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ABSTRACT 

Temporal reasoning can be perfn-med by maintaining a 
temporal relation n&work, a complete network in which the 
nodes are time intervals and each arc is the temporal relation 
between the two intervals which it connects. In this paper, 
we point out that the task of detecting inconsistency of the 
network and mapping the intervals onto a date line is a 
Consistent Labeling problem (CLPJ. The problem is 
formalized and analyzed. The signijicance of identifying and 
analyzing the CLP in temporal reasoning is that CLPs have 
certain features which allow us to apply certain techniques to 
our problem. We also point out that the CLP exists when we 
reason with disjunctive temporal relations. Therefore, the 
intractability of the constraint propagation mechunism in 
tempo& reasoning is inherent in the problem, not caused by 
the represent&n that we choose for time, as 
[Vi&n $ Kautz 861 claims. 

1 Introduction 

Temporal reasoning has recently been the subject of great 
attention in AI. Natural language understanding systems 
like [Bruce 721. [Kahn & Gorry 771. etc. and planning 
systems like DEVISER [Vere 831. TIMELOGIC 
[Allen & Koomen 831. ISIS [Fox & Smith 841 FORBIN 
[Dean 85][Miller et al. 851. TLP [Tsang 86b,87a]. etc. all in 
some sense model and reason with time. [Allen 831 
suggests modeling time in an interval-based temporal 
seructure. He also presents a formalism for reasoning with 
disjunctive temporal relations among intervals. In this 
paper. we shall start by looking at Allen’s formalism. 
Then we shall identify the consistent labeling problem 
(CLP) in it, and show that this problem exists in point- 
based approaches as well, whenever we reason with all 
disjunctive temporal relations at the same time. The 
significance of identifying the CLP will also be discussed. 

II Temporal Reasoning by maintenance of a relation 
metwork 

In Allen’s temporal frame. each assertion is associated with 
an interval in which it holds. Intervals and their 
temporal relations can be represented by a complete simple 
graph which is called a Relation Network: 

G = (N. R) 

where N is a finite set of intervals (which form the nodes 
of G) and R is a set of temporal relations (which form 
the arcs). Between any two nodes X and Y in N, there 

exists an arc in R which goes from X to Y and another 
arc which goes from Y to X (hence G is complete). For 
convenience, we use Rxy to represent the temporal relation 
between intervals X and Y throughout this paper. Ryx is 
just the inverse relation of Rxy (since Rxy and Ryx must 
coexist, G is a simple graph). We follow [Allen 831 and 
use the following notations for primitive temporal 
relations: (< ,m.o,f,d,s,=,si.di$,oi.mi.> 1. Disjunctive 
primitive relations are represented by a list. For example 
x [< = >] Y means X is before, equal to or after Y. For 
all intervals i and j, if Rij is completely unconstrained, it 
can take any one of the 13 primitive relations as its 
value. Every arc Rxy in R must take one of the primitive 
relations as its value. 

Temporal relations are subject to constraints. A temporal 
constraint on Rxy is a restriction on the values that Rxy 
can take. Therefore, a temporal constraint C can be seen 
as a set of primitive temporal relations - an enumeration 
of all the values that the subject temporal relation can 
take in order to satisfy C. For example, if the proposition 
P holds in interval X. and -P holds in interval Y. then X 
and Y must not have any common subintervals. In other 
words, the constraint is: Rxy c 4 < m mi > ). Because of 
the linearity property of time in this logic [Tsang 86a]. for 
any three intervals X. Y and Z. the temporal relation Rxz 
is restricted by Rxy and Ryz jointly. Such constraints are 
called transitivity rules. A constraint propagation 
algorithm based on these transitivity rules has been 
presented in [Allen 831. 

[Tsang 86b] points out the need for checking consistency in 
relation networks. In planning, there is a need to map 
intervals onto date Zincs. simple structures where each time 
point has a place, and the points are linearly ordered. 
One way to prove the consistency of a relation network 
and map the intervals in it onto a date line is to assign a 
primitive temporal relation to each relation. This is a 
consistent labeling problem, which will be discussed below. 

