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Abstract 

James Allen and Pat Hayes have considered axioms ex- 
pressed in first-order logic for relations between time in- 
tervals [AllHay85, AllHay87.1, AllHay87.2]. One impor- 
tant consequence of the results in this paper is that their 
theory is decidable [Lad87.4]. In this paper, we charac- 
terise all the models of the theory, and of an important 
subtheory. A model is isomorphic to an interval structure 
INT(S) over some unbounded linear order S, and con- 
versely, INT(S), f or an arbitrary unbounded linear order 
S, is a model. The models of the subtheory are similar, but 
with an arbitrary number of copies of each interval (con- 
versely, all structures of this form are models). We also 

show that one of the original axioms is redundant, and we 
exhibit an additional axiom which makes the Allen-Hayes 
theory complete and countably categorical, with all count- 
able models isomorphic to INT(Q), the theory of intervals 
with rational endpoints, if this is desired. These results 

enable us to directly compare the Allen-Hayes theory with 
the theory of Ladkin and Maddux iLadMad87.11, and of 
van Bent hem [vBen83]. 

1 Introduction 

The Interval Calculus 
The representation of time by means of intervals rather 
than points has a history in philosophical studies of time 
([Ham71, vBen83, Hum78, Dow79, Rop79, New80J). 
James Allen defined a calculus of time intervals in [AU83], 
as a representation of temporal knowledge that could be 
used in AI. We call this the Interval Calculus. Allen in- 
vestigated constraint satisfaction in the Interval Calculus, 
and use of the Calculus for representing time in the con- 
text of planning fA1184, AUKau85, PelA1186]. Allen and 
Pat Hayes in fAllHay85, AllHay87.1, AllHay87.2] refor- 
mulated the calculus as a formal theory in first-order logic. 
Our interest in this representation of time stems from our 
belief that it is more in keeping with common sense use 
of temporal concepts to represent time by means of inter- 
vals, than to use the mathematical abstraction of points 
from the real number line (op. cit.). The Interval Calcu- 
lus is particularly amenable to treatment by the methods 
of mathematical logic [LadMad87.1, Lad87.2, Lad87.41, 
since it is complete, countably categorical (i.e. there is a 

unique countable model, up to isomorphism), decidable, 
and admits elimination of quantifiers (i.e. every first- 
order formula is equivalent to a quantifier-free formula), 
although it is NP-hard [ViZKau86]. We shall show below 
that the Allen-Hayes reformulation is a strictly weaker 
theory than the Interval Calculus. 

Overview of the Results 
Allen and Hayes [AlZHay85] introduced their axioms as 
a first-order logical formulation of the theory of inter- 
vals, guided by [All83]. We investigate their axioms in 
the slightly different form in which they are presented in 
[AllHay87.1]. Let Z Afi be the Allen-Hayes theory, i.e. the 
set of formulas that are consequences of the axioms. We 
present a complete categorisation of the models of TA,. 
This enables us, via results in [LadMad87.l], to directly 
compare the strengths of the various first-order theories of 

intervals in [vBen83, AZZHay85, LadMad87.11, and further 
to show that TAN is decidable lLad87.41. In this section, 
we survey the technical results described in this paper. 

First we show that one axiom (Existential M5) is re- 
dundant. We then characterise the models of zA% and the 
important subtheory Zsu~ by considering certain syntac- 
tic definitions and their properties. We introduce ‘points’ 
as a definable equivalence relation on pairs of intervals 
(the term ‘intervah’ just refers to objects in the model). 
(Rather than develop a theory of pairs within the axioms, 
we use a syntactically definable relation with four interval 
arguments to define the equivalence relation on pairs of 
intervals). We call the equivalence classes pointclasses. 

We show that pointclasses are linearly ordered by a 
de&able relation (which again has to be a relation on 
four intervals rather than on pairs of intervals), as a con- 
sequence of the axioms. We associate to each interval two 
pointclasses, representing the ‘ends’ of the interval, and 
show these pointclasses are unique, for a given interval. 
We show that one axiom (M4) guarantees also that there 
is a unique interval corresponding to a given pair of point- 
classes. Z~UB does not contain M4. In fact, ZsuB with 
the addition of M4 gives TAX (see below). 

