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Abstract producing the part. 

The Machinisf program extends domain dependent 
planning technology. It is modeled after the behavior 
of human machinists, and makes plans *for fabricating 
metal parts using machine tools. Many existing 
plannmg programs rely on a problem solving strategy 
that involves fixing problems in plans only after they 
occur. The result is that planning time may be wasted 
when a bad plan is unnecessarily generated and must 
be thrown out or modified The machinist program 
improves on these methods by looking for cues in the 
problem spect$cation that may indicate potential 
dtfj?culties or conflicting goal interactions, before 
generuting any plans. It plans around those 
di@ulties, greatly increasing the probability of 
producing a good plan on the first try. Planning 
ef$ciency is greatly increased when false starts can be 
eliminated The machinist program contains about 
I80 UPS5 rules, and has been judged by experienced 
machinists to make plans that, are on the average, 
better than those of a 5 year journeyman, The 
knowledge that makes the technique eflective is 
domain dependent, but the technique itself can be 
used in other domainst 

I. Introduction 

Machiiist is a planning program that works on machining 
problems, and produces feasible plans for manufacturing 
individual metal parts. Machining is the art of producing 
metal parts using a variety of power tools to shape the 
metal. It is a highly skilled task requiring 10 to 15 years to 
become fairly accomplished. 

The program works by first scanning the problem 
specification (a set of shapes to be cut in a metal block, and 
some information on raw material, dimensions, etc.) for 
cues or patterns that indicate potential problems. It also 
looks for other types of patterns that provide salient 
information: what set of tools and processes can be used 
for specific cuts, as well as information on the details and 
restrictions on those processes. Using this information as 
the building blocks, the program constructs a plan for 
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This approach is more efficient than traditional 
planning methods, for domains that have many interactions 
between the goals. Traditional planners typically work by 
first generating a plan then using “critics” to check the 
resulting plan for problems and correct them [Sussman 
75, Scacerdoti 751. The critic method uses much more time 
in generating and fixing bad plans. 

The ideas for Machinist’s planning technique are 
taken from observations of the behavior of human 
machinists. Protocol analysis was used to collect this 
information. The resulting program consists of about 180 
OPS5 rules, and it runs on a DEC-20, a UNIX VAX, and a 
SUN workstation. 

The main emphasis of this paper is to explain the 
program’s planning methods and to examine how these 
methods can be used in other domains. The way in which 
this planning technique is implemented is domain 
dependent: the ability to identify a goal interaction 
efficiently by looking at a problem specification requires 
intimate knowledge about that problem domain. This 
knowledge, in the form of patterns which identify 
interactions, together with operators that tell how to avoid 
the interactions, takes many years for the expert to build up 
and years for the knowledge engineer to extract. As used 
here, a pattern together with an associated composite 
operator will be referred to a croq tar. 
Unfortunately, the planner must have these macro- 
operators to find these interactions in complex domains, 
otherwise the search would be tremendous. This does not 
lend hope for domain independent planners to be 
successful in large domains, but perhaps we must reconcile 
ourselves to the fact that efficiency may require 
expertise [Sussman 751. 

II. Bnteractions 

A major problem that the machinist confronts in planning 
is interactions between the different features that are ‘cut 
into the part. Cutting one feature first may make it difficult 
or impossible to cut subsequent ones. One can view the 
collection of features as subgoals to be achieved in the 
machining plan. The difficulty in making a plan is finding 
an order in which none of the subgoals interferes too 
seriously with achieving the others. 

This type of problem is not it;l:!lated to the 
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machining domain; interactions between subgoals have 
been observed in many planning domains by many 
researchers: Stefik [Stefik 811, Hammond [Hammond 863, 
Sussman [Sussman 751, Tate [Tate 761, and 
Carbonell [CarbonelI 811 to name a few. Sussman noted it 
as early as 1973 in HACKER: “interactions between steps, 
(are) a common cause of bugs.“2 Stefik perhaps, expressed 
it best: “In planning problems, there are typically many 
goals to be achieved in some order. The goals interact with 
each other in many ways which depend both on the order 
in which they are achieved and on the particular operators 
which are used to achieve them.0V3 A feature interaction 
happens when cutting one collection of features affects the 
way in which others can be made. Cutting one set of 
features may make it difficult to make other features latter 
on in the process. The methods used to make those 
subsequent features may have to be changed, or all the 
steps in the plan may have to be reordered so it is possible 
to cut all of the features. 

