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Abstract. Let Robbie be an agent possessing a gen- 
eralized plan for accomplishing a goal. Can Robbie use 
his plan to accomplish the goal without passing through 
any of a set of forbidden world states en route to the 
goal? This situation arises if, for example, Robbie must 
accomplish the goal with some additional constraints 
(“Can I get to the airport in time without speeding?“). 

There are two poles in the spectrum of methods 
Robbie can use to test his plan in the new world situ- 
ation, each with its own advantages and disadvantages. 
At one extreme, Robbie can choose to express the new 
world constraints as additional preconditions on all the 
operators used for planning. At the other extreme, Rob- 
bie can attempt to prove that the new constraints are 
satisfied in every possible world that could arise during 
execution of the plan, from any initial world state that 
is consistent with his axioms. In this paper we examine 
the tradeoffs between these two opposing approaches, 
and show that the approaches are in fact very similar 
from a computational complexity point of view. 

I. htrodiaction 

Given a goal 5: that an agent will often need to achieve, 
it is natural to look for a means of reducing the time 
spent searching for a means to achieve S. If the search 
space for G is large, then it may well be more efficient for 
the agent to store a macro-operator [Fikes 721 or a skele- 
tal or generalized plan (Friedland 79, Schank 77, Stefik 
801 for achieving G, rather than searching through the 
problem space each time G and similar goals arise. We 
assume that this store-versus-compute controversy has 
been decided in favor of storage of a generalized plan 
for some of Robbie’s goals, such as driving to the air- 
port. Further, we assume that Robbie has a means of 
selecting a generalized plan relevant to the situation at 
hand and of binding the free variables in that plan to 
the appropriate entities for the current situation** [Al- 
terman 86, Dean 85, Tenenberg 861. The flow between 

* ATT Doctoral Scholar; additional support was provided 
by DARPA under contract N39-84-C-0211. 

** Of course, this is a research problem in its own right. 

operations in the resulting plan can be depicted graph- 
ically, as in the informal graph here of a simple plan for 
getting a drink of water. 

A plan P is a sequence* of operators. A path 
of execution through P is a sequence of complete- 
information world states So, 5’1, . . . , S,, , where So is the 
initial state of the world, where Sj is obtained from Sj-1 
by applying the jth operator in P to Sj , and where each 
Sj is consistent with the agent’s knowledge base (MB) 
and with a first-order encoding of P (described below). 

Suppose that Robbie now must test whether his 
plan P for accomplishing goal G is still valid when there 
are new constraints on the permissible state of the world 
at each step of the execution of the plan. We assume 
that the new constraints can be formulated as a first- 
order formula c~, quantified over situations.** In Rob- 
bie’s KB, it may well be the case that complete precon- 
ditions for successful execution of P have already been 
regressed [Waldinger 771 through all operators in P, to 
form one initial overall precondition C. In the airport 
example, C might dictate that Robbie have a driver’s 
license and have easy access to a working automobile. 
Such a regression guarantees that the agent’s goal (e.g., 
a timely airport arrival) can be attained from any initial 
world state that is consistent with the KB and with the 
instantiated form of 6. Unfortunately, this guarantee of 
correctness does not persist when the new constraint o 
on speeding is added to Robbie’s KB, because even if the 
initial state of the world satisfies Q, some state Robbie 
goes through on a path to G might violate (Y. Robbie 
might have a general plan to get to the airport such 
that getting there in time would unfortunately require 
speeding. 

To see how this problem manifests itself in a for- 

* This directly extends to plans with conditional appli- 
cation of operators and with operators with multiple possible 
outcomes. 

** To simplify the presentation, we will make the restric- 
tion that the new constraint contain only one situation variable. 
For example, we will not consider constraints on transformations 
between situations. 
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malization of Robbie’s plan, let us introduce some ter- 
minology that will be used throughout the remainder 
of this paper. We have already described P and C, 
forms of a generalized plan and its overall precondition. 
The new constraint is denoted by a. Situation vari- 
ables and constants are written s, s’, se, si, etc. The 
situation describing the initial state of the world is so; 
Note that SO need not completely specify the state of the 
world; So is a complete-information world state consis- 
tent, with all knowledge about SO. The result of applying 
the first operator in P to SO is situation s1 (e.g., si = 
result(startUpCar(s0))); and so on until situation s,, 
the final result of the plan, is defined.* The definitions 
of SO through sn constitute an encoding of P. For any 
world state Si on a path of execution through P, the sit- 
uation corresponding to Si is situation si. Finally, for 
any formula 4 with a single quantified situation variable 
x, let +[s] be the formula created by binding x to the 
constant s. 