We can now show that the pairs of (ordered) distinct 
elements from an arbitrary unbounded linear order S, a 
structure which we call INT(S), forms a model of TAti, and 
conversely that any model of 2~3-1 is of the form INT(S), 
for some unbounded linear order S. 
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When the axiom M4 is dropped, there may be an 
arbitrary number of intervals with given endpoint-classes, 
and we show that the models of TsUB are characterised by 
two parameters: 

e the (unbounded) linear ordering of the pointclasses 

m for each pair of pointclasses, the number of 
intervals with that pair as the ‘endpoints’. 

different 

Finally, we show how to complete the Allen-Hayes ax- 
ioms by adding an axiom N1, so that they have INT(Q), 
the rational intervals, as the only countable model up to 
isomorphism, if this is desired. 

The results of this paper are essential for the proof of 
decidability of ZAa. However, the result and proof are 
beyond the scope of this paper. We refer the reader to 
[Lad87.4]. 

What We Now Know 

We indicate briefly here what is known concerning the 
various interval theories. We do not have the space to 
include a detailed comparison, but the interested reader 
may find one in the longer version of this paper, along with 
proofs of the results in the technical section lLad87.31. 

Van Benthem considered first-order theories of inter- 
vals, first proved the countable categoricity of Th(INT(Q)) 
(the full first-order theory of rational intervals) [vBen83] 
and indicated an axiomatisation in [vBen84]. Ladkin and 
Maddux fLadMad87.11 f ormulated the Interval Calculus 
as a relation algebra in the sense of ,Tarski [JonTar52, 
Mad7’8], and associated with the algebra a first-order the- 
ory that they proved countably categorical, complete and 
decidable. It is a consequence of results in [LadMad87.1] 
on the interdefinability of the primitive relations that the 
formulations of van Benthem and Ladkin-Maddux define 
the same theory, even though they appear radically dif- 
ferent - the theory of intervals over an unbounded, dense, 
linear order. Ladkin proved that the theory admits elim- 
ination of quantifiers, and exhibited an explicit decision 
procedure, making use of the Ladkin-Maddux extension 
of Allen’s constraint satisfaction algorithm, and the quan- 
tifier elimination procedure, in lLad87.41. 

We show in this paper that the Allen-Hayes axioms 
define precisely the theory of intervals over an unbounded 
linear order, not necessarily dense. Hence this theory is 
logically weaker than Th(lNT(Q)), Since the addition of 
N1 to the Allen-Hayes axioms assures density, this gives 
yet another axiomatisation of Th(INT(Q)). 

Of course, logically weaker entails more models, which 
is what Allen and Hayes intended. They wanted the in- 
tervals over the integers, INT(Z), as a possible model of 
their theory, as well as INT(Q). The weaker theory is still 
decidable, but does not admit elimination of quantifiers 
[Lad87.4]. 

So it all fits together very nicely and everyone should 
live happily ever after . . . . . . . . . . . . . . . . . . 

Terminology 
We assume that the reader has familiarity with the ba- 
sic notions of first-order logic and model theory, as in 
[ChaKei73, ManWal85]. We include some reminders here. 
The only non-standard concept we use is that of an 
atransitive binary relation. 

The language of time interval theories, in the Allen- 
Hayes version, has a single primitive binary relation sym- 
bol 11 for meets. Since all other relations may be defmed 
from this in the Interval Calculus lLadMad87.11, it suEices 
to use this simple language. All our definitions below will 

assume this language. 

A theory T is a set of sentences that is closed under 
deduction. An axiomatisation of a theory T is a recur- 
sive set of sentences S such that T is the set of deductive 

consequences of S. T is axiomatisable if it has an axioma- 
tisation. 

A structure is a set of objects U, along with with a 
binary relation 110. We denote such a structure by (U, I/c). 

A model of a theory T is a structure such that all of 
the sentences in T are true in it. The class of all models 
of T is denoted Mod(T). 

The theory of the model M is the set of all sentences 
that are true in 1M, and is denoted by Th(M). Th(M) is 
complete (by construction). Note that M is a model for 
Th(M). 

A function 6’ : A!, + A42 is a homomorphism of models 

(MI, 111) and (M2,112) if and only if (Vr, y E Ml)(a:llly c--) 

%a9(Y))~ A n isomorphism is a one-to-one, onto ho- 
momorphism. Two models are isomorphic iff there is an 
isomorphism between them. 