The Shdsteut Labeling Problem 

A Consistent Labeling Problem (CLP) is defined as follows: 

We have a finite set of variables 2 = (X,, Xz, . . . . X,$. 
Cardinality of Z is n. Each variable Xi in Z has a 
finite domain of values. Constraints exist for subsets 
(of various sizes) of variables in Z. The task is to 
find a s=ohtion-tuple (which is a n-tuple),, which 
means the assignment of one value to each of the 
variables in Z such that all the constraints are 
satisfied. 
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This problem is called Constraint Satisfaction Problem in 
some of the literature. In some applications. the task is 
defined as finding all solution-tuples. We call the 
assignment of a value to a variable a label. For example 
<X, Vi> is a label assigning Vi t0 Xi A comPou.ucI 
label is the combination of more than one label, 
e.g. (<Xl, V,><X,, V,>...<X , Vk>). A k-constraint 
(denoted by C , 
to {true. false . If 

where 1 G k& is a mapping of k labels 
The label (<Xi, V,>...<Xi. Vi>) is 

admissible if C,(<X,. VI>...<Xi. Vi>> is mapped to true. 

For example, the 8-queens problem can be formulated as a 
CLP: The problem is to place 8 queens on a (8 rows X 8 
columns) chess board, subject to the constraint that no 
two queens appear on the same row, column or diagonal. 
The 8 rows can be seen as variables X, to X,. Each of 
them can take an integer value between 1 to 8. X, taking 
the value k indicates that the queen in row i is placed on 
column k. Between each two variables Xi and Xj, the 
following binary constraints apply: 

(1) 

ii; 

Vi # Vj 
Vi + (j-i) f Vj 
Vi - (j-i) f Vj 

Most research in the CLP concerns binary constraints. 
[Freuder 781 ’ t d in ro uces the concepts of k-s&&ability and 
k-consistency. which apply to general CLPs with 
constraints of arbitrary arity. A network is k-satisfiable 
if for any k variables in the network, there exists a 
compound label on them which satisfies all the constraints 
amongst them. A constraint network being k-consistent 
implies that [Freuder 821: 

Choose any set of k-l variables. If L is a compound 
label on these variables which satisfies all the 
constraints on them, then for any kth variable that we 
choose, there exists a value that this variable can take 
such that the label of the kth variable together with L 
satisfy all the constraints on the k variables. 

If a constraint network with n variables is n-consistent, a 
solution tuple exists. 
constraints of 

Other research on CLPs concerning 
arbitrary arity can be found in 

[Nude1 83][Nadel 851. 

Iv The UP in temporal reasoning 

The problem of assigning a primitive relation to each 
temporal relation is a CLP. 
constraint network (CN> is: 

In this problem, the 

CN = (R, T) 

The set of nodes of CN is R. the set of arcs in the 
relation network G mentioned in section II. T is the set 
of constraints on elements of R. Since constraints could 
have any arity, it is difEcult to draw the constraint 
network graphically. The domain of each variable is the 
set of all primitive temporal relations, which we call PR: 

PR = { < .m.o.fi.dia.-si,d,f.oi.mi,>) 

For example in some relation network Go, let the set of 
nodes No be (A, B. C). The arcs in Go would be 
Ro = (Rab. Rba, Rbc, Rcb, Rat, Rca), which are the nodes 
of Go’s corresponding constraint network. 

T in CN consists of constraints of various arities on the 
temporal relations in R. The example “X and Y must not 
have any common subintervals” mentioned above is a 
unary constraint on Rxy. An example of a binary 
constraint is: “if A meets B. then C meets D”. which is 
equivalent to “Rab E 4m) --> Red E (m)“. An example 
of a 3-ary constraint is: 

“intervals P. 
subintervals” 

Q. and R must not have any common 

which means: 

Rpq E (< m mi >) V Rqr E 4< m mi >) V 
Rpr E (< m mi >) 

Each transitivity rule isin 
labels which have the form: 

fact a set of constraints on 

(<Rab.rab> <Rbc.rbcV <Rac.rac>) 

(Notice that the three labels concern the relations of 
exactly three intervals). Here the value of Rat is 
restricted by the values of Rab and Rbc together. 
Examples of constraints implied by the transitivity rules 
are: 

C(<Rab.m> <Rbc.=> <Rca,mi>) 
C(<Rab.m> <Rbc,m> <Rca,m>) 

-(mapped 
-(mapped 

to)-> 
to)-> 

For example in the above relation network Go, these might 
be the constraints “interval A precedes both intervals B 
and C. and B and C must start at the same time”. In 
this case, the set of constraints on Go’s corresponding 
constraint network is: 

Rab E 4 < m) 
Rbc E {s - si) 

(which implies Rba E {mi >)) 

Rat E (< m) 
(which implies Rcb E {s = si)> 

(which implies Rca E (mi >)) 

plus the transitivity rules. 