We now give a definition of plan validity. Assume 
that C[sc] is true (e.g., lspeeding(se)). For P to be valid 
given the new constraint CX, cp must be satisfied at every 
world state along every path of execution through P. 
More formally, P is valid in the presence. of the new 
constraint QI if C[sc] is true, and for every world state 
Si along every path of execution through P, o[si] is 
true. Of course, one cannot prove validity by testing 
each possible Si separately, because the combinatorial 
possibilities are computationally overwhelming. 

To check the validity of P more efficiently, it 
might seem to suffice to check whether G is true in situ- 
ation sn -for example, to check whether Robbie arrived 
at the airport in time. Unfortunately, this is insufficient; 
as long as C[sc] is true, G[s,J will be also. 

For example, suppose that Robbie has a plan to 
conquer his thirst during dinner by getting a drink of 
water, as shown above. This can be represented in a 
simplified portion of Robbie’s KB by using four pred- 
icates to describe the state of the world: atBldg(bldg, 
sitn), inRoom(room, sitn), thirsty(sitn), has(item, sitn); 
three plan operators: goToKitchen, pour, drink; and 
frame axioms telling what aspects of world state are 
not affected by application of operators. The resulting 
KB fragment appears in Figure I.** 

* A similar coding using conditionals can be used for plans 
with non-sequential structure. 

** This is certainly not intended as a definitive or prescrip 
tive encoding of thirst-quenchery; rather, it is a simple encoding 
that is sufficient for our purposes. We have omitted some im- 
portant rules, such as type information, have lazily represented 
rooms within buildings as constants rather than functions, and 
have simplified the “pour” and “drink” operators. 

Initial situation: 
thirsty(sc) 
inRoom( diningRoom, SO) 

Operators: 
Vs inRoom(kitchen, result(goToKitchen, s)) 
Vs [inRoom(kitchen, s) --) has(water, result(pour, s))] 
V’s [has(water, s) --) (1 thirsty(result(drink(s))) A 

lhas(water, result(drink(s))))] 

Frame axioms: 
Vs [thirsty(result(goToKitchen, s)) * thirsty(s)] 
V’s Vx [has(x, result(goToKitchen, s)) * has(x, s)] 
Vs Vx [atBldg( x, result(goToKitchen, s)) ++ 

atBldg(x, s)] 

Vs [thirsty(result(pour, s)) cf thirsty(s)] 
V’s Vx [x # water 3 

(has(x, result(pour, s)) w has(x, s))] 
V’s Vx [x # water + 

(has(x, result(drink, s)) * has(x, s))] 
(other frame axioms showing that atBldg and inRoom 

are unaffected by pouring and drinking) 

Additional axioms: 
Vs Va: Vy [(atBldg(x, s) A atBldg(y, s)) - x = y] 
Vs Vx Vy [(inRoom(x, s) A inRoom(y, s)) - x = y] 

Figure 1. Simplified portion of agent’s KB. 

Then Rosie asks Robbie if he knows how to get 
water during dinner with the additional constraint that 
in a restaurant, Robbie should never be in the kitchen. 
The new constraint and the resulting encoding of plan 
P are shown in Figure 2. 

Encoding of plan P: 

Sl = result(goToKitchen, so) 

s2 = result(pour, si) 
s3 = result(drink, ~2) 

New constraint Q: 
Vs[atBldg(restiant, s) + linRoom(kitchen, s)] 

Instantiated goal G[sn]: 
-&hirsty(ss) 

Figure 2. Plan to quench thirst, and a new constraint. 

