
Ratil E. Valdks-Pkrez 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh PA 15213 

Abstract 
A popular representation of events and their relative 

alignment in time is James Allen’s intervals and algebra. 
Networks of disjunctive interval constraints have served 
both to assimilate knowledge from ambiguous sentences, 
and to hold partial solutions in a planner. The satisfiability 
of these networks is of practical concern, and little has been 
achieved beyond proving that determining satisfiability is 
NE-hard. This paper scrutinizes the interval representation 
and its mechanisms. We make explicit the unstated 
assumptions of the mechanisms, introduce several useful 
theorems regarding interval networks, distinguish three 
types of inconsistency exhibited by these networks, and 
point out under what conditions these inconsistencies are 
detected. Finally the theorems, observations, and 
distinctions regarding inconsistency are exploited to design 
a practical algorithm to determine the satisfiability of an 
interval network. The extension of our results to two- 
dimensional spatial reasoning is under investigation. 

1. Introduction 
One way to represent events extending over time is by the use of 

the interval algebra, popularized by Allen [Allen 831, and 
incorporated into the planner in [Allen & Koomen 831. Some 
problems accompanying its use have been cited Main & Kautz 
861, notably the lack of a suitable practical algorithm to determine 
the satisfiability of a set of assertions in the interval algebra. 

This paper mathematically characterizes Allen’s interval algebra 
and makes explicit the assumptions that underlie it. We treat the 
issue of satisfiability in the light of two new theorems regarding 
networks of intervals. The insight provided by these theorems and 
other observations is exploited to state a practical algorithm to 
determine the satisfiability of a given interval network. Finally, the 
development here should suggest a way to analyze disjunctive 
constraint networks that use a different algebra. 

2. Events as Intervals 
Simple intervals are convenient to represent events that began 

and ended, and that occurred continuously between those two 
times. An example of such an event is a visit paid to a friend on a 
previous day. The use of intervals to depict the temporal extent of 
such events leads to a temporal ordering of these events by 
comparing the interval endpoints. By considering all alignments of 
the four endpoints, one arrives at Allen’s thirteen possible 
orderings between two intervals, shown in the following Table. 

lThis research was sponsored by the Defense Advanced Research Projects Agency 
(DOD), ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory 
under contract F33615-M-K-1520. 

Allen’s 13 Interval Orderings 

-z before > after 
m meets mi met-by 
0 overlaps oi overlapped-by 
S starts si started-by 
f finishes fi finished-by 
d during di contains 
= equals 

So, for example, the Carter presidency “meets” the Reagan 
presidency, because the end of the one event coincides with the 
beginning of the other. 

However, the meaning of certain linguistic assertions is not 
captured by any single ordering. A statement such as 

She telephoned my friend during my visit yesterday at his 
home. 

requires a disjunction of orderings, to express the ignorance of 
whether the telephone call ended before, after, or at the same time 
as the visit. We denote the disjunctive relation between two 
intervals by a set or list of orderings. These intervals are treated as 
unknozons, because if the positions of two events along the time 
dimension were known precisely, then the relation between them 
would of course be a single ordering. 

Figure I: Equivalent Representations 

An advantage of depicting events as intervals, versus an 
equivalent endpoint-based representation, is the concise way that a 
disjunctive relation between two events is expressed by a single 
relation. This conciseness has favorable computational 
consequences, as discussed below. In Figure I, disjointness (e >) is 
shown as an interval relation on the left, and as an equivalent 
disjunction of endpoint relations on the right? We remark that 
while the interval relation is along a directed edge, the relation in 
the reverse direction obtains by simply inverting each ordering, 
according to the lines in the Table above. 

3. Inference Through Transitivity 
It is possible to obtain a relation between two intervals despite 

the lack of an assertion directly mentioning the intervals. [Allen 
831 gives a table for calculating a relation between two intervals A 
and C by combining the known relation of each with interval 
B. Given AR,B and BR2C, the relation R, @ R2 between A and C 

‘The subscripts 1’ and ‘u’ denote respectively the lower and upper endpoints of 
an interval. 