Feature interactions have several different causes. 
Most commonly they result from clamping problems; 
producing one feature destroys the clamping surfaces 
needed to grip the piece while cutting another feature. 

A feature interaction is shown below in figure 1. 
This part has two features: an angle, and a hole. The angle 
has been cut and the hole is about to be drilled, but when 
the drill touches the angled surface it will slip sideways and 
cause the hole to be placed inaccurately. The angle can be 
said to interact with the hole. The solution is to drill the 
hole first while the end of the part is still flat. Since the 
hole does not affect how the angle is made, a simple 
reordering prevents the features from interacting. 

the drill 
will slide 
when it starts 
to chill the 
hole. 

Figure I: Featare interaction: the hole 
must be cut before the angle 

II 

The wist program is modeled after the human’s 
planning process but it only implements a part of that 

2 Gerald 9. Sussman, A Computer Model of Skill Acquisition, 
American Elsevier Publishing Company, New York, 1975, MIT AI 
Technical Report TR-297, August 1973, p. 119 

‘Mark Stefik, “Planning and Me&Planning (MOLGEN: Part 2);’ 
Artificial Intelligence, voi 16, no. 2., 1981, p. 141. 

process. The human’s planning process is described in 
[Hayes 871. The most important omission is that there is no 

verification phase at the end of the program’s planning. 
To demonstrate how the program works, let us 

suppose one wanted to make the part in figure 2 from the 
metal stock shown in figure 3. There are five features that 
need to be cut into this part: three holes, an angle, and a 
shoulder (a shoulder is any ledge-like shape cut out of a 
side). The part is. represented in the program as a 
rectangular block from which features are subtracted. The 
block of metal that it will be made from, the stock, is saw 
cut and irregular on all sides. 

Figure 2: A part with 5 features: 
three holes, a shoulder, and an angle 

~--~~~~~-~~-5,25 --~~~~-~--~~-~> 

Figuie 3: The stock from which the part will 
be made: saw cut on all sides 

The first task to be done is that the program must 
identify the problems and interactions that occur in the 
part. This gets the program oriented to the basic structure 
and difficulties of the problem. Macro-operators are used 
to identify the interactions and produce the corresponding 
restrictions that they cause. 

In this part there are three interactions. The first is 
between Hole 3 and the angle. If the angle is made first it 
will interact with the hole, by causing the drill bit to slip on 
the slanted surface. This will make the hole placement 
inaccurate, as shown in the previous section II. The 
restriction that this interaction puts on the plan is that Hole 
3 must be made before the angle. 

The second interaction is between Hole 3 and the 
shoulder: the hole must be made before the shoulder. If 
the shoulder is made first, the part will be too thin and 
floppy when it is clamped to cut the hole. The result of the 
third interaction is that the angle must be made before the 
shoulder, for similar reasons. 

These three interactions: Hole 3 before Angle, Hole 
3 before Shoulder, Angle before Shoulder, all restrict the 
order in which the features can be cut. They can be put 
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together into one interaction graph (shown in figure 4). 
Each arrow represents one interaction. 

a. Drill Hole 3 

I 
Hole 3 
before 
shoulder 

b. Mill Angle 

Angle gfore Shoulder 

Ho1e 2 c. Mill Shoulder 

Figure 4: Interactibn Graphtthe order in which 
the features may be cut 

The next task is to retrieve a squaring graph from 
memory. A squaring graph outlines all methods for getting 
the raw material into a square and accurate shape with the 
minimum waste of material. It represents the constraints 
on the order in which each of the sides may be “squared 
off.” It serves as a framework from which the feature 
constraints can be hung. 