Is P still valid no matter whether Robbie is at 
home or at a restaurant? Obviously not, because there 
is one path of execution through P in which Robbie is 
in a restaurant kitchen. Let KB+ be Robbie’s KB plus 
Q and the encoding of P in Figure 2. Then invalidity of 
P cannot be detected by a test for logical consistency 
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of KB+ , because KB+ is provably logically consistent .* 
Further, KB+ logically implies +hirsty(ss), so one can- 
not detect invalidity by a test for provability of S.** We 
conclude that, in general, simple checks for consistency 
are insufficient to show validity when new constraints 
are introduced. 

In restricted cases, however, a simple check for 
consistency does suffice. If P is completely invalid, 
in the sense that every path of execution through 
P passes through a world state that is inconsistent 
with c~, then MB+ will be inconsistent. For exam- 
ple, suppose the KB contains the additional formula 
atBldg(restaurant, SO). From KB+ one can prove, as 
before, latBldg(restaurant, SO); hence KB+ is inconsis- 
tent. This implies that P will be valid if (1) the initial 
state of the world is completely determined by the KB, 
and C[so] is true; (2) all operators in P are deterministic; 
and (3) MB+ is consistent. Unfortunately, as shown by 
Robbie’s thirst-quenching plan, this approach does not 
extend to the common case where unknown, missing, or 
incomplete information is relevant to P. 

2. Prove-Ahead and Prow-As-You-Go 

Assuming that an agent wishes to validate a plan com- 
pletely before beginning its execution, there are two 
main approaches to an efficient and general means of 
plan validation. The first is to regress constraint CY 
through all KB operators to form additional precondi- 
tions on those operators. In other words, add additional 
preconditions to each operator 0 so that 0 can never be 
applied if the resulting situation would violate o. In the 
restaurant example, this can be done by adding an ad- 
ditional condition on the goToKitchen operator, so that 
Robbie cannot go into the kitchen if he is in a restau- 
rant. We call this the prove-ahead approach, because 
we find the possible effects of 0 on cy ahead of time 
and act to prevent violations of LY. After this regression 
phase is complete, we can test the plan for validity by 
either of two methods: either regress to a new overall 
plan precondition C’ and check provability of C’[so], or 
else step through the plan operations and test whether 
the new preconditions of those operators are satisfied at 
each stage of execution. 

There is a philosophical motivation for the pure 
prove-ahead approach, in which all constraints are re- 

* A more reliable sign of trouble is that KB+ logically im- 
plies that Rohbie is not in a restaurant in state So. This is because 
the path of execution in which Robbie is initially in a restaurant 
gets pruned from the tree of possible plan executions, because it 
is inconsistent with CV. 

** As mentioned earlier, if a KB logically entails C[SO], then 
KB+ must logically entail G[s,]. 

gressed through all KB operators: once a complete re- 
gression has been done, any plan where G[s,J is provable 
is a valid plan, no matter what the initial world state 
and no matter what branching occurs during plan exe- 
cution. With pure prove-ahead, Robbie need not worry 
about detecting constraint violation at plan generation 
and validation time; he need only check preconditions. 

The alternative to the prove-ahead approach in 
this example is to prove that at each situation on a path 
of execution through P, Robbie is not in a restaurant 
kitchen. More formally, given that axiom <Y is satisfied 
in an initial situation SO, one must prove that (Y is also 
true in situation ~1. If one can prove a[si] for each 
situation sd in the encoding of P, then P is valid. We call 
this technique the prove-as-you-go approach, because we 
step through the operators of the plan in order, and for 
each operator 0 prove that a is true in the situation 
that results from applying 0 to the previous situation. 

The remainder of this paper is a discussion of 
the advantages and disadvantages of the prove-ahead 
and prove-as-you-go approaches. We show that these 
two paradigms are at opposite ends of a spectrum of 
approaches, yet are computationally quite similar. 

3. The Qualification Problem 

Both the prove-ahead and prove-as-you-go approaches 
are methods of dealing with the qualification proHem 
[Ginsberg 87, McCarthy 69, McCarthy $01: what pre- 
conditions must be met in order for an action to suc- 
ceed? In the real world, it is impossible to enumerate all 
the factors that might cause failure of a plan such as for 
a trip to the airport. This means that the philosophical 
motivation behind prove-ahead must ultimately be frus- 
trated: except in simple systems, one cannot enumerate 
all the prerequisites for an operator. In attempting to 
do so, one will simply clutter up the MB with a sea of 
inconsequential preconditions for operations, and lower 
the intelligibility of the KB for outside reviewers. 