256 Planning 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



follows by forming the cross product of the sets R, and R,, 
composing each resulting ordered pair by looking up the result in 
the transitivity table, and taking the union of the resulting sets. For 
example, 

{o d s) 0 (s si =) = 

tt(o,s) u tt(o,si) u tt(o,=) u tt(d,s) u 
tt(d,=) u tt(s,s) u tt(s,si) u tt(s,=) = 

tt(d,si) U 

{o)u[difio)u(o)u(d)u(>oimidf)u 
(d) u (s) u (s si =) u (s) = 

(odifid>oimifssi=). 
The relations in the first line are interpreted linguistically as ‘ended 
while the other occurred’, and ‘started at the same time as.’ The 
transitive relation means ‘ended after the other started.’ 

Newly inferred relations, such as the above, have to be 
reconciled with the current direct relation. For the interval algebra, 
the reconciliation involves conjoining the old relation with the 
new, because both must be true. For example, we convert each 
relation to its equivalent disjunction: 

reconcile[{rr r2 . ..). Is1 % . ..)I = 
r,hsr v r1As2 . . . v r2+ v r2s2 . . . 

Since the 13 orderings are mutually exclusive, ri/\sj is false unless 
ri=si. Therefore, the reconciliation of two interval relations is just 
their intersection. 

Depending on the application, relations generated externally are 
either hypothesized by a planner or input as domain facts. Before 
the new relations are assimilated, we imagine a group of intervals 
each related by the tautological relation: 

(<>mmiooiddissiffi=) 
consisting of all possible orderings. When the first new relation is 
input directly or inferred through transitivity, it is reconciled with 
the tautological relation. 

4. Networks of Intervals 
When there are many intervals, the relation between two 

intervals of interest may be affected by the transitive relations 
involving any third interval. One may desire to know the relations 
between several pairs of intervals, so the need arises to make 
explicit, or explicate, all the implicit relations obtained by 
transitivity. It is also useful to know whether the relations are 
globally consistent; if they are not, then the validity of inferences 
obtained by transitivity is suspect. Moreover, if the interval 
representation is part of a planner, as in [Allen & Koomen 831, then 
inconsistent hypothesized relations should be noticed, in order that 
the plan be realizable. 

The need to compute the consequences of a set of relations is met 
by casting intervals and relations as the nodes and edges of a 
(directed) graph, or network, in order to apply known graph 
algorithms. The transitive closure algorithm (TCA) explicates all 
the relations contained in paths through the network, reconciles the 
different paths between each pair of nodes, and places the result in 
the edge connecting the pair. The algorithm will often detect 
inconsistencies, as discussed below. As formulated in [Aho et al. 
741, the TCA terminates in time cubic in the number of nodes, at 
which point we say the network is closed. [Allen 831 presents an 
incremental version of the algorithm to use when a few new 
relations are added to an already closed network. 

A closed network has an edge between each pair of nodes, i.e. is 
a complete graph. If one of the edges is the null relation, then the 
network is unsatisfiable. If the network has no null relations, then 
we ask: Does there exist a globally consistent assignment of a 
single ordering to each edge? If there is such a labelling, then the 
network is satisfiable, and we call the edge assignment a solution. 

[Aho et al. 74) states sufficient conditions on a network algebra 
that guarantee that any closed network within the algebra is 
minimal, meaning that there is no smaller graph having the same 
solutions. If any closed network is minimal, then a closed non-null 
network has a# solution: otherwise the null network would be 
smaller and have the same number of solutions, namely none. It is 
a desirable property that any closed network be minimal, because 
then the sa&fiabili~ty 
time TCA. 

of any is found bY the polynomial- 

Unfortunately, the interval algebra fails to meet the sufficient 
conditions, so- that a closed network in this algebra is not 
necessarilv minimal. [Montanari 741 also discusses c&ditions that 
guarantee- minimality, which do not hold here either; this is 
discussed fully in [Valdes-Perez 861. [Vilain & Kautz 86) finally 
proved that the question of satisfiability in these networks 
hard, so that the closure cannot in general be minimal.3 

is NI;- 

To summarize, it is desirable to exulicate all the relations in a 
constraint network for two reasons: A First, to find the tightest 
relation between all node pairs, and second, to detect 
inconsistencies of the type discussed in the next section. A closed 
non-null network generally is not minimal, hence possibly 
urtsa tisfiable. Further comuutation is needed to determine 
satisfiability, and to construct a solution in the favorable case. This 
paper shall propose a solution to this problem. 