The squaring graph for this example is shown in 
figure 5. In each step, the shaded surfaces will be machined 
smooth. Steps that are shown side by side as branches in 
the graph can be done in either order: it does not matter 
which side of a branch is done first. 

side 

Set-up C Set-up D Set-up E 

Figure 5: The Squaring Graph for squaring up a block 
that is sawn on all sides 

We now have a graph showing the orders in which 
the features can be produced, and a graph showing the 
orders in which the sides may be cut. Each graph 
represents a separate set of constraints on the plan. The 
two must be merged with as much overlap between the 
steps as possible, so that we get a compact sequence. The 
more overlap the better, because the plan will be more 
concise. The merging the two graphs is shown in figure 6. 

Observe that between the Interaction Graph and the 
Squaring Graph there are 8 steps, but in the final plan there 

The Final 

4. a. 

7. c 

Figure 6: Merging the Interaction Graph 
with the Squaring Graph 

are only 7. This is because we were able to combine step b 
from the Interaction Graph with Set-up E from the 
Interaction Graph. The details on the processes by which 
squaring plans are chosen and the two graphs are merged is 
described in wayes 871. 

After producing the plan, the program does not go 
through the final verification phase as the human does. If 
all problems and goal interactions have been properly 
identified, the plan wiZZ be correct and the verification step 
unnecessary. 

However, the program would obviously be more 
robust if it used a verification step as the human does. It is 
not always possible to identify all problems beforehand: 
neither the machinist nor the program can have a complete 
set of patterns to identify absolutely all possible problems 
and goal conflicts. Therefore, the plans produced will not 
always be good the first time: there needs to be some sort 
of a safety net to catch problems that initially escape notice. 
Human machinists also use a “critic” approach, to check 
the final plan for errors. They may reorder steps, or replan 
to fix th;m. Future versions of the Machinist program will 
also be able to do this. 

Out of the 180 productions that comprise this system: 10 
productions identify feature interactions and construct the 
feature interaction graph, 39 identify other problem’s and 
generate constraints not caused by interactions, 13 choose 
the squaring graph, 44 merge the interaction graph with the 
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squaring graph, 11 generate the final plan from the merged 
constraint graphs, and 63 enter and check data, infer 
missing data, group features, push and pop goals, etc. The 
first two categories which identify interactions and generate 
constraints, are the ones that have the most room to grow. 
Productions can be added to these two categories, greatly 
increasing the range of parts that the system can handle, 
while the rest of the system remains the same. 

How much do the heuristics implemented by these 
rules cut down the search space? There are several 
categories of heuristics used by the program: feature 
interactions, squaring graphs, and graph merging. If the 
total effect of all the heuristics on the example used in this 
paper is taken together, we find that they reduce the 
number of plans that must be examined by a minimum 
factor of 1,663,200 compared to search using no heuristics. 

Let us now consider only the feature interaction 
heuristic by itself. For the example part there are 5 features 
but only 3 interactions. For this case, the feature 
interaction heuristic alone cuts down the number of plans 
that must be examined by a factor of 10. If we look at a 
more complicated example taken from [Hayes 873 that has 
14 features and 5 interactions, the feature interaction 
heuristic cuts down the number of plans examined by a 
factor of 630,000. 

Essentially, the more features and the more 
interactions there are, the more difficult it is to find a good 
plan. The problem is not that the search space gets larger as 
more interactions are added, it is that the density of good 
solutions in that space goes down. The machinist’s 
knowledge of feature interactions helps him to zero-in on 
only those good solutions. 

The program was tested against four machinists at various 
experience levels: two second year apprentices, one third 
year apprentice, and one journeyman with 5 years 
experience including the apprenticeship. Each of these 
subjects was asked to create a machining plan for the same 
series of three parts. Each part was apparently simple, but 
contained difficulties when examined more closely. 

Their resulting plans were judged by two very 
experienced machinists, each having more than 15 years 
experience. The average rating given to each of the four 
subjects and the program are shown in figure 7. The 
program’s average performance was better than that of the 
apprentices or the journeyman. In fact, Machinist 1 
declared the program’s plan for Part III to be “Almost the 
perfect plan. Who ever did this is a man after my own 
heart.” 