Even were an exhaustive list of preconditions 
available, one would not in general want to take the 
time needed to prove that all the preconditions were 
satisfied. This problem also arises in the prove-as-you- 
go approach, however; one may not be able to afford 
the expense of proving that all constraints will be sat- 
isfied after an operation is performed. In section 6, we 
will discuss the relative adaptability of prove-ahead and 
prove-as-you-go to partial testing of preconditions and 
constraints. 

4. A Comparison of Computational Coma 

The computational complexity of prove-ahead and 
prove-as-you-go depends on Robbie’s language and KB. 
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Depending on the form of his KB, testing plan validity 
can be in any complexity class: from polynomial time 
worst case on up through undecidable. The goal of this 
section is not to differentiate between these classes, but 
rather to show that prove-ahead and prove-as-you-go 
are in the s-e complexity class for any given type of 
KB. We will do this by comparing the requirements that 
prove-ahead and prove-as-you-go impose on a theorem- 
prover. In specific KB and plan instances, prove-as- 
you-gomay be less costly than prove-ahead; this is par- 
ticularly true if the agent is not interested in repairing 
invalid plans. Because additional information about the 
state of the world may be available at the time an oper- 
ator in the plan is applied, prove-ahead does not detect 
invalidity as quickly as does prove-as-you-go.* 

This tardy detection of invalidity arises because 
pure prove-ahead requires two rounds of proofs. Robbie 
must first regress (Y into new preconditions, and then 
test whether the new preconditions are satisfied during 
execution of P. While prove-ahead may make the same 
set of calls to a theorem-prover as does prove-as-you-go, 
prove-ahead will not discover that P is invalid until the 
second phase of its computation, when the new precon- 
ditions are checked against world state information. A 
hybrid approach can be used to overcome this flaw in 
part, but prove-ahead will still require two rounds of 
proofs. 

Prove-ahead has another computational disad- 
vantage when compared with prove-as-you-go, in that 
prove-as-you-go can take advantage of all the state in- 
formation available when trying to prove satisfaction of 
cr. Prove-ahead, on the other hand, first derives a most 
general condition under which (Y will be satisfied, and 
then checks to see whether that condition holds in the 
situation at hand. For example, consider the constraint 
that the car stay on the road at all times while driving. 
General preconditions for this condition may be very 
difficult to find. On the other hand, it may be trivial to 
show that the car is on the road right now; for example, 
Robbie may have a primitive robotic function available 
that tells him that the car is now in the middle lane. 
To elucidate this point further, we describe a method of 
implementing prove-ahead and prove-as-you-go. 

Let s be a situation on a path of execution 
through P, and let s’ be the situation resulting from 
applying the next operator 0 in P to situation s. (As 
usual, the state of the world in situations s and s’ need 
not be fully determined by the KB.) The prove-as-you- 
go method requires that one prove cy[s’] given cr[s]. If 

+A more accurate cost comparison 
tized cost of prove-ahead (section 5). 

must consider the amor- 

the proof fails and P is not to be repaired, then the 
validation process terminates at this point. If the proof 
fails and P is to be repaired, then two repair tactics 
are possible: depending on the method used to estab- 
lish cy[s’], the reason for the failure can be converted into 
additional preconditions on operators and/or additional 
conditions for C. For example, in many cases verifica- 
tion of a universal constraint cy can be reduced to testing 
a number of ground instantiations of CY [Winslett 871. If 
any of these ground instantiations is not provable, then 
this pinpoints a case in which o is violated. After this 
violation is repaired, the process is repeated, searching 
for another violation of CY in situation s’. 

The prove-ahead method also requires that one 
prove cu[s’] given cy[s], with the additional proviso that 
s can be any legal situation, not just one on a path of 
execution through P. In other words, in attempting to 
prove cr[s’], one cannot use any state information about 
s that could be deduced from P. Further, failure to 
find a proof does not mean that P is invalid; invalidity 
can only be ascertained by repairing 0 and then check- 
ing its new preconditions against initial world state in- 
formation. In addition, prove-ahead requires detection 
of all violations of cy[s’] before determining whether P 
is valid. For example, a prove-ahead approach to the 
restaurant constraint would generate the new precon- 
dition +nBuilding(restaurant, s) for the goToKitchen 
operator, even if the first step of Robbie’s plan were to 
go home. Finally, once the regression is complete and 
any invalidities have been detected, repair of P is ac- 
complished by adding additional constraints to C. 