5. Sources of Unsatisfiability 
We distinguish three types of network unsatisfiability. 

b Type 1: If the al ge raic domain of the nodes is insufficiently 
large, then there are too few values to satisfy the network relations. 

Figure 2: Insufficient Domain 

For example, the network relations in Figure 2 require that all 
intervals be distinct, but the intervals’ domain has onlv two 
members. This type of inconsistency 
relations and the algebraic domain. 

depends on both the n&work 

In the literature on the interval representation, the usual 
(unstated1 assumption is that the domain of possible values for 
intervals is large enough so that inconsistencies of type 1 do not 
arise. In practical applications it may be otherwise. 

To state the second type of inconsistency, we first Type 2: 
present a theorem proved in [Valdes-Perez 861: 

Theorem 1: If an interval network is closed and non- 
null, then ‘=’ is a member of the composition of the 
relations along any loop in the network. 

Therefore, if there is a loop for which the ordering ‘=’ is not a 
member, then the network is unsatisfiable, whether unclosed or 
already null. Figure 3 on the following page illustrates such a loop, 
which we call an absurditv. Traversing this loop yields the 
contradiction that an interval is less than itself. This type of 
unsatisfiability is exactly what is detected by the TCA; its nature is 
characterized by Theorem 1. 

3oUr notion of closed differs from that in [vilain & Kautz 861, for whom ‘closed’ 
corresponds to oiFF&ing of ‘minimal.’ Our use is consistent with that of 
Nontanari 741 and Waldes-Perez 861. 

Valdb-P&e+ 257 



obtained transitively. Therefore, if all of the n(n-l)(n-2)/3! 
triangles of a network are stable, in the sense that the 
mentioned replacement does not change the existing 
relation ik, then the network is already closed. 

Figure 3: Inconsistent Loop 

The third and final type of unsatisfiability is that which Tvpe 3: 
remains after a network is closed. We interpret this type as 
follows. When attempting a labelling of the network, an already 
labelled subnetwork may require a label Ll for an edge E to avoid 
a loop contradiction of type 2. Another subnetwork may require a 
different label L2 for E for the same reason. This situation makes 
the network unsatisfiable, but is disguised 
network by the relation (Ll L2 . ..) for E. 

in the closed disjunctive 

Figure 4: A Closed Unsatisfiable Network 

An unsatisfiable closed network from Figure 5 in [Allen 83) is 
shown on the left of Figure 4. The attempt at labelling in Figure 4 
on the right stalls, because either available label for the edge BC 
causes an absurdity at ABCA or BCDB. 

6. The CTosure of a Singleton is Minimal 
A singleton is an interval network having a single label for each 

edge. Since a singleton uses the same transitivity algebra as above, 
and similarly reconciles the relations obtained through different 
paths by set intersection, there is no reason to expect that its 
closure is minimal. However, a closed singleton is indeed 
minimal, a fact needed for our satisfiability algorithm below. 

Theorem 2: A closed non-null interval network having 
a single disjunct at each edge is satisfiable. In the 
solution, each edge is labelled with its single ordering.4 

We note that the purpose of the theorem is not to suggest using the 
TCA to find the satisfiability of a singleton; this is done more 
efficiently by separating intervals into their endpoints and 
translating the interval orderings into precedences and 
coincidences between these endpoints. Solving the result is 
quadratic in the number of intervals. 

This fact is used by our algorithm below as an iteration invariant; 
at a certain step, the current labelled subnetwork is always 
minimal. 

8. Current Approaches 
Given the exponential nature of the satisfiability problem, [Vilain 

& Kautz 861 lists several options. One option is to limit the 
problem to small (subjnetworks, which could be done 
hierarchically, as in [Allen 831. However, the resulting 
subnetworks still need to be solved efficiently. rVilain & Kautz 
86) discusses other problems with hierarchization. 

A second option is to resign oneself to not knowing whether a 
given network has a solution. One can still compute new, possibly 
invalid, relations through transitivity, and be content with 
detecting inconsistencies of type 2. 

