
Dana H. Ballard
Department of Computer Science

University of Rochester, Rochester, New York 14627

Abstract

In the development of large-scale knowledge
networks, much recent progress has been inspired by
connections to neurobiology. An important component
of any “‘neural” network is an accompanying learning
algorithm. Such an algorithm, to be biologically

lausible,
!s

must work for very large numbers of units.
tudies of large-scale systems have so far been

restricted to systems without internal units (units with
no direct connections to the input or output). Internal
units are crucial to such systems as they are the means
by which a system can encode high-order regularities
(or invariants) that are implicit in its inputs and
outputs. Computer simulations of learning using
internal units have been restricted to small-scale
systems. This paper describes a way of coupling
autoassociative learning modules into hierarchies that
should greatly improve the performance of learning
algorithms in large-scale systems. The idea has been
tested experimentally with positive results.

1. Introduction

An important component of any artificial
intelligence system ultimately will be its ability to
learn. Very recently there has been great progress in
the development of learning algorithms [Rumelhart et
al., 1986 (1); Rumelhart and Zipser, 1985 (2); Ackley et
al., 1985 (3); Pearlmutter and Hinton, 1986 (4);
Lapedes and Farber, 1986 (5)l.

All of the above algorithms use internal
representations to represent regularities in the
environment. The internal representations capture
efficient encodings of the environment that presumably
facilitate the behavioral needs of the system. These
individual algorithms have their own advantages and
disadvantages, but a common question related to all of
them is whether or not they scale with the size of the
problem. In other words, even on an appropriate
parallel architecture, the computational complexity in
the average case may not remain constant or at worst
scale with the problem size. The result is that it is
likely that additional insights will be needed to
implement learning algorithms in massively parallel
systems.

2. Hierarchies

The tremendous advantage of hierarchies as a
compact encoding of input-output pairs is the principal
motivation for developing a learning algorithm that is
geared to developing hierarchical encodings. One

possibility is to use the Backpropagation algorithm
with several internal levels. Our computer
experiments in Section 4, however, show that this
formulation does not seem to have good scaling
properties. An example that took 256 iterations to
converge with one internal layer took over 4096
iterations to converge with three internal layers. Thus
we were motivated to develop a modular reformulation
of Rackpropagation learning with better convergence
properties.

Another idea that we will use is that of
autoassociation. Consider first a simple modification of
the Backpropagation algorithm that is shown in
Figure 1. The figure shows the standard three-layer
architecture used in most experiments. We will refer
to the layers as the input, internal, and output layers,
as shown on the figure. The number of units at each
layer we term the width of the layer.

A. Standard B. Autoassociative
Configuration Configuration

Figure 1. In the autoassociative configuration the
output is constrained to be identical to the input.

To simplify what follows, we neglect the width of the
layers and just use a representative unit for all the
units in a layer. Let us use two-way connections so that
now the internal units are connected to the input units.
Note that now the same learning algorithm can be
adapted to this special problem of predicting the input.
Activation from the input is propagated to the internal
units and then back to the output, where it can be
interpreted as a virtual copy. That is, it is the input as
reconstructed from the internal representation. Since
the input is known, this can be used to generate an
error signal, just as in the feedforward case, that is
then sent backwards around the network to the input
weights. This architecture was proposed by Hinton and

Ballard 279

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

pg;$hart and has been recently studied by Zipser
.

3. Learning with Modular Hierarchies

The main result of this paper is to show how a
purely autoassociative system system can be
modularized in a way that is resistant to changes in
problem scale. Consider Figure 2, which describes the
general idea. Consider that an autoassociative module
is used to learn a visual representation. Now imagine
that a similar process takes place at the output (motor)
level, where in this case the system is codifying
efficient internal representations of quickly varying
movement commands. Both the motor and visual
internal representations, being codes for the more
peripheral representations, will vary less. This means
that if one views the situation recursively, at the next
level inward the problem of encoding peripheral
representations is repeated, but now it is cast in terms
of more abstract, more invariant representations of the
peripheral signals. It also means that the same
principles can be applied recursively to generate a set
of learning equations that are geared to the new levels.
Thus one can imagine that the abstract visual and
motor levels are coupled through another
autoassociative network that has a similar
architecture to the lower levels but works on the
abstractions created by them rather than the raw
input. The next autoassociative module, termed
ABSTRACT in Figure 2, starts with copies of the
internal representations of the SENSORY and MOTOR
modules and learns a more abstract representation by
autoassociation.