The judging was done in the following way: for each 
of the three parts there were five plans generated, one fiorn 
each of the four young machinists, and one from the 
program. All information indicating who (or what) created 
the plan was removed, and the the plans were presented to 
the two experienced machinists. Independently, they 

Total 5 
rating 
points: 

4 

3 

I 0 2nd Year 2nd Year 3rd Year 5th Year Machinist 
Appr. B Appr. A Appr. Journey. Program 

Figure 7: Average Plan Rating for Each Subject 

ordered each set of five plans, rating them from best %o 
worst. The best plans were given a score of 5, and the, 
worst, 1. 

The machinists’ ratings agreed exactly for 8 of the 
plans, differed by 1 point for 3, and more than one for 4. 
However, neither machinist felt that @e other was wrong in 
his ratings. Both felt that the plans which they rated 
differently were actually very close in quality. 

u-k 

Many pieces of this planning process have been described 
before but not as one cohesive method. Virtually all of the 
planners referenced in this paper recognize the importance 
of goal interactions in planning, but their method of dealing 
with this problem is different than achinist’s. Typically 
they do not foresee problems in the problem specification 
and avoid them. lnstead they make plans with mistakes in 
them and use critics to recognize and correct them after the 
fact [Sussman 75, Scacerdoti 751. Time is wasted fixing and 
replanning. 

TWEAK [Chapman SS], and CARI [Descotte 811 
both work by successively adding constraints to the 
description of the solution. The interaction and squaring 
graphs used by Machist are also constraints, but 
kf..chinnbf’s advance over this approach is to obtGn the 
constraints as the result of feature interactions. 

A number of chess strategy planners use macro- 
operators. They use patterns associated with plans to make 
search more efficient. Interestingly, many of them have 
been modeled, at least indirectly,, from human 
Berliner and Campbell [Berliner 831, and De 
Groot 651 all use some variant of this method but none of 
them seem to consider the effect of goal interactions on 
planning. 

There are only a few programs that take goal 
interactions into account before attempting a plan. One of 
the earliest, Tate’s pate 761 planner for house construction, 
does take interactions into account before it makes a plan. 
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However, these interactions must be entered by a human Phyllis Huckestein for contributing their machining 
since the planner itself cannot determine what tasks expertise to this project: to Paul Wright, Jaime Carbonell, 
interact. A new set of interactions must be entered for each Herb Simon, Irene Skupneiwicz, Paul Englert, Brack 
new task. This type of solution is not practical for Hazen; Gregg Lebovitz, Barbara Wright, Mark Perlin and 
machining problems since each new problem contains a 
different set of imeractions. One cannot reuse the same set 

Mike Parzen for their advice, comments, and proof 
reading; and to Ken Mohnkern for the art work. This 

of interactions over and over again for a large class of research was funded by Cincinnati Milacron and Chrysler. 
problems. 

Wilenski’s planner, PANDORA [Wilensky 801, and 
to some extent Wilkins planner, SIPE [Wilkins 841 
specifically look for goal interactions before planning 
(which is a great advance in domain independent planning). 
However, since it iS domain independent, it can not make 
use of domain knowledge (in the form of patterns) to help 
identify goal interactions quickly and to find a way around 
them. Consequently, its performance on complex tasks 
such machining problems would be impractically slow. 

Chef [Hammond 861 is a planner that generates 
recipes for Chinese cooking. It is one of the few planners 
that looks at the problem description for cues to potential 
problems and interactions. However, it does not use the 
interaction information to generate the plan as Machinist 
does but only to retrieve and modify plans. This is a good 
approach for many problems but it will not do for 
machining. Small differences in the shape or size of a part 
may make ‘big differences in the plan-so it is not good 
enough to index a past plan for a part that looks similar, 
and modify it. The plans may have so little similarity that it 
is easier to construct a new plan from scratch. 

VII. Conclusion 

The difference between Machinist and other planners is 
that it has all of the following properties together: 

1. a pre-planning step in which it scans the 
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