A theory T is countably categorical iff all countable models 
are isomorphic i.e. there is only one countable model, up 
to isomorphism. 

A binary relation R (written infix) is atransitive iff 

(VP, q, r)(pRq & qRr --) (+Zr)); an ordering iff it is ir- 
reflexive, asymmetric and transitive; an unbounded or- 
dering iff it is an ordering, and also satisfies 

(Vp)(3q)(pRq) & (Vp)(ilq)(qRp); a linear ordering iff it 
is an ordering and linear. 

The following facts from model theory are relevant. 
A theory which is countably categorical is also complete. 
An axiomatisable, countably categorical theory is also de- 

cidable. The theory of unbounded dense linear orders is 
countably categorical. All countable models of the theory 
of unbounded dense linear orders are isomorphic to the 
rational numbers with the natural ordering, (Q, <). Fi- 
nally, there are uncountably many non-isomorphic count- 
able models of the theory of unbounded linear orderings. 

Ladkin 235 



2 The Allen- ayes Theory zd7-1 

The Allen-Hayes axioms for TAX are motivated by con- 
sidering intuitive properties of the relation meets over in- 
tervals from a linear order such as Q or 2. The intuitive 
definition of meets is given by the picture below: 

We give the formal definition in terms of intervals as 
pairs-of-points over some arbitrary linearly-ordered do- 
main S. 

e (a, b) is an interval if and only if a < b 

e (a, b) meets (c,d) if and only if b = c 

e INT(S) is the set of intervals on S, with the thirteen 
natural binary relations definable from the ordering 

on S 

Note in particular that there is no question of intervals 
being sets of points, and therefore no issue as to whether 
they include endpoints or not. Intervals are just pairs 
of points, and an endpoint is just one of these points. It 
does turn out that the class of open, closed, and half-open 
(at either end) intervals on the rationals is also count- 
ably categorical, and we can provide an extension of the 
Allen-Hayes axioms that have this structure as the only 
countable model, up to isomorphism lLad87.51. 

We give the Allen-Hayes axioms without much com- 
mentary, and refer the interested reader to [AllHuy85, All- 
Hay87.1, AllHuy87.2] for further motivation. The theory 
TAN is axiomatised by M1 - M5; equivalently, as we shall 

show, by Ml - M4. The theory &UB is axiomatised by 
Ml - M3 only, omitting M4. We use the symbol 11 for 
meets. The axioms are: 

Ml: (VP, q,~, NPIM & (PII & @IId + WbH 
which is intended to make the ‘meeting-places’ unique 

M2: (VI’, !I, T, d((Pk7’) & (Tlld -+ 
(PIIS @ (WPIIW 63 wwllPN) 
where @ is exclusive or, 
alternatives must hold. 

i.e. precisely one of the 

This axiom is intended to linearly-order the meeting 
places 

A/m (VPUq, a7llPll4 
which is intended to ensure that the intervals are 
unbounded at either end of the time line 

M4: (VP, Q,T, s)(Plldb & P~~~~~~ -+ Q = T> 
which is to ensure that there are 
with particular given ‘endpoints’ 