In planning. the temporal relations labeling problem exists 
only if we do not want to commit ourselves to any 
primitive relations until we need to do so (i.e. if we apply 
the least-commitment strategy). In such approaches, 
building up the relation network (identifying the intervals 
involved in the problem) and labeling the temporal 
relations are performed in two separate stages (see 
[Tsang 86bl). An alternative approach is to label all the 
temporal relations whenever new intervals are added to the 
relation network, and backtrack if overall inconsistency is 
detected. This approach is adopted by planners like 
NONLIN [Tate 771. In NONLIN. only temporal relations 
befme and after are considered: if two actions A and B 
conflict with each other. a commitment is made to either 
A befme B or A after B. This approach labels temporal 
relations before the whole CLP is formulated. 

One constructive way to prove the satisfiability of a 
constraint network is to 6nd a solution-tuple for it. 
However, this is a NP-complete problem as the search 
space is exponential in the number of nodes in the 
constraint network. [Freuder 781 presents an algorithm for 
tiding the set of all solution tuples without needing any 
searching and backtracking. However, this algorithm takes 
exponential time and space, and therefore, as Freuder 
admits, is not useful for 
[Freuder 821. 

practical applications 
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V Spedic characteristics of CLPs in general 

CLP has specific characteristics in which it differs from 
general search problems. Some important characteristics of 
CLPs are: 

1. The size of the search space is fixed and finite. 
Assume that there are n variables to be labeled. If 
we order these variables, the search space can be 
represented by a tree. Each node of this tree 
represents the choice point of assigning a value to a 
variable, and each branch represents the commitment 
of a label. The depth of this search tree is n and 
the branching factor of each level is Idil. where ldil is 
the cardinality of the domain of the variable Xi 
The number of leaves of the search tree is: 

n;, (Id)) 
2. The subtrees under each branch are very similar. 

Assume that the variables are ordered, and Xi, Xj are 
variables. The same choices of labels for Xj would 
be available under each branch of Xi, where i< j. 
Constraint propagation may prune some future 
branches if we use lookahead search strategies. But 
basically the subtrees are very similar. 

3. Choice of a value for a variable propagates through 
the constraints and might affect the choices of values 
for other variables. 

Because of these characteristics, specific heuristics can be 
used in the search of solution tuples. Some of them, e.g. 
lookahead. are summarized in [Haralick & Elliott 801. 

!Jearcb strategies in temporal relations labeling 

In searching for solution tuples. at least three orderings 
have to be decided: 

1. Which variable to label next? 
[Freuder 821 presents an algorithm for tiding minimu. 
order graphs. The basic idea is to order the nodes in 
the constraint network so that those which have more 
constraints linked to them are labeled first. By doing 
so. one can minimize unnecessary commitments. 
However, this algorithm applies to binary constraint 
problems only. In the temporal relations labeling 
problem, every temporal relation is constrained by the 
same number of transitivity rules. Hence, it is likely 
that most orderings form a minimal order graph. 

[Haralick & Elliott 801 introduces the Fail First 
principle. One of the applications of this principle is 
to label the nodes which have the fewest available 
labels first. Doing so would minimize the size of the 
search tree. This principle is applicable to the 
temporal relations labeling problem. 

2. Which value to try next? 
Having decided which variable to label next, we have 
to choose which of the available values to try next. 
One heuristic is to try the least restrictive value first, 
in the hope that unnecessary backtracking can be 
avoided. Ordering of the values according to their 
restrictiveness is normally domain-dependent. In the 
temporal relations labeling problem, primitive temporal 
relations can be ordered by their restrictiveness. The 
order is shown below. with the less restrictive 
relations at the top: 

3. 