In the worst case the potential computational ad- 
vantages of prove-as-you-go will not materialize. For ex- 
ample, if there is no helpful state information available 
for situation s, then prove-as-you-go will not have that 
advantage over prove-ahead. More precisely, suppose P 
contains situations sc through sn, and let Q be the ith 
operator of P. Suppose the agent finds a prove-as-you- 
go proof of a[si] such that that proof does not contain 
any sj, for 0 5 j 5 n, other than si and si-1. Then 
prove-ahead is as easy as prove-as-you-go for operator 
Qi, as-essentially the same proof may be used for prove- 
ahead. 

5. Hybrid Approaches 

In general, neither the pure prove-ahead nor the pure 
prove-as-you-go approach will dominate in efficiency; a 
hybrid approach will be much more satisfactory. For 
example, there is no need to regress Q through an op- 
erator until it is actually used in a plan. Then if (Y is a 
temporary constraint (such as a prohibition on speeding 
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while Rosie 
be done.* 

is in the 4, a complete regression will not 

Regression through the operators in a particu- 
lar plan is one point in the spectrum between pure 
prove-ahead and pure prove-as-you-go, a hybrid be- 
tween the two approaches; such intermediate points 
abound. For example, Robbie might deliberately choose 
not to regress o through a particular operator 0 even 
though 0 appears in the plan at hand; this might be 
advisable if cr was a temporary constraint and/or no 
plan repair was contemplated. He might choose prove- 
as-you-go for certain pairs of operators and constraints, 
and apply prove-ahead to the remainder. If Robbie 
can predict how often a particular prove-as-you-go proof 
would be repeated in the future, he can use measures of 
storage cost and other, less tangible factors (see section 
6) to estimate the amortized cost of prove-ahead over all 
repetitions of that proof [Lenat 793. The amortized cost 
of prove-ahead can then be used as a basis for choice 
between prove-as-you-go and prove-ahead. 

Robbie need not apply the two phases of prove- 
ahead sequentially; the gap between regression and new 
precondition testing in prove-ahead can be narrowed 
by partial merging of the generation of new precondi- 
tions and their testing. If Robbie begins by regress- 
ing (Y through the first operator 0 of his plan, then he 
can immediately check to see whether the new precondi- 
tions for 0 are true in state SQ. If the preconditions are 
not true, then Robbie knows that P is not valid, and 
can proceed to repair or else search for another plan. 
For even more rapid detection of invalidity, Robbie can 
check each new precondition as it is generated. Prove- 
ahead will still require two rounds of proofs, however. 

Robbie can even choose dynamically between 
prove-ahead and prove-as-you-go. For example, he can 
validate the first few steps of P using prove-ahead, and 
then decide, on the basis of the additional information 
available at that point, that prove-as-you-go is the best 
choice for the remainder of the validation sequence. 

6. Comparative Extensibility of Prove-Ahead 
and Prove-As-You-Go 

As described earlier, prove-as-you-go has a computa- 
tional advantage over prove-ahead in its use of all state 
information available at a stage of plan execution. The 
counterpart of this prove-as-you-go advantage is the 
possibility in the prove-ahead world of choosing overly 

general preconditions. For example, suppose Robbie has 
a constraint on successful driving that the car must stay 
on the road at all times. The exact preconditions for 
maintaining this constraint at each moment are very 
complicated; they depend on how far Robbie is from 
the edge of the road, how fast he is going, etc. It would 
be easier to forgo exact preconditions and use a sim- 
pler subsuming condition, and run the risk of possibly 
rejecting a plan due to too-strict preconditions. 

