish 
returning failure. 

4. Run the RAP’s Task Net Selector to choose a task 
net to achieve its goal starting from the current world 
model. If no appropriate task net is known then the 
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goal of this RAP cannot be achieved and the RAP 
should finish returning failure. 

Place the subtasks from the selected net on the exe- 
cution queue so that they will be run in accordance 
with the orderings placed on them by the net. 

Put the RAP back on the execution queue to be run 
after its task net has finished executing. 

Go to (1) to choose another RAP. 

IV. Summary and ConcIusions 

The idea of purely reactive planning as typified by the 
RAP model described in this paper has one obvious short- 
coming: it cannot deal effectively with problems that re- 
quire thinking ahead. Making plan choice decisions based 
only on the current world state precludes identification and 
prevention of impending detrimental situations. This can 
cause pursuit of the planner’s goals to be inefficient, un- 
successful, or even dangerous. Some inefficiencies occur 
because interactions between competing task nets are only 
repaired and not prevented during RAP execution. Also, 
RAPS cannot take expected states like rain into account, so 
choices like leaving the umbrella behind because it’s sunny 
can be short sighted and cause unnecessary trips back once 
the rain starts. Poor management of scarce resources is a 
similar inefficiency that can prevent otherwise successful 
plans from working. Finally, not being able to look ahead 
can cause disasters which should be preventable, like car- 
rying an oil lantern downstairs to look for a gas leak. 

Strategic planning, or looking ahead into the future, 
is required to detect inefficiencies and unhappy situations 
before they occur. Given the RAP model of reactive plan- 
ning, a strategic planner’s job would be to put constraints 
on RAP behavior before execution to either prevent or en- 
courage specific situations. Such constraints might take 
the form of ordering RAPS on the execution queue or forc- 
ing certain RAPS to make particular task net choices. For 
example, left on its own a RAP might elect to not pick up 
an umbrella because it is sunny, but the strategic planner, 
knowing that it will rain, could force the RAP to choose a 
task net that included taking the umbrella. 

In summary, the purely reactive RAP planner dis- 
cussed in this paper has several important features. It is 
extremely adaptive and hence tolerant of uncertain knowl- 
edge introduced by the actions of other agents or by the 
inherent complexity of the domain. In addition, by study- 
ing the domain feedback required to support RAP process- 
ing, the role of execution monitoring has been clarified and 
integrated as a natural part of the planning and execution 
environment. Similarly, issues of plan failure and replan- 
ning are subsumed by a single, uniform RAP processing 
algorithm. Finally, it is suggested that strategic planners 
would achieve more flexibility in many domains by assum- 
ing RAP-based plan execution and generating RAPS con- 
strained only as required to prevent serious inefficiencies 
and dangerous situations. 
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