1. 
2. Io’Ol;] 

. 

3. [d di] 
4. [m mil 
5. [fi s si f] 
6. i-1 

A primitive temporal relation between two intervals 
is more restrictive if it requires more start/end-points 
of them to be equal. By trying the least restrictive 
available relation first. there is less chance of having 
to backtrack. 

However, we sometimes want to pack the intervals as 
tightly as possible. For example, in planning 
problems one may want to minimize the overall 
duration of the schedules generated. In this case, we 
might want to order the primitive temporal relations 
as follows: 

1. [-I 
2. [Ii s si f] 
3. [o oil 
4. [di d] 
5. [m mil 
6. I< >I 

It is likely that the more the relations at the top of 
this sequence are used in the labeling, the more 
efficient that the resulting plan would be, though local 
optimality may not lead to global optimality. 
Finding optimal schedules (schedules which needs the 
least amount of time to tiish) is a hard problem. 
This heuristic can only increase our chance of finding, 
efficient plans. 

Which inference to do next? 
The Fail Fist Principle suggests that those inferences 
which are most likely to fail should be performed 
first. However, there seem to be no general rules as 
to which inference is most likely to fail % this 
application domain. Anyhow, such rules will tend to 
vary from domain to domain. 

In order to detect inconsistency at an earlier stage during 
the search, we can use a lookahead strategy. Looking 
ahead prevents us from rediscovering inconsistency 
repeatedly [Mackworth & Freuder 851. Allen’s algorithm 
in [Allen 831 can be used to maintain 3-consistency in the 
constraint network during the search. 

VTLl 
time 

versus 

Discussion 

point-base4i representition of 

Since points have strict linear ordering [Turner 841 
[Tsang 86a]. one might wonder whether the CLP still 
exists when we reason with points rather than intervals: in 
other words, in a point-based representation. could a 
constraint network which was locally consistent be 
unsatisfiable? If it could not. then why should we reason 
with intervals and get ourselves involved in the CLP? 

Assume that we have a relation network of points: 

GP = (Np, Rp) 
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The nodes (Np) are points and each arc represents the 
relation of the temporal relation between its connecting 
points. If the network is totally unconstrained, the values 
that each arc can take is one of befwe. equul or after. 
which we denote by C, - and >. 

The constraint network associated with Gp is: 

CNP = (Rp. Tp) 

(3x3-1 9 where Tp is the 
relations of points, 

set of 
e.g. 

transitivity rules on 

x<y & y-z -> xc2 

plus the problem-spe&c constraints on Rp. 

One can prove that if Tp consists solely of unary 
constraints plus the transitivity rules, then CNp is always 
consistent, provided that 3-consistency is maintained 
(unlike networks of intervals. see proof in [Tsang 87b]). 
However, we argue that: 

IF‘ we reason with points, AND want to reason with 
disjunctive temporal relations, 
THIZN we still have the CLP, which appears in a 
different form. 

This can be illustrated by an example. Assume that we 
have the following interval-based relation network: 

Gi - (Ni. Ri) 

where Ni={A. B) and Ri={Rab} (A and B are intervals). 
(For simplicity, we treat Rba and Rab as the same element 
in Ri. This will not affect our discussion below.) We 
further assume that there exists a unary-constraint on Rab: 

(I) A [< >] B 

Associated with Gi is the constraint network: 

CNi = (RI. Ti) 

where Ti is the set of transitivity rules on intervals. 
together with (I). Let us find the point-based relation 
network: 

GP = (NP. RP) 

and constraint network: 

CNP - (RP, TP) 

which correspond to Gi and CPIi. Obviously, 

Np - {start(A). end(A). start(B). end(B)] 

(I) in Ti means: 

(11) end(A) < start(B) ; OR 
m end(B) < start(A) 

Among the 4 points, there are 6 bii temporal relations. 
(Again we treat Ryx as the same element as Rxy in Rp). 
Therefore Rp is the set of those 6 bii relations. Let 
D(x,y) represent the domain of the relation between points 
x and y. (For all X, y, D(x.y) - [ < - >] if it is totally 
unconstrained.) Then by definition of an interval, we have 
the following unary-constraints in Tp: 