ABSTRACT

SENSORY

Coupling to
Upper Layer

Error modulated
Coupling

MOTOR

Figure 2. The main idea : Peripheral modules can work
in an almost decoupled fashion to build more abstract
representations. These are tightly coupled by more
abstract modules that build still more abstract
representations. The depth of two in the figure is
rey~il schematic: the principle extends to arbitrary

.

280 Cognitive Modeling

Perhaps the biggest advantage that has occurred with
this reformulation is that the equations at each level
can be thought of as being relatively decoupled. This
means that they can be run in parallel so that the error
propagation distances are short. In practice one would
not want them to be completely decoupled, as then
higher-level representations could not effect lower-
level re
occur i P

resentations. At the same time, problems may
the different levels are coupled too tightly

before the system has learned its patterns, since in this
case errorful states are propagated through the
network. Here again the hierarchical reformulation
has a ready answer: since there is now a measure of
error for each layer, the activation of the upper, output
levels can be coupled to the lower levels by a term that
tends to zero when the error is large and one when the
error is small.

To develop the solution method in more detail,
consider the error propagation equations from
[Rumelhart et al., 19861. They minimize an error
measure E = C&,, where

where the subscript i ranges over the output units and
the d denotes the desired output. The unsubscripted s
denotes the actual output. In what follows, the
subscript p, which ranges over individual patterns, will
be dropped for convenience. For a two-layered system
such as is characterized in Figure lA, the equations
that determine the activation are given by:

sj = 0 (1 (Wji si + Bj)

where o(x) = l/(1 + e-Dx). The output of the jth unit sj
ranges between zero and one. The synaptic weights wji
and threshold 6j are positive and negative real
numbers.

The equations that change the weights to
minimize this error criterion are:

A wji = q 4 s,

for output units,

sj = (sjd - Sj’ sj (1 - Sj’

and for hidden units,

sj =sjcl - “j’Ek6k wKj

These equations are derived in [Rumelhart et al.,
19861.

Now let us consider the architecture of Figure 2.
In this architecture, the connections from the hidden
units feed back to the input units, so that now the
prime notation has a special meaning. It is the
activation level of the input units that is predicted by the
hidden units. This is subtracted from the actual input
level, which may be regarded as clamped, in order to
determine the error component used in correcting the
weights. Thus essentially the same equations can be
used in an autoassociative mode. The elegance of this

formulation is that it can be extended to arbitrary
modules. Where the subscript m denotes the different
modules, the equations that determine the activation
are now given by:

S. Jm=u(zWji mSim+eJm)
, ,

The equations that change the weights to minimize
this error criterion are:

AW~i,n=qrn6jrnstm , 9

for output units,

sjm = qm - sjm$p - Sjm)
l 3 9

and for hidden units,

Now for the counling between modules. A module
m2 is said to be hierakhi&ZZy coupled to a module ml if
the activation of the input layer of rn2 is influenced by
the internal layer of ml, and also the activation of the
output layer of” m2 influences the internal layer of
In this case rnp is said to be the more abstract of the tmwl
modules and rkl the less abstract.

The modules are directly input coupled if the
activation of a subset of the units in the input layer of
mg is a direct copy of the activation of units in the
internal layer and output coupled if the activation of
the units in the internal level of ml uses the activation
of the output units in its sigmoid function.