Another disadvantage of prove-ahead is that it 
will generate many operator preconditions, and the ex- 
act relation of those preconditions to the situational con- 
straints will not necessarily be clear. This has repercus- 
sions for Robbie’s ability to explain his decisions to an 
outside agent. Robbie will need some means of tagging 
preconditions and their associated constraints; this is 
a second-order concept. One may well argue that in a 
model of human car-starting, unlikely and inconsequen- 
tial preconditions should not be stored with the opera- 
tors that they impact. Rather, a human would call on 
its deductive facilities in the event that the car failed 
to start, to try and trace the origin of the failure to a 
combination of unchecked constraints. 

This tagging consideration assumes greater im- 
portance if we abandon the assumption that Robbie 
never makes a move without consulting his theorem- 
prover. For example, Robbie may assign numerical mea- 
sures of importance to preconditions and constraints, 
based on the likelihood of their being violated in the 
current situation and on the magnitude of the reper- 
cussions of their violation [Finger 861. Then Robbie can 
choose which preconditions and constraints to check be- 
fore performing an action, based on the computational 
resources available to him and the importance of the 
checks. Rowever, in order to assign measures of impor- 
tance to preconditions, again it is necessary to tag pre- 
conditions and their associated constraints.* Otherwise 
the consequences of failing to check a precondition will 
be unclear, for without an additional round of proofs, 
Robbie cannot easily tell which constraints may be vio- 
lated if a particular precondition is ignored. 

For example, Robbie may decide that it is not 
worthwhile to look for a potato in the tail pipe before 
turning the ignition key, for violation of this condition 
is unlikely, and ignoring it will not have a disastrous 
effect on the state of the world anyway. In contrast, 
Robbie might check this constraint after a fierce Idaho 

could be stored as first- 
the KB. Efficient utiliza- 
the use of special control 
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rainstorm, or if there had been 
explosive tailpipe potatoes. 

a recent rash of highly cost of the two approaches, i.e., consider the number of 
times a proof would have to be repeated under prove-as- 

7. Conclusions 

Let Robbie be an agent faced with the task of validating 
a plan P in the presence of a new constraint (u. If the 
initial state of the world is fully determined by informa- 
tion on hand and P is deterministic, then P is valid iff 
Robbie’s knowledge base (KB) is consistent with CE and 
an encoding of P. However, another means of valida- 
tion is needed when Robbie has insufficient information 
about the current state of the world. 

We have identified two extreme approaches to 
this validation problem. In the pure prove-ahead ap- 
proach, Q! is transformed into additional preconditions 
on Robbie’s KB operators, and then the new operator 
preconditions for plan P are checked to see if they are 
true in the current situation, either by regressing those 
conditions or by direct checks. In the pure prove-as-you- 
go approach, to determine whether P is valid, Robbie 
must prove that (Y is true at each step of P, given that 
Q holds initially. 

The prove-ahead and prove-as-you-go methods 
are computationally quite similar: for a given type of 
KB, they are in the same computational complexity 
class. In practice, prove-as-you-go may be less costly 
than prove-ahead, as its search for violations of (Y has 
a narrower focus. For example, any violation of CY de- 
tected by prove-as-you-go may actually arise during the 
execution of P; but prove-ahead may locate many po- 
tential violations of Q that could not arise in P before 
finding those that do. This computational advantage 
arises because prove-as-you-go can utilize information 
about the state of the world that arises from prior oper- 
ators in the plan. It may be much easier to prove that 
a constraint. is satisfied at a particular point in the exe- 
cution of a plan than to solve the prove-ahead problem 
of finding general preconditions for satisfaction of that 
constraint. 

Pure prove-ahead and pure prove-as-you-go fall 
at two ends of a spectrum; in practice, we expect a 
hybrid approach to perform better than either extreme. 

In choosing whether to apply prove-ahead or 
prove-as-you-go to a particular operator and constraint, 
one must consider factors other than simple computa- 
tional complexity. Intuitively, the prove-as-you-go ap- 
proach is best for “obscure” constraints. Prove-ahead 
is best for constraints that will be checked often, as un- 
der prove-as-you-go the same proofs would be performed 
time after time. An informed choice between prove- 
ahead and prove-as-you-go must consider the amortized 

you-go, and also measure costs of storage, comprehen- 
sibility to outside agents, and extensibility to heuristic 
methods of planning: the store-versus-compute tradeoff 
once again. 
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