unique intervals 

M5: Functional Form (Vp,q)(pl)q + 
~~~d~llPll~lIS & TIKP + ~W) 
which is intended to guarantee the existence of a 
‘union’ interval of two meeting intervals. 

M5: Existential Form (Vp,q)(pllq -+ 
(37’9 s7 WIPII~II~ & Ml4) 
In fact, the axiom existential M5 already follows 
from M1 - M3 (below). 

Existential M5 versus Functional M5 

The operator + in Functional M5 may be introduced by 
SLolemisation in any given model of the axioms with Ex- 
istential M5, i.e. such a model may be augmented with 
the addition of a function so that it becomes a model of 
Functional M5 [ChaKei73]. We therefore prefer to use 

Existential M5, since Functional M5 leads to techni- 
cal difficulties which we prefer to avoid ([Lad87.3j). For 

example it dirties our tidy language . . . . . 

The Axiom M4 

There are techniques for obtaining models of zdx from 
models of &JB. The relation of ‘having the same end- 
pointclasses as’ is an equivalence relation that preserves 
the primitive relation meets, and therefore any model of 
&JB has a homomorphic image that is a model of Zdl-I, 
obtained by ‘factoring through’ the equivalence relation, 
i.e. by identifying objects iff they have the same equiva- 
lence class JChaKei731. However, the models of ZSvB are 
not the intended models of the interval theory, since in 
general they may have different intervals with identical 
endpoints. Hence even though M4 is dispensable from 
the point of view of model theory, we need it to pick out 
precisely the intended models. 

Technical Results 
We present the definitions of ‘points’ in a model of the 
Allen-Hayes axioms, and analyse the models of the ax- 
ioms . 

The following lemma is due to Allen and Hayes: 

Lemma 1 
atransitive. 

The relation II is drTefEexive, asymmetric and 

The next lemma shows that axiom M5 is dispensable: 

Lemma 2 The axiom Existential 
of the axioms Ml - M3. 

M5 is a consequence 

The next lemma shows that the function introduced in 
Functional M5 is dispensable. (This is just the theo- 
rem of Function Introduction in [Man Wal85], known as 
Skolemisation to model theorists [ChaKei73j). 
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Lemma 3 (Skolemisation) : Every model of the axiom 
A45 in the existential form may be extended (by adding a 
function) to a model of the axiom M5 in the operator 
form. 

We define the four-argument predicate that generates 
equivalence relation on pairs of meeting intervals. 

the 

Define Equiv(p, q, T, s) if and only if p]]q & r]]s & p]]s. 

We use the notation [p, 4 for the pair of intervals p and 
q, whenever pi/q. The notation thus includes an implicit 

assertion of 11. We shall write Equiv(p, q, T, s) as 
/p, q] N /~,a]. Using our notation, we could define 
Equiv(p, q, T, 3) by the biconditional: [p, q] N [T,s] if 
and only if plls. Technically, the notation [p, q] is only a 
convenience, and assertions involving terms of this form 

and N are just shorthand for assertions involving the 4-ary 
relation Equiv. The next lemma uses this shorthand. 

Lemma 4 (- is an Equivalence Relation) : 
(4 IPJ d - lP9 !?I 
(V lP, d - h-9 4 * h 4 - lP, !I1 
(4 lP, d N b-9 4 - lvl 3 lP, !d - h VI 
We call the equivalence classes pointclasses, and we de- 
note the equivalence class of [p, q] by [[p, q]]. They will 
represent the ‘points’ in any model of the axioms IAN. 

Define the 4-ary relation PointLess(p, q, T, 8) as follows: 
PointLess(p, q, T, s) if and only if 

PointLess is heterological; that is, it’s not a pointless rela- 
tion. We denote PointLess(p, q, T, s) by the rather more 
perspicuous notation /[p, qJ 4 I/r, s]]. This notation is 
also just a convenience. 

Lemma 5 (4 is linear) 
classes of N 

4 linearly orders the equivalence 

Theorem 1 (Models I) Given an arbitrary unbounded 
linear order < on a set S, the intervals of S, INT(S), 
form a model of TAti under the definition of ]I given ear- 
lier. Furthermore, the ordering + on equivalence classes 
of meeting intervals is isomorphic to the ordering < on S. 

Sketch of Proof: If two intervals meet, they have 
a member of S in common. It’s easy to check that the 
equivalence classes have the same member of S associated 
with each pair in the class, and that each member of S 
is associated with an equivalence class. To construct the 
required isomorphism, map [(a, b), (b, c)] to b. It is easy 
to see that 4 on the classes is preserved as < on S. 
End of Sketch. 

Corollary 1 There are uncountably many countable mod- 
els of the axioms ZAx. 

We shall show that the models of the theorem are the only 
models of IAx. We accomplish this by characterising the 

models of ZsuB, in such a way that the models of M4 are 

homomorphic images of these. 

Lemma 6 (Endpointclasses) For any p, there are 