The hierarchical algorithm works as follows.
Consider first the “sensory” module in Figure 2. This
can be thought of as a standard autoassociative
Backpropagation network. The “motor” module can be
thought of in the same way. Each of these modules
builds an abstract renresentation of its visual innut in
its own internal la&. Next the activation of-these
internal layers is copied into the input layer of the
“abstract” module. In the architecture we tested, the
abstract module has double the width of the sensory
module, and the widths of the sensory and motor
modules are eaual. The abstract module learns to
reproduce this input by autoassociation in its output
layer. This module does two things: first, it builds an
even more abstract representation of the combined
visual and motor inputs: and second, it couples these
two inputs so that ultimately the visual inputs will
produce the correct motor patterns.

While the coupling in the upward direction is
straightforward, the coupling in the downward
direction is more subtle, so we will develon the
rationale for it in detail. Remember that the eauation
for updating the weights has the following simple form:

Awji = ~6~s;

In this equation n is a parameter that must be chosen
by experiment. Normally, 9 is constant throughout, or
at least for each layer, but is this the right thing to do?
Recently Baum et al. [1986] have shown that sparse __- -_ _

units are on simultaneously, have special virtues in
terms of retrieval properties that are noise resistant,
and Scalettar and Zee [19861 have demonstrated that
sparse encodings emerge under certain experimental
conditions where noise is added to the input,. In
addition, a straightforward argument shows that, to
the extent that the internal representation can be
made sparse, the learning process will be speeded up.
The reason for this is that the weight change for a
given pattern may not be in the same direction as that
of the other patterns, so that the different weight
changes may interfere with each other. Sparse
encodings tend not to have this problem, since the
activation of the unit whose weight is to be changed is
likely to be non-zero for only a few patterns. One way to
make the encodings sparse is to incorporate additional
procedures into the basic learning algorithm that favor
sparse representations. Scalettar and Zee [19861 used a
selective weight decay where the largest weights (in
absolute value) decayed the slowest. For reasons that
will become clear in a moment, we changed the weight
modification formula to:

A wJi = q Fj si ‘s, I sjm$

Under this “winner gets more” (WGM) heuristic, the
unit in a layer with the most activation has its weights
changed the most. In other words, the weight change
was scaled by the relative activation of the unit. This
heuristic had a marked positive effect on convergence.
Figure 3 shows a comparison between the two formulae
in the simple case of learning identity patterns using a
4-4-4 network.

Normal vs. Heterogeneous Scaling

encodings, where only a small fraction of the internal

Ballard 281

This result is important because, in the limit, the
downward coupling between modules will have the
same effect. The argument is as follows: in downward
coupling the activation from the output layer of the
more abstract module is added in to that of the internal
layer of the less abstract module to which it is coupled.
Since the abstract module is autoassociating, its
pattern should, in the limit, be identical to that of the
lower module’s internal layer. Thus adding this
activation in is equivalent to scaling the weight change
formula relative to the rest. Thus this procedure should
improve convergence since it is a type of WGM
strategy.

The coupling between modules is handled as
follows. Suppose that the bits of the internal
representation of the “sensory” module ml map onto
the first N bits of the “abstract” module, mg. Further,
suppose the N bits of the “motor” module m2 map onto
the second N bits of the “abstract” module. Then the
upward coupling is determined by:

$qJut = sinternal

2, m
i = 1, N

3
i, m

1

input
S.

r+N,m
= sinternal

3 1, m 2

The downward coupling is more subtle. Consider the
computation of the activation of the internal units of
modules ml and mg. The decoupled contribution is
given by

xWjimSi m+ ‘j,, 9 , m = m1,m2

To this is added a term

where y is a function of the error in the abstract layer
EA. Where EA is given by

y is defined by

1
l!=- 1 + aEA

forsomea > Oso thaty = 1
when EA is large.

where EA = 0 and is small

4. Experimental Results

The simulations all used atterns with one unit
(bit) set to one (on). Thus for a our-bit input layer the F
patterns were: (10 0 0), (4) 10 0), (0 0 lo), (0 0 0 11, and
these were paired with corresponding output patterns.
This problem has been termed the encoder problem by
Ackley et al. [1985]. The main difference in our
architecture is that there are sufficient internal units
so that no elaborate encoding of the pattern is forced.

