
Localized epresent at ion and Planni g Methods for Parallel Domains

Amy L. Lansky*
David S. Fogelsong**

Abstract The primary goal of this paper is to examine the role that
locality plays in domain representation and reasoning. In par-
ticular, we focus on three uses of this structuring concept. First,
we show how a localized specification methodology can be used
to define domain properties and impose constraints only within
relevant regions of activity. Second, by viewing certain types

This paper presents a general method for structuring domains
that is based on the notion of locality. We consider a localized
domain description to be one that is partitioned into regions of
activity, each of which has some independent significance. The

of locations as regions of causal effect, locality can be used as
a way of addressing the frame problem. Such use of locality
has already been recognized in the AI literature [6,7], but has
not been extensively explored. Finally, the localization struc-

use of locality can be very beneficial for domain representation
and reasoning, especially for parallel, multiagent domains. We
show how localized domain descriptions can alleviate aspects of
the frame problem and serve as the foundation of a planning
technique based on localized planning spaces. Because domain
constraints and properties are localized, potential interactions
among these search spaces are fewer and more easily identified.

ture of a domain can provide heuristics for problem-solving in
that domain. We present a localized planning technique that
partitions both the plan representation and the planning search
space according to the structure of the domain. Because con-
straints are localized, there are far fewer interactions between
regional search spaces and, when they do exist, they are more
readily identified. While the containment of such interactions
is a goal of many existing planning systems [16,18,19,20], most
do not localize domain descriptions sufficiently. As a result, the
task of determining and coping with interactions is extremely

31 Introduction

The use of hierarchy is a well-recognized representational tech-
nique, not only in AI but in computer science as a whole. Such
representations facilitate our understanding of domain descrip-
tions and make it possible to use “divide-and-conquer” problem-
solving techniques. However, hierarchical descriptions are only

expensive.

The basis of the work described in this paper is GEM (Group
Element Model) [8,9,10,11], a model that explicitly represents
regions of activity in the manner we have described - i.e., it al-
lows them to be defined and grouped together in arbitrary ways
and associated with ports of interaction. Besides its use of do-
main structure, GEM is unusual in being an event-based (rather
than state-based) framework. Domains are described strictly in
terms of the events that occur within regions of activity and the
causal and temporal relationships between those events. Domain
properties are described by first-order temporal logic constraints
that limit a domain’s potential behaviors. Several domain rep-
resentations other than our own have been proposed that make
use of events and event relationships [1,4,13,14]. However, GEM
differs from most of these in having a purely event-based domain
model (where state descriptions are derived from past event be-
haviors), as well as in its emphasis on event localization.

one of the many possible ways of subdividing a domain. Depend-
ing on how one plans to use or view a domain representation, an
appropriate decomposition might include regions that overlap,
form disjoint sets, or take on any other structural configuration
- they need not necessarily form hierarchies.

In this paper we discuss a more comprehensive manner of
structuring domains, one that utilizes the notion of locality. By
“locality” we mean a very general notion of structure or decom-
position. A localized domain description is considered to be one
that is partitioned into regions of activity, each of which has
some form of independent significance. Regions may be com-
posed of related subregions of activity to form hierarchies or
any other kind of structural configuration.

The rest of this paper is organized as follows. In Section 2
we present a brief overview of the GEM model. In Section 3 we
discuss the influence of locality on the frame problem. Finally,
in Section 4, we describe GEMPLAN, a localized planner based
on the GEM representation.

2 Model and Specification Language

The GEM specification framework was designed for the descrip-
tion of domains with intrinsic parallelism. It has been used not
only for AI applications, but also for concurrent program specifi-
cation and verification. In this section we shall try to suggest the
general flavor of the domain model and specification language;

Since we are particularly interested in representing parallel
domains, it is also important to account for the potential in-
teractions among regions. To help deal with this problem, we
introduce the use of ports - well-defined region-boundary loca-
tions in which interactions can take place. The notion of a port
has been used extensively in the design
as well as in some CAD systems [15].

of distributed systems

*Artificial Intelligence Center, SRI International, 333 Ravenswood Av-
enue, Menlo Park, California, and the Center for the Study of Language and
Information, Stanford University.