Figure 5: Interval Relation = Endpoint Relations 

A third way is to trade off some expressiveness for a gain in 
tractability, in the style of [Brachman & Levesque 841. Consider 
that there are 2r3-1 possible non-null relations between two 
intervals, of which merely thirteen are nondisjunctive. However, 
[Vilain & Kautz 861 points out that some of the disjunctive 

relations are expressed without disjunction by simple precedences 
among endpoints, as shown in Figure 5. 

It is easy to enumerate systematically the disjunctive relations 
that are nondisjunctive in the corresponding endpoint network. 
We may then use these relations as our representation language, 
and formulate coherent linguistic interpretations of them. 
Evidently this language is considerably less expressive than the full 
disjunctive interval relations; the gain is a quadratic execution 
time, via the search for certain cycles, versus an exponential. 

In the remainder of this paper we introduce an alternative 
algorithm that tests satisfiability by constructing a solution, does 
not sacrifice expressiveness, and is intended for practical use. 

but still-disjunctive representation may nevertheless possess type-3 

Theorem 2 shows that the difficulty of determining satisfiabihty 
arises from disiunction. not strictlv from the vocabularv of interval 
orderings nor ‘from the transit&y table. Hence, a le& expressive 

inconsistencies that remain undetected by the closure. One way to 
reduce expressiveness and eliminate type-3 inconsistency is 
discussed below in section 8. 

9. A Satisfiability Algorithm 
The algorithm shown on the next page terminates and reports 

The algorithm was conceived using the theorems presented 

correctly pither a 

earlier as insight; the theorems also justify several of the steps. The 
search framework is a variant of the dependency-directed 

consistent labelling of the network or 

backtracking (DDB) introduced in [Stallman & Sussman 77) and 

unsatisfiability.5 

further developed in [Steele 801. 

The asymptotic complexity remains, of course, 
exponential; the gain in practice arises from quick pruning and 
clever backtracking. 

7. A Remark on the Transitive Closure 
Before presenting the algorithm to construct a solution, if one 

exists, of a general disjunctive interval network, we need the 
following observation. 

Observation 1: The transitive closure algorithm at each 
step examines only some three nodes i,j,k and their 
joining edges (i.e. -a triangle). This step- replaces the 
relation ik by reconciling it with the relation ij * jk 

5As is usual, type-1 unsatisfiability is disregarded, meaning that the algebraic 
domain of the intervals is assumed large enough so that the intervals of any 

4This theorem is also proved in WaldesPerez 861. 
consistent network can be assigned values that fulfill the network relations. One 
such domain is the positive real numbers. 

258 Planning 



;;; A Constructive Satisfiability Algorithm 
; ;; read ‘btl’ as ‘backtracklist’ 
Totally order in 0 the graph's edges; an edge 
nearer the tail of 0 is more recent.6 
VeEedges: btl(e)t(). 
Eta. :;; let the first edge in 0 succeed 0 
while 3 an edge E’ succeeding E in 0 begin 

EC-E'. 

more candidates, then backtracking recurs, which explains the 
guard of the most deeply nested while. 

10. Properties 
The algorithm is theoretically interesting because it is conducted 

entirely within the original interval network representation; it 
makes-no use, for example, of endpoint graphs. 

label E with its first candidate label. 
while 3 an absurd triangle (E,ei,e,) ; ; ; TEST 

or’ 3 a nogood NG that is a subset - 
of the current labelled network besin 

case absurd triangle : btl(E) cbtl(E)u(e,,e,) 
nogood NG : btl(E) tbtl(E)uNG-{E}. 

while there is no next candidate for E besin 
If btl(E) is empty then return(Failure) . 
Assert btl(E) as a nogood. ;;; ASSERT 
E,tmost recent edge in btl(E) . 
btl (E,) +btl (El -tE,l U btl(&). 
Vecedges: if e was labelled after E, do 

unlabel (e) . 
btl(e)c{). 
reset the next candidates for e to 
its original set. 

EtE,. 
end. 
label E with its next candidate. 

end. 
enZ7 
return (Success) . 