unique equivalence classes PI and PI such that 

@?NP, 41 E Pl) & cwk PI E Pd 
Summarising what we have so far: associated with any 
object p in a model for Z SUB is a unique pair of equivalence 

classes. All intervals which meet p are included in some 

pair in one equivalence class, as are all intervals which are- 
met-by one of those. In the other are included in some pair 
all intervals which are-met-by p, and all intervals which 
meet one of those. The equivalence classes are linearly 
ordered. 

Given any model ~vI of ZSUB, form the set M’ of pairs 
of equivalence classes of meeting intervals under N, and 
using the linear order 4, form the intervals, and the meets 
relation on these by using the standard definition for pairs 
from a linearly ordered set. Call the resulting model 
INT(M), the interval structure of M. 

We can now state and prove our main result categorising 
the models of TAti. All of them are isomorphic to their 
interval structures. 

Theorem 2 (Models PI) INT(M) is a homomorphic im- 
age of M, and is a model of 1.47-I. Furthermore, if h4 is a 
model of TAN, they are isomorphic. 

Sketch of Proof: The mapping is p H ([[q,p]], [Ip, r]]) 
for any q, r that meet, respectively, are-met-by p. It’s 
easy to check that the relation 11 is preserved by this map- 
ping, and that the mapping is onto. Since this is the 
only primitive in the theory, this s&ices for the homo- 
morphism. To show isomorphism if M4 is true in M, 

note that if P,P’ ++ (kill, [b,4>, then qllp’ and p’llr ad 
hence p = p’, so the map is one-to-one. 
End of Sketch. 

Since the interval structures INT(M) are homomorphic 
images of each model Mof Z SUB, it follows that to discover 
the structure of models of ISUB, it suffices to look at the 

kernel of the homomorphism, which in each case is the 
equivalence relation 

pzqifandonlyif 

(3r7 6 s7 s’)(([h PI19 IP, r’ll> = m, qll, [[!I, S’IIN 

This is the equivalence relation of ‘having-the-same- 
endpoints-as ‘, and it’s easy to check that the same inter- 
vals meet p as meet q, and the same intervals are-met-by 
p as are-met-by q, when p N q. Hence the number of 
intervals in each N equivalence class may be chosen inde- 
pendently for each equivalence class. This may be stated 
more precisely in the following way: 

Let endpoints(p) be the pair ([[r, p]], [[p, r’]]). 
Let MULTI-INT(M) consist of the pairs (endpoints(p), p), 
with the relation of 11 defined as 
(endpoints(p), p) ]I (endpoints(q), q) if and only if p]]q. 
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It’s easy to check that pll q if and only if 
endpoints(p) II endpoints(q). Acknowledgements 

Lemma 7 MULTI-INT(M) is isomorphic to M. 

The isomorphism is defined by p H (endpoints(p), p). 
Another way of constructing MULTI-INT(M) is simply 

by taking INT(M) and, for each (a, b) E INT(M), adding 
an element (‘(a, b), p) for each p such that (a, b) = end- 
points(p). Thi s is sununarised in the following theorem. 

Theorem 3 (Models III) The models Of &!uB are com- 
pletely characterised by 
(a) the linear ordering 4 on the equivalence classes of N; 
(b) the number of elements in each equivalence class of N. 

Sketch of Proof: Given a model of the form MULTI- 
INT(M), we define a model 1M’with the elements ((a, b), ,@ 
for each p < c11, where cy is the cardinality (number) of 
the p such that endpoints(p) = (a, b). Define II on this 
model the same way as in MULTI-INT(M). We construct 
an isomorphism between the two models. 
End of Sketch. 

We have completely characterised the models of &vB, and 
the models of zA%. 

Extending the Theory 
We now give an axiom Nl that, added to zA%, gives 
Th(INT(Q)). Thus th’ IS axiom completes the theory z&j. 

@ Nl: (VP, q, r, 4 
( Point.Less(p, q, r, 3) + 
(3x9 Y) 
(PointLess(p, q, x, y) & PointLess(x, y, T, 3)) ) 

Nl expresses the density of the ordering + on point- 
classes. Translating it into the + notation should 
make this clear. 

Theorem 4 (Completion) The theory axiomatised by 
WI1 - M4, N1 is countably categorical, with all countable 
models isomorphic to INT(Q), and hence is Th(INT(Q)). 

3 Summary 

We have characterised the models of the Allen-Hayes ax- 

ioms for time intervals, as structures of intervals over an 
arbitrary unbounded linear order. The characterisation 
shows that the Allen-Hayes axioms serve the purposes for 
which they were introduced. The characterisation has 
enabled a direct comparison of the different first-order 
theories of intervals. The Allen-Hayes theory is incom- 
plete, which was intended, and is weaker than the Ladkin- 
Maddux-van Benthem theory. We indicated how to com- 
plete the Allen-Hayes theory. We have noted that both the 
Allen-Hayes theory, and the stronger complete theory, are 
decidable. 
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