**Computer Science Department, Stanford University.
This research has been made possible by the Office of Naval Research,

under Contract N00014-85-C-0251, and by the National Science Foundation,
under Grant IST-8511167. The views and conclusions contained in this
paper are those of the author and should not be interpreted as necessarily
representative of the official policies, either expressed or implied, of the
Office of Naval Research, NSF, or the United States government.

240 Planning

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

- (d) * (4 ==+ VW4 ==+ (w-0
&(U, eE1) ~(b, ell) E(c, eZ2) E(d, e/2)

4ek 9) +Q s>

Figure 1: A World Plan

much more rigorous and complete definitions can be found else-
where [8,9,10,11]. While these previous papers have emphasized
GEM’s use of event-based temporal-logic constraints, this paper
focuses on GEM’s structuring capabilities.

GEM’s underlying domain model is constructed in terms of
eventsi that are localized into regions of activity. Event in-
stances may be interrelated by three kinds of relations: the
temporal order =+-, the causal relation w (modeling a direct
causal relationship between event instances), and a simultane-
ity relation + (modelling the necessary simultaneity of event
instances). GEM utilizes two kinds of regions: elements and
groups. Elements are the most basic type of region. Every event
must belong to some element, and all events belonging to the
same element must be temporally totally ordered - i.e., elements
represent regions of sequential activity. Elements (and their con-
stituent events) may then be clustered into groups. Each group
represents a region of causally encapsulated activity. The causal
laws associated with groups are described in detail in Section 3.

GEM’s domain model can be viewed as a two-tiered structure.
The upper level consists of world plans (see Figure 1). Every
world plan consists of a set of events, elements, and groups,
and their interrelationships. Each event in a world plan models
a unique event or action occurring in the world domain, each
relation or ordering relationship models a relationship between
domain events, and each element or group models a logical region
of activity.2

World plans are meant to convey known information about
a domain. This information may be incomplete in the sense
that some potential relationships are left undetermined. For
example, if ==+-(el,e2) is true in a world plan, el must always
occur before e2 in every behavior of the domain. However, if no
relationship exists between the two events, they might occur in
either order or even simultaneously. The lower tier of the GEM
world model contains the set of potential behaviors or executions
permitted by a world plan. These executions must conform to
all the relationships established in the world plan - in essence,
they represent its possible “completions.”

For example, the world plan in Figure 1 can be executed in
three possible ways:

‘While they are often considered distinct, we use the terms event, event
instance, and action interchangeably.

‘We assume here that all events are atomic. The model is expanded in
include nonatomic events elsewhere [8].

Execution 1: 1st a 2nd b 3rd c 4th d
Execution 2: 1st a 2nd c 3rd b 4th d
Execution 3: 1st a 2nd b,c 3rd d

Note that, in the third execution, b and c occur simultaneously.
Although we know that one of these world executions may occur,
we cannot assume that any one of them actually does. All three
executions are thus part of the lower level world model for this
world plan. In GEM, these execution sequences of a world plan
are modeled as linear sequences of histories - i.e., as a set of
history sequences. Each history (Y may be viewed as a “state”
that encompasses not only the state of the world at some given
moment, but everything that has occurred up to that moment
- i.e., it is a snapshot of past behavior.3 The GEM history
sequences for the world plan in Figure 1 are as follows:

Execution 1: (~0 ai oj Q, Q,
Execution 2: (~0 cr; ok Q, cr,
Execution 3: oe cr; a, (Y,

where a0 is the empty history, cyi is the history with just event
a, oi is a history in which a has been followed by b (but not c),
ok contains a followed by c (but not b), (Y,
b, and c, and (II, includes all four events.4

contains events a,

Given this underlying world model, domains are described by
GEM specifications. Each specification consists of a set of con-
straints that limit the allowed executions or behaviors of that
domain. A given world plan W is considered to satisfy a set
of domain constraints if every one of its history sequences (i.e.,
executions) satisfies every constraint in the set. The task per-
formed by the GEMPLAN planner is to construct world plans
that attain some stated goal and satisfy all of a domain’s con-
straints.

