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Abstract 

In the development of large-scale knowledge 
networks, much recent progress has been inspired by 
connections to neurobiology. An important component 
of any “‘neural” network is an accompanying learning 
algorithm. Such an algorithm, to be biologically 

lausible, 
!s 

must work for very large numbers of units. 
tudies of large-scale systems have so far been 

restricted to systems without internal units (units with 
no direct connections to the input or output). Internal 
units are crucial to such systems as they are the means 
by which a system can encode high-order regularities 
(or invariants) that are implicit in its inputs and 
outputs. Computer simulations of learning using 
internal units have been restricted to small-scale 
systems. This paper describes a way of coupling 
autoassociative learning modules into hierarchies that 
should greatly improve the performance of learning 
algorithms in large-scale systems. The idea has been 
tested experimentally with positive results. 

1. Introduction 

An important component of any artificial 
intelligence system ultimately will be its ability to 
learn. Very recently there has been great progress in 
the development of learning algorithms [Rumelhart et 
al., 1986 (1); Rumelhart and Zipser, 1985 (2); Ackley et 
al., 1985 (3); Pearlmutter and Hinton, 1986 (4); 
Lapedes and Farber, 1986 (5)l. 

All of the above algorithms use internal 
representations to represent regularities in the 
environment. The internal representations capture 
efficient encodings of the environment that presumably 
facilitate the behavioral needs of the system. These 
individual algorithms have their own advantages and 
disadvantages, but a common question related to all of 
them is whether or not they scale with the size of the 
problem. In other words, even on an appropriate 
parallel architecture, the computational complexity in 
the average case may not remain constant or at worst 
scale with the problem size. The result is that it is 
likely that additional insights will be needed to 
implement learning algorithms in massively parallel 
systems. 

2. Hierarchies 

The tremendous advantage of hierarchies as a 
compact encoding of input-output pairs is the principal 
motivation for developing a learning algorithm that is 
geared to developing hierarchical encodings. One 

possibility is to use the Backpropagation algorithm 
with several internal levels. Our computer 
experiments in Section 4, however, show that this 
formulation does not seem to have good scaling 
properties. An example that took 256 iterations to 
converge with one internal layer took over 4096 
iterations to converge with three internal layers. Thus 
we were motivated to develop a modular reformulation 
of Rackpropagation learning with better convergence 
properties. 

Another idea that we will use is that of 
autoassociation. Consider first a simple modification of 
the Backpropagation algorithm that is shown in 
Figure 1. The figure shows the standard three-layer 
architecture used in most experiments. We will refer 
to the layers as the input, internal, and output layers, 
as shown on the figure. The number of units at each 
layer we term the width of the layer. 

A. Standard B. Autoassociative 
Configuration Configuration 

Figure 1. In the autoassociative configuration the 
output is constrained to be identical to the input. 

To simplify what follows, we neglect the width of the 
layers and just use a representative unit for all the 
units in a layer. Let us use two-way connections so that 
now the internal units are connected to the input units. 
Note that now the same learning algorithm can be 
adapted to this special problem of predicting the input. 
Activation from the input is propagated to the internal 
units and then back to the output, where it can be 
interpreted as a virtual copy. That is, it is the input as 
reconstructed from the internal representation. Since 
the input is known, this can be used to generate an 
error signal, just as in the feedforward case, that is 
then sent backwards around the network to the input 
weights. This architecture was proposed by Hinton and 
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pg;$hart and has been recently studied by Zipser 
. 