Abstractly, the algorithm proceeds by repeatedly selecting an 
edge E and testing its edge labels; backtracking - to choices made 
before E - is done only when no label for E is consistent with the 
currently labelled subnetwork. 

A key aspect of the [Stallman & Sussman 771 approach to DDB is 
the use of nogoods. A nogood, depicted either as a list or as the 
negation of a conjunction (NAND), is a set of choices at choice- 
points that cannot be jointly present in any solution. The purpose 
of a nogood is therefore to enable abandonment of a search path as 
fruitless. Nogoods are normally discovered by analyzing 
inconsistent states to find those choices that were jointly 
responsible for an inconsistency (there may be several). Nogoods 
can also be derived by the resolution rule of inference of 
propositional logic [Nilsson 801, as explained in the Appendix. 
Our algorithm needs to save only nogoods created by resolution, 
for reasons discussed below. 

Each edge E has a backtracklist that makes available backtrack 
destinations whenever the candidate labels at E are exhausted. 
backtracklist collects those edge-labels less recent than E that were 
jointly contradictory with an edge-label for E.s 

Each time that an edge-label at E fails, before another label is 
tried for E, the case statement updates the backtracklist btlIE1. 
Each time that an edge-label at E fails, and there is no other label 
for E, the search backtracks to the most recent edge E, in btlIE1, and 
updates btl[E,l by adding to it btl[EI - minus E, itself. If E, has no 

‘We assume in further discus&on that the first clause is evaluated first. 

The clean separation between type-2 and type-3 inconsistencies 
in the algorithm is remarkable. Clause 1 of the TEST in the 2nd 
while hindles typg 2, bY intercepting any potential triangular 
absurdity, two edges of which are then recorded in the 
backtracidist for the-edge. The second clause of TEST encounters 
those contradictions already catalogued at ASSERT, which we 
examine next. 

Figure 6: Type-3 Inconsistency 

When the candidates at an edge are exhausted in the body of the 
2nd while, the contents of the backtracklist are asserted as a 
nogood at ASSERT, as justified in the Appendix. To illustrate that 
this nogood represents a type-3 inconsistency, we consider the case 
of two candidate edge-choices at E that contradict previous choices 
E,E, and EsEC as shown in Figure 6. Qur goal is to show that the 
loop E,E,E,E, contains the ‘=’ ordering. By assuming the contrary, 
and using that Ese E,oE, we deduce that there is the triangular 
absurdity E,E,E,.’ However, the first clause of step TEST intercepts 
all such triangles, and we arrive at a contradiction. 

Theorem 1 justifies clause 1 of the TEST: no satisfiable network 
can forbid an interval to equal itself. Theorem 2 and Observ. 1. 
provided the insight that by designing an algorithm with an 
iteration invariant of a triangularly stable singleton network, the 
network is always minimal. Therefore there is no need to test the 
global consistency of the current labelled subnetwork. 

We have used a variant of DDB in order to ensure completeness 
and termination. The standard DDB as described in [Stallman & 
Sussman 771 and [Steele SO] is apparently incomplete, because a 
backtrack destination is chosen arbitrarily, which does not ensure a 
systematic and finite traversal of the search space. In any case, our 
algorithm could instead use this DDB, by sacrificing completeness 
for the efficiency, during backtracking, of not resetting those 
choice-points more recent than the backtrack destination. 

11. Extensions 
We are currently examining an extension of the interval algebra 

and our algorithm to architectural layout [Baykan & Fox 87J. The 
objects to be laid in this application are two-dimensional 
rectangles, so that binary constraints between objects are expressed 
as a pair of interval orderings. The same problem of satisfiability of 
a completed layout plan arises here. Some differences are, for 
example, the desire to incorporate ternary and higher constraints 
into the satisfiability tester. Ternary constraints are not expressible 
in a network, but they are easily integrated into our algorithm in 
clause 1 of TEST, which checks all triangles about to be completed. 
Another change is needed because architects prefer to generate all 
solutions, if feasible, in order to let the practicing architect choose 
from among them. 

&rhejoint contradiction muld also have involvededges morerecent than E,but gs was already labelled, because the algorithm constructs a complete network 
theywouldalready havebeendiscardedby backtrackingtoE. Lxforeaddinganewnode,asqxcifMbytheorderweimpoxdontheedges. 