As a baseline, the encoder problem was tested on
4-4-4 feedforward architecture: four input units
connected to four internal units connected to four
output units. The Backpropagation algorithm was
used. The results of this simulation are shown below.
Figure 4 shows how the squared error varies with the
number of iterations. Following the simulation used by
Scalettar and Zee [1986], a r-l of 0.75 and a l3 of 2.0 were
used. The weights and thresholds were initialized to
random numbers chosen from the interval (-0.5, 0.51,
and there was no “momentum” term [Rumelhart et al.,
19861.

3 Level vs. 5 Level Backpropagation

q

,001 I , , .,.n
10 100 1000 10000

lteretlon

Figure 4.

Next the encoder problem was tested on a 4-4-4-4-
4 architecture under the same conditions. In all the
simulations tried, the algorithm found the desired
solution, but took very much longer. Figure 4 compares
the rate of convergence of the three-layer and five-layer
networks. Although it eventually converges to the
correct solution, it takes 20 times longer.

Now consider the hierarchical modular
architecture. The particular hierarchical architecture
that we tested can be thought of as three distinct
modules. There is a 4-4-4 system that learns
representations on an input pattern (the encoder
problem), a 4-4-4 system that learns to encode the
output pattern (in this case the encoder pattern again),
and an 8-8-8 system that encodes the internal
representations produced at the internal layers of both
the input and output modules. The eight-bit wide
system of units serves to couple the input to the output.
The input and output can be thought of as at the same
level in terms of the abstract hierarchy, whereas the
eight-bit system is above them.

In the simulation, the state of the internal units
for the input and output modules is copied into the
“input” units of the more abstract module. This pattern
is then learned by autoassociation using the
Backpropa ation algorithm. At each step the
activation o B the internal units of the upper module is

282 Cognitive Modeling

added to that of the internal units of the lower modules, - .---- _ --
but weighted by a coupling factor. The coupling factor
depends on the effort of the upper module. We used a
factor y, where

where EA
patterns.

was the average absolute error over all the

Figures 5 shows the initial and final states of the
system. Figure 6 shows the error behavior, comparing
the modular system to the original three-level 4-4-4
configuration.

lo7 3 Level BackPropagation vs. Modular

001 ! ..*.
1 10 100 II

Figure 6.
lteratlon

JO

These results are very positive, as they show that
the convergence of the modular system is comparable
to that of the original 4-4-4 system. Experiments are
now underway on larger systems to try and confirm
this initial result.

6. iscussion and Conclusion

The theme of this paper is that a variety of
technical problems make the credit assignment
problem difficult for extensively connected, large-scale
systems. Realistic models will eventually have to face
these problems. The solutions offered here can be

~lli summarized as attempts to break the symmetry of a
fully connected layered architecture. The module
concept breaks symmetry by having selective rules for
error propagation. The weights for different units have
different modification rules.

Figure 5. (A) Initial states, and (B) final
states of the modular system. The four
columns of units denote the response to
individual patterns. The individual rows
are in groups of three denoting (from top to
bottom) internal, input and output units.
The sensory and motor modules are 4-4-4;

the abstract module is 8-8-8.

The main technical result of this paper is to show
that multiple-layer hierarchical systems can be built
without necessarily paying a penalty in terms of the

q convergence time. To do this it was shown that the
Backpropagation algorithm, when cast in terms of an
autoassociative, three-layer network, could be made
into a modular system where modules at different
levels of abstraction could be coupled. Almost all of the
results are based on empirical tests, although there are
some analytical arguments to suggest that the
experimental results should have been expected. The
experimental results are very encouraging. The
conventional Backpropagation architecture, when
extended to three internal levels instead of one, did not
converge, whereas the comparable modular
architecture (with twice as many connections,
however) converged in a time comparable to that of the
much smaller system with only one internal layer.

q > 0.75 #ill, 0.5 > 0.25 s 0.25
The main disadvantage of this scheme arises in

the use of the network. In the case where a sensory
input is provided and a motor response is desired, only
one-half of the inputs to the abstract layer will be
present. This places a much greater demand on the
abstract layer to determine the correct pattern instead
of an alternate. A more realistic assumption might be
to assume that both sensory parts and motor parts of
the pattern are present, and the pattern completion
problem is no worse than in the feedforward system.