3. Learning with Modular Hierarchies 

The main result of this paper is to show how a 
purely autoassociative system system can be 
modularized in a way that is resistant to changes in 
problem scale. Consider Figure 2, which describes the 
general idea. Consider that an autoassociative module 
is used to learn a visual representation. Now imagine 
that a similar process takes place at the output (motor) 
level, where in this case the system is codifying 
efficient internal representations of quickly varying 
movement commands. Both the motor and visual 
internal representations, being codes for the more 
peripheral representations, will vary less. This means 
that if one views the situation recursively, at the next 
level inward the problem of encoding peripheral 
representations is repeated, but now it is cast in terms 
of more abstract, more invariant representations of the 
peripheral signals. It also means that the same 
principles can be applied recursively to generate a set 
of learning equations that are geared to the new levels. 
Thus one can imagine that the abstract visual and 
motor levels are coupled through another 
autoassociative network that has a similar 
architecture to the lower levels but works on the 
abstractions created by them rather than the raw 
input. The next autoassociative module, termed 
ABSTRACT in Figure 2, starts with copies of the 
internal representations of the SENSORY and MOTOR 
modules and learns a more abstract representation by 
autoassociation. 

ABSTRACT 

SENSORY 

Coupling to 
Upper Layer 

Error modulated 
Coupling 

MOTOR 

Figure 2. The main idea : Peripheral modules can work 
in an almost decoupled fashion to build more abstract 
representations. These are tightly coupled by more 
abstract modules that build still more abstract 
representations. The depth of two in the figure is 
rey~il schematic: the principle extends to arbitrary 

. 
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Perhaps the biggest advantage that has occurred with 
this reformulation is that the equations at each level 
can be thought of as being relatively decoupled. This 
means that they can be run in parallel so that the error 
propagation distances are short. In practice one would 
not want them to be completely decoupled, as then 
higher-level representations could not effect lower- 
level re 
occur i P 

resentations. At the same time, problems may 
the different levels are coupled too tightly 

before the system has learned its patterns, since in this 
case errorful states are propagated through the 
network. Here again the hierarchical reformulation 
has a ready answer: since there is now a measure of 
error for each layer, the activation of the upper, output 
levels can be coupled to the lower levels by a term that 
tends to zero when the error is large and one when the 
error is small. 

To develop the solution method in more detail, 
consider the error propagation equations from 
[Rumelhart et al., 19861. They minimize an error 
measure E = C&,, where 

where the subscript i ranges over the output units and 
the d denotes the desired output. The unsubscripted s 
denotes the actual output. In what follows, the 
subscript p, which ranges over individual patterns, will 
be dropped for convenience. For a two-layered system 
such as is characterized in Figure lA, the equations 
that determine the activation are given by: 

sj = 0 (1 (Wji si + Bj) 

where o(x) = l/(1 + e-Dx). The output of the jth unit sj 
ranges between zero and one. The synaptic weights wji 
and threshold 6j are positive and negative real 
numbers. 

The equations that change the weights to 
minimize this error criterion are: 

A wji = q 4 s, 

for output units, 

sj = (sjd - Sj’ sj (1 - Sj’ 

and for hidden units, 

sj =sjcl - “j’Ek6k wKj 

These equations are derived in [Rumelhart et al., 
19861. 

Now let us consider the architecture of Figure 2. 
In this architecture, the connections from the hidden 
units feed back to the input units, so that now the 
prime notation has a special meaning. It is the 
activation level of the input units that is predicted by the 
hidden units. This is subtracted from the actual input 
level, which may be regarded as clamped, in order to 
determine the error component used in correcting the 
weights. Thus essentially the same equations can be 
used in an autoassociative mode. The elegance of this 



formulation is that it can be extended to arbitrary 
modules. Where the subscript m denotes the different 
modules, the equations that determine the activation 
are now given by: 

S. Jm=u(zWji mSim+eJm) 
, , 

The equations that change the weights to minimize 
this error criterion are: 

AW~i,n=qrn6jrnstm , 9 

for output units, 

sjm = qm - sjm$p - Sjm) 
l 3 9 

and for hidden units, 

Now for the counling between modules. A module 
m2 is said to be hierakhi&ZZy coupled to a module ml if 
the activation of the input layer of rn2 is influenced by 
the internal layer of ml, and also the activation of the 
output layer of” m2 influences the internal layer of 
In this case rnp is said to be the more abstract of the tmwl 
modules and rkl the less abstract. 

The modules are directly input coupled if the 
activation of a subset of the units in the input layer of 
mg is a direct copy of the activation of units in the 
internal layer and output coupled if the activation of 
the units in the internal level of ml uses the activation 
of the output units in its sigmoid function. 