Just as elements and groups model the structural aspects of
a domain, they also serve as the structural components of the
GEM specification language. Each specification is composed of
a set of element and group declarations. Each element is associ-
ated with a set of event types (the types of events that may occur
at the element). Each element and group may also be associated
with a set of first-order linear-temporal-logic constraints. These
constraints are localized, applying only to those events occurring
within the element or group in which they are defined. Every
specification also ihcludes a set of default constraints imposed by
the element/group structure of the domain itself. These default
“locality” constraints and their effect on the frame problem are
discussed in Section 3.

Figure 2 illustrates a sample specification and a possible world
plan for a cooking-class domain. The cooking class is described
as a group consisting of a set of kitchen subgroups, all of which
share a teacher element. Each kitchen also contains a set of
student elements and an oven element. Typical constraints that
might be used in this domain include rules regarding individ-
ual student behavior, limitations on the use of the oven in each
kitchen, requirements for student cooperation on certain tasks,

3The reader should be warned that the term &story has been used by
others in different ways - for example, to denote a particular sequence of
states.

40ne way of representing the possible history sequences of a world plan
is as a branching tree. In this example, we would have

/ CYJ + (Ym + an
@O - ff, - ffk 4 (Y,,, + C-t,,

I am - ffn
This corresponds to the branching tree of states used by McDermott; a
chronicle corresponds to a history sequence [13].

Lansky and Fogelsong 241

mkingclass
ki tchen2

polygon = group circle = element dot = event

Student = ELEMENT TYPE
EVENTS

Prepare(cake)
OvenRequest

CONSTRAINTS

student1 = Student ELEMENT
student2 = Student ELEMENT
student3 = Student ELEMENT

END Student

Oven = ELEMENT TYPE
EVENTS

Bakeccake)
CONSTRAINTS

oven1 = Oven ELEMENT
oven2 = Oven ELEMENT

END Oven 3 Locality and the Frame Problem

Kitchen = GROUP TYPE teacher = ELEMENT
(teacher, EVENTS
(8):SET OF Student, Instruct
0 : Oven) CONSTRAINTS

CONSTRAINTS :
: END teacher

END Kitchen

kitchen1 = Kitchen GROUP (teacher,{studentl,student2},oven

kitchen2 = Kitchen GROUP (teacher,,{student3},oven2)

cookingclass = GROUP (kitchenl,kitchenP)
CONSTRAINTS

1

END cookingclass

Figure 2: A Cooking Class Domain

or descriptions of appropriate reactions to the teacher’s instruc-
tions. Figure 2 also illustrates the use of GEM’s region type def-
inition and instantiation mechanism.5 In the full GEM model,
region-type inheritance and refinement may also be used [8].

The constraints associated with elements and groups are writ-
ten as first-order temporal-logic formulas which are then applied
to history sequences. Temporal logic has a well-defined seman-
tics and has been used extensively in concurrency theory. While
we shall not discuss the details of the logic here, we shall illus-
trate briefly how quite complex properties can be described.

GEM’s temporal operators may be applied to sequences that
go forward in time (using the operators 0 (henceforth), 0 (even-
tually), () (next), and P U Q (P until Q)) as well as backwards

in time (A (before), fi (until now), P 2 (Q back to P)). For
instance, when past behavior dictates the course of future be-

5Event, group, and element instances are denoted in lowercase; types are
capitalized.

havior, we would typically use a constraint of the form: P 3 q Q.
This may be read: “if P holds for the events in some history,
then, for every history which follows in the history sequence, Q
must hold.” This constraint form is commonly used for prior-
ity requirements as well as for many other naturally occurring
domain properties. A simple first-come-first-served requirement
for use of an oven might be:

(V ovenreql,ovenreq2:0venRequest, k:Kitchen)

ovenreqlck A ovenreq2ck A ovenreql =a ovenreq2 >

0 [serviced(ovenreq2) > serviced(ovenreq1)]

In other words, if two oven requests in the same kitchen oc-
cur in some order, they must be serviced in that order. The
notation serviced(e) is an abbreviation for a specific event for-
mula that is true of histories in which an oven request has been
fulfilled.6 An example of a,n eventuality constraint is the fol-
lowing: occurred(ovenreq) > 0 serviced(ovenreq). That is, if an
oven request occurs, it must eventually be serviced. Backwards
temporal operators may be used to describe event preconditions.
For example, justoccurred > A precondition(e) may read “if e
has just occurred then precondition(e) must hold in the preceding
history.”

Probably the most significant and best-understood aspect of the
frame problem is what Georgeff [6] has called the combinatorial
problem, i.e., how to state which properties remain unaffected
by actions. In a recent paper, he shows how independence ux-
ioms can be used to solve this and other related problems. As-
suming that one is able to state which events are independent
of which properties, Georgeff offers a general-purpose law of
persistence that guarantees that properties will remain unaf-
fected by independent events. One of the undeveloped aspects
of Georgeff’s theory is exactly how to specify independence ax-
ioms. He suggests domain-structuring techniques as a possible
solution. Hayes [7] has al so suggested that domain structure can
be used as a way of delineating frame axioms. We now show how
GEM’s use of locality can achieve precisely this objective.

GEM specifications are associated with the following implicit
constraints imposed by the structure of a domain:

o All events belonging to the same element must be totally or-
dered temporally. For instance, in our cooking class scenario,
each oven can have only one item baking in it at a time. El-
ements are often used to model limited resources which, by
their very nature, are constrained to support only one action
at a time.

e Groups are used to represent regions whose boundaries limit
inward causal effect.7 For example, in the cooking domain,

6As discussed elsewhere [8], GEM state descriptions are built strictly in
terms of formulas on events. This way of defining state descriptions does not
result in any loss of expressiveness and maintains the purity and usefulness
of event-based descriptions. Indeed, priority properties such as these are
much more awkward to describe in formalisms that are based strictly on
state.

‘Thus, the effects of events are assumed to range freely unless they are
explicitly blocked. While we could have made a group wall limit outward
access as well as inward, we have found this one-way “wall” to be more
useful. The effect of a two-way wall can be simulated by enclosing more
regions within groups.

242 Planning

the actions of students belonging to different kitchens cannot
be related causally. However, within each kitchen, the actions
of the teacher, the students, and the oven may be causally
interrelated. In addition, because the teacher belongs to all
kitchens, causal interactions between kitchens may propogate
through the teacher.

One exception to the group rule is the use of ports: “holes” in
the group boundary. If an event is a port for a group g, that
event can be affected by other events outside g. For example,
we might declare certain student actions as kitchen ports. By
doing so, these student actions may be affected by everyone
in the cooking class. Let us assume that the atomic formula
port(e,g) is true for every event e that has been declared a port
of group g. Moreover, suppose that el belongs to element ell,
e2 to element eZ2. Then the formal constraint on the causal re-
lation imposed by group structure may be described as follows:

constraint associated with a larger region containing R. For ex-
ample, if the cooking class group as a whole were associated with
constraints and properties that pertain to, or might be affected
by, events of any student, then all students could affect one an-
other by interfering with these “global” requirements. However,
if a strict and more structured specification-writing methodology
is adhered to, localization can be made tighter. For example, if
the constraints associated with the cooking class as a whole are
restricted to apply only to actions that each kitchen or student
makes explicitly accessible (e.g., port events), then event inter-
actions can be well delineated and kept under control. This kind
of constraint localization also helps to ensure that subplans gen-
erated by localized planning procedures will not interfere with
each other, even at a more global level.