Ballard 283

Having shown that modules of three-layer
autoassociative systems can be built, we now ask
whether error propagation at the internal level is
really necessary. Consider that making the weight
adiustment formula anisotropic actually improved
convergence. Thus it seems plausible that a mixed
learning system would be possible where the output
weights are adjusted based on error correction but the
internal weights are adjusted based on some other
criterion. We conjecture the substitute criterion may
only need to have certain smoothness properties and
produce different internal states for the different input
patterns. Thus there is likely to be a large family of
learning algorithms that will work in the modular
architecture.

Acknowledgements

This work was done at the program on Spin
Glasses, Computation, and Neural Networks held
during September to December 1986 at the Institute
for Theoretical Physics, University of California at
Santa Barbara, and organized by John Hopfield and
Peter Young. This research was supported in part by
NSF Grant No. PHY82-17853, supplemented by
NASA. Thanks go to all the participants in the
program who helped refine the ideas in this paper over
numerous discussions, especially Jack Cowan,
Christoph Koch, Alan Lapedes, Hanoch Gutfreund,
Christoph von der Malsburg, Klaus Schulten, Sara
Solla, and Haim Sompolinsky. In addition, at
Rochester, Mark Fanty and Kenton Lynne provided
helpful critiques. The importance of scaling problems
in learning emerged during discussions at the
Connectionist Summer School at Carnegie Mellon
University in June 1986, particularly with Geoff
Hinton. Thanks also go to Beth Mason and Peggy
Meeker, who typed the many drafts of this manuscript.

References

Ackley, D.H., G.E. Hinton, and T.J. Sejnowski, “A
learning algorithm for Boltzmann machines,‘*
Cognitive Science 9,1,147-169, January-March 1985.

Barlow, H.B., “Single units and se,nsation: A neuron
il4trzinor perceptual psychology?, Perception I, 371-

, .

Baum, E., J. Moody, and F. Wilczek, “Internal
representations for content addressable memory,”
Technical Report, Inst. for Theoretical Physics, U.
California, Santa Barbara, December 1986.

Feldman, J.A., “Dynamic connections in neural
networks,” Biological Cybernetics 46,27-39,1982.

Lapedes, A. and R. Farber, “Programming a massively
parallel, computation universal system: Static
behavior,” Proc., Snowbird Confi on Neural Nets and
Computation, April 1986.

Pearlmutter, B.A. and G.E. Hinton, “Maximization: An
unsupervised learning procedure for discovering
regularities,”
May 1986.

Technical Report, Carnegie Mellon U.,

Rumelhart, D.E. and D. Zipser, “Feature discovery by
competitive learning,”
January-March 1985.

Cognitive Science 9, 1, 75-112,

Rumelhart, D.E., G.E. Hinton, and R.J. Williams,
*‘Learning internal representations b
propagation,” in D.E. Rumelhart and J.L. MC 6 leTlET
(Eds). Parallel Distributed Processing. MII’ Press, PP.
318-364,1986.

Scalettar, R. and A. Zee, “A feedforward memory with
decay”’ Technical Report NSF-ITP-86-118, Inst. for
Theoretical Physics, U. California, Santa Barbara,
1986.

Zipser, D., “Pro amming networks to compute spatial
functions,” IC !Y Report 8608, Inst. for Cognitive
Science, U. California, San Diego, La Jolla, June 1986.

284 Cognitive Modeling