The hierarchical algorithm works as follows. 
Consider first the “sensory” module in Figure 2. This 
can be thought of as a standard autoassociative 
Backpropagation network. The “motor” module can be 
thought of in the same way. Each of these modules 
builds an abstract renresentation of its visual innut in 
its own internal la&. Next the activation of-these 
internal layers is copied into the input layer of the 
“abstract” module. In the architecture we tested, the 
abstract module has double the width of the sensory 
module, and the widths of the sensory and motor 
modules are eaual. The abstract module learns to 
reproduce this input by autoassociation in its output 
layer. This module does two things: first, it builds an 
even more abstract representation of the combined 
visual and motor inputs: and second, it couples these 
two inputs so that ultimately the visual inputs will 
produce the correct motor patterns. 

While the coupling in the upward direction is 
straightforward, the coupling in the downward 
direction is more subtle, so we will develon the 
rationale for it in detail. Remember that the eauation 
for updating the weights has the following simple form: 

Awji = ~6~s; 

In this equation n is a parameter that must be chosen 
by experiment. Normally, 9 is constant throughout, or 
at least for each layer, but is this the right thing to do? 
Recently Baum et al. [1986] have shown that sparse __- -_ _ 

units are on simultaneously, have special virtues in 
terms of retrieval properties that are noise resistant, 
and Scalettar and Zee [19861 have demonstrated that 
sparse encodings emerge under certain experimental 
conditions where noise is added to the input,. In 
addition, a straightforward argument shows that, to 
the extent that the internal representation can be 
made sparse, the learning process will be speeded up. 
The reason for this is that the weight change for a 
given pattern may not be in the same direction as that 
of the other patterns, so that the different weight 
changes may interfere with each other. Sparse 
encodings tend not to have this problem, since the 
activation of the unit whose weight is to be changed is 
likely to be non-zero for only a few patterns. One way to 
make the encodings sparse is to incorporate additional 
procedures into the basic learning algorithm that favor 
sparse representations. Scalettar and Zee [ 19861 used a 
selective weight decay where the largest weights (in 
absolute value) decayed the slowest. For reasons that 
will become clear in a moment, we changed the weight 
modification formula to: 

A wJi = q Fj si ‘s, I sjm$ 

Under this “winner gets more” (WGM) heuristic, the 
unit in a layer with the most activation has its weights 
changed the most. In other words, the weight change 
was scaled by the relative activation of the unit. This 
heuristic had a marked positive effect on convergence. 
Figure 3 shows a comparison between the two formulae 
in the simple case of learning identity patterns using a 
4-4-4 network. 

Normal vs. Heterogeneous Scaling 

encodings, where only a small fraction of the internal 
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This result is important because, in the limit, the 
downward coupling between modules will have the 
same effect. The argument is as follows: in downward 
coupling the activation from the output layer of the 
more abstract module is added in to that of the internal 
layer of the less abstract module to which it is coupled. 
Since the abstract module is autoassociating, its 
pattern should, in the limit, be identical to that of the 
lower module’s internal layer. Thus adding this 
activation in is equivalent to scaling the weight change 
formula relative to the rest. Thus this procedure should 
improve convergence since it is a type of WGM 
strategy. 

The coupling between modules is handled as 
follows. Suppose that the bits of the internal 
representation of the “sensory” module ml map onto 
the first N bits of the “abstract” module, mg. Further, 
suppose the N bits of the “motor” module m2 map onto 
the second N bits of the “abstract” module. Then the 
upward coupling is determined by: 

$qJut = sinternal 

2, m 
i = 1, . . . . N 

3 
i, m 

1 

input 
S. 

r+N,m 
= sinternal 

3 1, m 2 

The downward coupling is more subtle. Consider the 
computation of the activation of the internal units of 
modules ml and mg. The decoupled contribution is 
given by 

xWjimSi m+ ‘j,, 9 , m = m1,m2 

To this is added a term 

where y is a function of the error in the abstract layer 
EA. Where EA is given by 

y is defined by 

1 
l!=- 1 + aEA 

forsomea > Oso thaty = 1 
when EA is large. 