4 Localized Planning Method
maycuuse(el,e2) - uccess(eZl,eZ2)V~ort(e2,g)Auccess(eZl,g)]

We define eccess(x, y) to be true if any of the following holds:
(1) 2 and y belong directly to the same group or (2) y is not
contained within any group or (3) y is “global” to 2. We say
that y belongs directly to a group g if it is explicitly declared
as one of the components of group g. We consider y to be
global to x if there is some surrounding group g’ such that
y belongs directly to g’ and x in indirectly contained within
g’. For instance, if we added a door element directly to the
cooking class group, it would be global and thus accessible by
every student.

In this section we describe the GEMPLAN multiagent plan-
ning system. Written in Prolog on a Sun 3/50, it has already
been used to generate multiagent solutions to blocks-world prob-
lems. Some of GEMPLAN’s important characteristics are the
construction of synchronized plans through the satisfaction of
first-order temporal-logic constraints; the use of localized plan
representations and localized planning search spaces; an adapt-
able, table-driven mechanism for guiding the planning search
that can make explicit use of noninterference among localized
constraints.g

GEMPLAN’s task is to construct a world plan (i.e., a set of
partially ordered, localized events) all of whose executions sat-

Group structure is a natural way of defining event indepen- isfy a given set of domain constraints and achieve some stated

dence in a general manner. ’ Suppose a given property P is goal. lo Given an initial world plan (possibly empty), the planner

associated with activity in group R. If event e has no causal repeatedly chooses a domain constraint, checks to see whether

access to activity in R (i.e., 7(3f,f&~)[muycuuse(e,f)]) or, al- the constraint is satisfied and, if it is not, either backtracks to

ternatively, e has no causal access to any event in R that can an earlier decision point in the planning process or goes ahead

influence P, then we can assert that e is independent of P. For and modifies the world pIan so that the constraint will be sat-

example, since the entire cooking class lacks ports, no activ- isfied. From a conceptual standpoint, the planning process may

ity outside the class can influence properties of the class. By be viewed as a search through a tree (see Figure 3). At each node

helping to define independence in a succinct and well-defined of the tree is stored a representation of the currently constructed

fashion, group structure helps solve the combinatorial problem. world plan. When a node is reached during the planning search,

Elements also help address the combinatorial problem because a constraint is checked. To satisfy it, the search space branches

they limit potential forms of parallelism within a domain. Re- for each of the possible ways of repairing or fixing the world plan.

striction of the oven to sequential use, for example, ensures the These “fixes” may involve the addition of new events, elements,

persistence of certain oven properties. groups, or event interrelationhips.

Strictly speaking, of course, events also influence one another
by virtue of the explicit constraints associated with domain re-
gions. Depending on the nature and scope of constraints, actions
within certain regions may or may not violate the constraints of
other regions. This is precisely the advantage of GEM’s local-
ization of constraints; if a given region’s constraint is known
to be satisfied, the introduction of a new event at some other
disjoint region can do nothing to violate that constraint. The
GEMPLAN planner takes direct advantage of this guaranteed
noninterference property.

Of course, depending on the structure of elements and groups,
noninterference cannot always be guaranteed: activity occur-
ring within a particular region R might violate a more global

8Dynamic restructuring of groups and elements is also utilized in an
expanded version of the GEM model [lo]. However, we do not use it in this
paper or in the current version of GEMPLAN.

In this paper, we shall concentrate on describing GEMPLAN
primarily from an architectural point of view, stressing its local-
ization of the planning search process. However, since the devel-
opment of constraint satisfaction algorithms is one of our key re-
search objectives, it merits some brief discussion here. Because
of the intractability of solving arbitrary first-order temporal-
logic constraints, we decided that a good initial approach to the - __
constraint satisfaction problem would be to use predefined fixes
for common constraint forms. This approach is similar to Chap-
man’s idea of cognitive cliches - i.e., utilizing a set of specialized
theories that are common to many domains, rather than trying
to solve for the most general theory [a]. The current GEM-

‘The current planner, however, does not make use of ports; it only takes
advantage of the localization of constraints and the limitations imposed by’
group/element structure.