(Dl) D&tart(A),end(A)) - [ < 1 
CD21 D&tart(B).end(B)) = [<I 

A little reflection should convince the reader that (11) and 
(I2> imply the following unary-constraints in Tp: 

D(start(A),start(B)) = [ < >I 
D(start(A).end(B)) = [C > 1 
D(end(A).start(B)) = [< >I 
D(end(A),end(B)) = [C >] 

The constraint network CNp now has: 

Tp=((Dl) to (D6) plus the 9 transitivity rules) 

As said before. a CNp of such form can always be 
labeled. However, one must note that this CNp is not 
equivalent to the above CM. This CNp allows relations 
that CNi does not. For example: 

start(A) < start(B) < end(B) < end(A) 

is a consistent labeling in CNp. but is not allowed in CNi. 
The fact is, in order to represent CNi by a point-based 
representation, we need to add to Tp the following binary 
constraints: 

(Cl) IF D(start(A&art(B))-[ C] 
THEN D(end(A).start(B))P[ < 1 

(C2) IF D(start(B).start(A>>-[ < ] 
THEN D(end(B).start(A))=[ c 1 

(C3) IF D(end(A).end(B%[ < 1 
THEN D(end(A).start(B))=[ < 1 

(04) IF D(end(B).end(A))=[ < 1 
THPN D(end(B).start(A))-[ c 1 

sot.0 
has: 

represent an interval-based constraint network which 

A set of unary-constraints: DXY = [...I. 
and 169 transitivity rules, which are 3-ary constraints. 

In a point-based constraint network we need: 

a set of unary-constraints: D(x.y) = [...I. 
and (3X3-1 9 transitivity rules (on C, = and > >, 
and additional binary constraints like (Cl) to (C4) 
above. 

When binary constraints are added. the overall consistency 
of the constraint network is not guaranteed. One can 
translate any relation network from an interval-based 
representation to a point-based representation. But solving 
the CLP in one representation is as nontrivial as solving it 
in the other. 

In fact. the above CLP exists only when we consider 
disjunctive temporal relations. Most implementations of 
point-based temporal reasoning modules consider one 
conjunctive set of temporal relation (among points) at a 
time, and therefore do not have to face this problem. 
[Vilain Bt Kautz 861 concludes that: 

1. determining consistency of statements in Allen’s 
interval algebra is NP-hard. and Allen’s constraint 
propagation algorithm is incomplete: 

2. constraint 
complete. 

propagation ina “time point algebra’ is 

where “time point algebra” refers to a point-based 
representation and its constraint propagation mechanism. 
Vilam & Kautx suggest that “the tractability of the point 
algebra makes it an appealing candidate for representing 
time’. We feel that Allen’s algebra and Vilain & Kautx’s 
time point algebra cannot be compared in such a 
straightforward way because in Allen’s formalism 
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disjunctive temporal relations are handled at the same 
time. Allen’s constraint propagation algorithm is 
incomplete in the sense that it can only maintain 3- 
consistency, not overall consistency of the constraint 
network. But disjunctive relations among points are not 
handled at the same time in the time point algebra - 
when point A has to be before or after point B. the 
problem has to be treated as two separate problems. By 
avoiding reasoning with disjunctive relations, the time point 
algebra achieves completeness in the constraint propagation 
mechanism. 

VII.2 Consideration of metric properties of time 

In this paper, we have discussed temporal reasoning 
concerning relative temporal relations (e.g. before. meet. 
etc.). We must emphasize that a relation network in 
which consistent labeling exists may not be consistent with 
regard to the metric properties of time: constraints such 
as duration of intervals, absolute labels of starting or 
ending times. We believe that reasoning with metric 
properties is a nontrivial problem, and linear programming 
is a general tool for it. Discussion of this problem is 
beyond the scope of this paper, but see [Tsang 86b,87b]. 

VIII summarg 

In this paper, we have identified and analyzed the CLP in 
temporal reasoning. We conclude that this CLP arises 
when we want to reason with disjunctive temporal 
relations, irrelevant to the choice between point-based or 
interval-based representation of time. Identifying and 
formalizing the CLP in temporal reasoning is significant 
because specific characteristics exist in CLPs which allow 
us to apply certain techniques for temporal labeling. 
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