ValdCs-Piirez 259 



12. Conclusion 
This paper has examined a simple but noteworthy knowledge 

representation language used in AI, explicated assumptions that 
underlie it, characterized its properties, proved several theorems 
concerning it where few had existed, and used these theorems and 
observations to design an algorithm that finds the satisfiability of a 
set of assertions in the language. Our work follows the analytical 
approach of others if hat have systematically characterized domains 
such as inheritance systems [Touretzky 861 and frames [Brachman 
& Levesque 841. 

Acknowledgments 
The author thanks Mark Derthick, Oren Etzioni, and the 

reviewers for helpful comments on drafts of this paper, and Dave 
Touretzky for suggesting the final form of the satisfiability 
algorithm; responsibility for errors remains with the author. He 
also thanks Danny Sleator and the MIT Hardware Troubleshooting 
group headed by Randall Davis for many fruitful discussions. 

Appendix. Propositional Resolution 
From the first two propositions in: 

YAvP,, AvPz -+P1X’2 
one can infer the third. 

Imagine a search problem in which some choice-point Cl? has 
available only the choices A and B. Then any solution to the 
problem must include A or B. At a certain point, suppose that 
choice A is tried, which proves inconsistent with C, and then 
choice B is tried and proves inconsistent with D. The statement of 
the feasibility of Cl?, and the two nogoods, look like this: 

AvB 
-,AvTC 
YBVTD 

from which follows the proposition and nogood T C v TD. 
Therefore, while trying the choices ck at a choice-point, the union 
of the k nogoods obtained, minus the ck elements, is itself a 
legitimate nogood.1° 

References 

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis 
of Computer Algorithms. Addison-Wesley, 1974. 

J.F. Allen. Maintaining knowledge about temporal intervals. 
Communications of the ACM, 1983,26(22), 832-843. 

J.F. Allen and J.A. Koomen. Planning using a temporal world 
model. Proceedings of I]CAI-8, pages 741-747,1983. 

C.A. Baykan and M.S. Fox. An investigation of opportunistic 
constraint satisfaction in space planning. To appear in IJCAI 
Proceedings, 1987. 

R.J. Brachman and H.J. Levesque. The tractability of subsumption 
in frame-based description languages. Proceedings of ZJCAZ-84, 
pages 34-37,1984. 

R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for 
constraint satisfaction problems. Artificial ZnteZZigence, 1980, 14, 
263313. 

A. Mackworth. Consistency 
Intelligence, 1977,8,99-118. 

in networks of relations. Artificial 

U. Montanari. Networks of constraints: fundamental properties 
and applications to picture processing. Information Sciences, 
1974,7,95-132. 

N.J. Nilsson. Principles of ArtificiaZ InteZZigence. Tioga Publishing 
Company, 1980. 

R.M. Stallman and GJ. Sussman. Forward reasoning and 
dependency-directed backtracking in a system for computer- 
aided circuit analysis. Artificial InteZZigence, 1977,9,135-196. 

G.L. Steele Jr. The Definition and Implementation of a Computer 
Programming Language Based on Constraints. Ph.D. thesis, 
Massachusetts Institute of Technology, 1980. 

D.S. Touretzky. The Mathematics 
Kaufmann Publishers, 1986. 

of Inheritance systems. Morgan 

R.E. Valdes-Perez. Spatio-Temporal Reasoning and Linear Inequalities. 
Memo 875, MIT Artificial Intelligence Laboratory, 1986. 

R.E. Valdes-Perez. Knowledge-Based Schematics Drafting: 
Aesthetic Configuration as a Design Task. MIT Al Lab Working 
Paper 292,1987. 

M.B. Vilain. A system for reasoning 
AAAI, pages 197-201, 1982. 

about time. Proceedings of 

M. Vilain and H. Kautz. Constraint propagation algorithms for 
temporal reasoning. Proceedings of AAAI, pages 377-382,1986. 

lo Nlsson 801 describes resolution in detail. Resolution of nogoods is mentioned 
in [Steele 801; it and the search regimen in this paper was also used in valdes-Perez 
871 and is more fully explained there. 

260 Planning 