“The stated goal of the world plan is viewed as one of the constraints to
be satisfied.

Lansky and Fogelsong 243

STU;ENTl

A check constraint

I
I
I

KIT@1

add

Figure 3 #: Localized Search Trees for the Cooking Class Domain

check “Prepark -> Bake” constraint

-------d--

“Prepare” event

for its student subelement, studentl. Let us assume that we
have reached the node labeled Nl for kitcheni, and that a set
of Bake events has already been inserted into the world plan.
At this point, we imagine that the following global kitchen1
constraint is checked:

(V bake(cake):Bake)@ prepare(cake):Prepare)

prepare(cake) * bake(cake) .

In other words, each baking event must have been enabled by a
student event that prepares a cake. Moreover, we also assume
that another constraint allows each cake preparation to enable
or cause only one baking event. If the first constraint has already
been satisfied (i.e., all Bake events already have an correspond-
ing Prepare event), the planner will move on to some other
kitchen1 constraint. If this is not the case, however, there are
two ways to proceed. First, there may be an existing Prepare
event that could be used - i.e., a cake has been prepared by
some student, but has no corresponding Bake event. In this
case, a causal relationship would be added between the existing
Prepare event and the lone Bake event. The other fix is to gen-
erate a new Prepare event involving one of the students. This
choice is illustrated in Figure 3 as a branch to the student1
search space. At this point, the search space for student1 is
resumed where it had left off (in a state where all its inter-
nal constraints had been satisfied), the new Prepare event is
added, and the student’s local constraints are rechecked. After
studenti’s constraints have been satisfied, control returns to
the kitchen1 search space. Note that no rechecking of the local
constraints for any other student, the teacher, or the oven, is nec-
essary, since these could not possibly be affected by a student1
event. However some global kitchen1 constraints may have to
be rechecked as a result of this change.

The actual order in which constraints and fixes are applied is
determined by a plan search table for each local region. This ta-
ble can be set up by a user to define quite flexible kinds of search.
The table provides three types of information: (1) the order in
which to apply constraints, (2) the order in which to try con-
straint fixes, and (3) when and where to backtrack. The partic-
ular constraint, fix, or backtracking scheme chosen at any point
in time is context-sensitive - it can be determined by the partic-
ular situation at hand. Whenever backtracking occurs, the node
left behind is still retained for possible later exploration. The
search can thus use a mixture of depth- and breadth-oriented
exploration, depending on the strategy determined by the table.

If a user does not supply domain-specific search information, a
default depth-first search strategy is used. The constraints and
fixes within each region are chosen in a given order. Chronolog-
ical backtracking is used when a plan cannot be fixed. Planning
halts when either no new options can be explored or all con-
straints have been checked successfully.

The use of the GEMPLAN search table has proved to be a
quite powerful and flexible means of guiding the planning pro-
cess. It can easily be constructed to take advantage of a domain’s
locality properties. When fixes modify the structure of a plan,
rechecking for consequent interference with other constraints can
be limited to those regions and constraints that could be af-
fected. In contrast, most existing planning systems (which may
also use “divide-and-conquer” methodologies) do not localize the

PLAN system can satisfy the constraints used in the blocks-
world domain: event prerequisites, constraints based on regular-
expression patterns of events, the maintenance of state-based
preconditions,11 and nonatomic-event expansion (into patterns
of events). The planner also includes a facility for accumulat-
ing constraints on the values of unbound event parameters. We
intend to add several constraint forms in the future, including
various kinds of priorities, mutual exclusion, and simultaneity.
This will enable GEMPLAN to handle more sophisticated forms
of synchronization than other existing planners. To solve propo-
sitional constraints, we hope to utilize the algorithms conceived
by Manna and Wolper [12] and implemented by Stuart [1’7].

The most important feature of GEMPLAN’s system architec-
ture is its partitioning of the planning search space and plan
representation in a way that reflects the group/element struc-
ture of a domain. For each element and group there exists a
local search tree and plan representation. The overall planning
system may be viewed as a set of mini-planning systems, one
for each region. In accordance with the structure of a domain,
more global regions have access to their subregions’ plans and
search spaces. It is these “parent-child” connections that form
the glue with which the entire planning system is tied together.

The plan descriptions associated with GEMPLAN tree nodes
are built by using inheritance: only events and relations that
represent changes from the parent node plan are stored. The
entire plan at each node may thus be derived by following the
plan inheritance chain, accumulating plan modifications along
the way. This inheritance representation is not only compact,
but is also well suited to localized plan representation; the same
inheritance scheme can be used for consolidating local plan in-
formation to form more global plan descriptions. Each group
plan is described as the union of a set of plans for each of its
composite regions (which will include all local event occurrences
and relationships resulting from the satisfaction of local con-
straints), along with any relations that are added by virtue of
the global constraints.

As an illustration, consider the search trees depicted in Figure
3 - one for the kitchen1 group of the cooking class, the other

“The algorithm used is equivalent to an implementation of Chapman’s domain description sufficiently and therefore cannot exploit the
truth criterion [3]. resulting properties of noninterference.

244 Planning

In addition, most planning systems search the plan space in
a fairly rigid way - typically, local expansion to a uniform level
of description followed by interaction analysis. In contrast, the
GEMPLAN planning search can be flexibly tuned. Depend-
ing on the structure of a domain, the nature of its constraints,
and the content of the search table, the search can be quite
distributed and loosely coupled for regions with weak interde-
pendencies, but tightly coupled when regions interact strongly.
The table can also be set up to focus the search in prescribed
ways. Researchers developing the ISIS scheduling system [5]
have found resource- and agent-focused search to be useful for
job-shop scheduling. In GEMPLAN, the search can be focused
on any region, as long as the user has specified domain structure,
regional constraints, and the search table appropriately.

5 Conclusions

This paper has presented an event-based formalism, GEM, for
representing parallel, multiagent domains. GEM can explicitly
describe arbitrary forms of domain structure as well as com-
plex constraints on events and their interrelationships. We have
shown how the behavioral limitations associated with GEM’s
structuring mechanisms (elements and groups) can be used to
delineate event or property independence. We demonstrated
how these implicit structural constraints, along with the local-
ization of explicit constraints and the use of ports, can help solve
aspects of the frame problem.

We have also presented the GEMPLAN planning architecture,
which directly partitions plan representation and the planning
search space according to the group/element structure of a do-
main. By employing a table-driven search mechanism, the plan-
ning process can be guided to take advantage of the locality and
interactional properties of a domain. We have used this system
to construct parallel solutions to several blocks-world problems;
it is our intention to extend its application to more complicated
scheduling domains in the near future.

Acknowledgments

We would like to thank those readers and critics who have helped
to improve the quality of this paper: Michael George& Martha
Pollack, David Wilkins, Mark Drummond, Steven Rubin, Marc
Vilain, and Save1 Kliachko.

References

PI

PI

[31

PI

Allen, J.F. “Towards a General Theory of Action and Time,”
Artificial Intelligence, Vol. 23, No. 2, pp. 123-154 (1984).

Chapman,D. “Cognitive Cliches,” AI Working Paper 286, MIT
Laboratory for Artificial Intelligence, Cambridge, Massachusetts
(April 1986).

Chapman, D. “Planning for Conjunctive Goals,” Masters Thesis,
Technical Report MIT-AI-TR-802, MIT Laboratory for Artificial
Intelligence, Cambridge, Massachusetts (1985).

Drummond, M.E. “A Representation of Action and Belief for
Automatic Planning Systems,” in Reasoning About Actions and
Plans, Proceedings of the 1986 Workshop at Timberline, Oregon,
M.P. Georgeff and A.L. Lansky (editors), Morgan Kaufman Pub-
lishers, Los Altos, California, pp. 189-211 (1987).

[51

PI

[71

P31

PI

PO1

WI

WI

[I31

P4

[I51

Pf-51

El71

P31

WI

PO1

Fox, MS. and Smith, S.F. “ISIS - A Knowledge-Based System for
Factory Scheduling,” Expert Systems, the International Journal
of Knowledge Engineering, Volume 1, Number 1, pp. 25-49 (July
1984).

Georgeff, M. P. “Many Agents are Better Than One,” in The
Frame Problem in Artificial Intelligence, Proceedings of the 1987
Workshop, F. Brown (editor), Morgan Kaufman Publishers, Los
Altos, California (1987).

Hayes, P.J. “The Frame Problem and Related Problems in Artifi-
cial Intelligence,” from Artificial Intelligence and Human Think-
ing, pp. 45-59, A. Elithorn and D. Jones (editors), Jossey-Bass,
Inc. and Elsevier Scientific Publishing Company (1973).

Lansky, A.L. “A Representation of Parallel Activity Based on
Events, Structure, and Causality,” Technical Note 401, Artificial
Intelligence Center, SRI International, Menlo Park, California
(1986), also appearing in Reasoning About Actions and Plans,
Proceedings of the 1986 Workshop at Timberline, Oregon, M.P.
Georgeff and A.L. Lansky (editors), Morgan Kaufman Publish-
ers, Los Altos, California, pp. 123-160 (1987).

Lansky, A.L. “A ‘Behavioral’ Approach to Multiagent Domains,”
in Proceedings of 1985 Workshop on Distributed Artificial Intel-
ligence, Sea Ranch, California, pp. 159-183 (1985).

Lansky, A.L. “Specification and Analysis of Concurrency,” Ph.D.
Thesis, Technical Report STAN-CS-83-993, Department of Com-
puter Science, Stanford University, Stanford, California (Decem-
ber 1983).

Lansky, A.L. and S.S.Owicki, “GEM: A Tool for Concurrency
Specification and Verification,” Proceedings of the Second An-
nual ACM Symposium on Principles of Distributed Computing,
pp.198-212 (August 1983).

Manna, Z. and P.Wolper, “Synthesis of Communicating Pro-
cesses from Temporal Logic Specifications,” ACM Trunsactions
on Programming Languages and Systems, 6 (l), pp.68-93 (Jan-
uary 1984).

McDermott, D. “A Temporal Logic for Reasoning About Pro-
cesses and Plans,” Cognitive Science 6, pp.lOl-155 (1982).

Pelavin, R. and J.F. Allen, “A Formal Logic of Plans in Tem-
porally Rich Domains,” Proceedings of the IEEE, Special Issue
on Knowledge Representation, Volume 74, No. 10, pp. 1364-1382
(October 1986).

Rubin, S.M., Computer Aids for VLSI Design, Addison-Wesley,
Reading, Massachusetts (1987).

Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier
North-Holland, Inc., New York, New York (1977).

Stuart, C. “An Implementation of a Multi-Agent Plan Synchro-
nizer Using a Temporal Logic Theorem Prover,” IJCAI-85, Pro-
ceedings of the Eighth International Joint Conference on Artifi-
cial Intelligence, Los Angeles, California (August 1985).

Tate, A. “Goal Structure, Holding Periods, and ‘Clouds’,” in Rea-
soning About Actions and Plans, Proceedings of the 1986 Work-
shop at Timberline, Oregon, M.P. Georgeff and A.L. Lansky (ed-
itors), Morgan Kaufman Publishers, Los Altos, California, pp.
267-277 (1987).

Vere, S.A. “Planning in Time: Windows and Durations for
Activities and Goals,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-5, No.3, pp. 246-267 (May
1983).

Wilkins, D. “Domain-independent Planning: Representation and
Plan Generation,” Artificial Intelligence, Vol. 22, No. 3, pp. 269-
301 (April 1984).

hansky and Fogelsong 245