where EA = 0 and is small 

4. Experimental Results 

The simulations all used atterns with one unit 
(bit) set to one (on). Thus for a our-bit input layer the F 
patterns were: (10 0 0), (4) 10 0), (0 0 lo), (0 0 0 11, and 
these were paired with corresponding output patterns. 
This problem has been termed the encoder problem by 
Ackley et al. [1985]. The main difference in our 
architecture is that there are sufficient internal units 
so that no elaborate encoding of the pattern is forced. 

As a baseline, the encoder problem was tested on 
4-4-4 feedforward architecture: four input units 
connected to four internal units connected to four 
output units. The Backpropagation algorithm was 
used. The results of this simulation are shown below. 
Figure 4 shows how the squared error varies with the 
number of iterations. Following the simulation used by 
Scalettar and Zee [1986], a r-l of 0.75 and a l3 of 2.0 were 
used. The weights and thresholds were initialized to 
random numbers chosen from the interval (-0.5, 0.51, 
and there was no “momentum” term [Rumelhart et al., 
19861. 

3 Level vs. 5 Level Backpropagation 

q  

,001 I . . . . . . . . . . . . . . . . . . . , . . . . . . . . , .,.n 
10 100 1000 10000 

lteretlon 

Figure 4. 

Next the encoder problem was tested on a 4-4-4-4- 
4 architecture under the same conditions. In all the 
simulations tried, the algorithm found the desired 
solution, but took very much longer. Figure 4 compares 
the rate of convergence of the three-layer and five-layer 
networks. Although it eventually converges to the 
correct solution, it takes 20 times longer. 

Now consider the hierarchical modular 
architecture. The particular hierarchical architecture 
that we tested can be thought of as three distinct 
modules. There is a 4-4-4 system that learns 
representations on an input pattern (the encoder 
problem), a 4-4-4 system that learns to encode the 
output pattern (in this case the encoder pattern again), 
and an 8-8-8 system that encodes the internal 
representations produced at the internal layers of both 
the input and output modules. The eight-bit wide 
system of units serves to couple the input to the output. 
The input and output can be thought of as at the same 
level in terms of the abstract hierarchy, whereas the 
eight-bit system is above them. 

In the simulation, the state of the internal units 
for the input and output modules is copied into the 
“input” units of the more abstract module. This pattern 
is then learned by autoassociation using the 
Backpropa ation algorithm. At each step the 
activation o B the internal units of the upper module is 
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added to that of the internal units of the lower modules, - .---- _ -- 
but weighted by a coupling factor. The coupling factor 
depends on the effort of the upper module. We used a 
factor y, where 

where EA 
patterns. 

was the average absolute error over all the 

Figures 5 shows the initial and final states of the 
system. Figure 6 shows the error behavior, comparing 
the modular system to the original three-level 4-4-4 
configuration. 

lo7 3 Level BackPropagation vs. Modular 

001 ! . . . . . . . . . . . . . . . . . . . . ..*. 
1 10 100 II 

Figure 6. 
lteratlon 

JO 

These results are very positive, as they show that 
the convergence of the modular system is comparable 
to that of the original 4-4-4 system. Experiments are 
now underway on larger systems to try and confirm 
this initial result. 

6. iscussion and Conclusion 

The theme of this paper is that a variety of 
technical problems make the credit assignment 
problem difficult for extensively connected, large-scale 
systems. Realistic models will eventually have to face 
these problems. The solutions offered here can be 

~lli summarized as attempts to break the symmetry of a 
fully connected layered architecture. The module 
concept breaks symmetry by having selective rules for 
error propagation. The weights for different units have 
different modification rules. 

Figure 5. (A) Initial states, and (B) final 
states of the modular system. The four 
columns of units denote the response to 
individual patterns. The individual rows 
are in groups of three denoting (from top to 
bottom) internal, input and output units. 
The sensory and motor modules are 4-4-4; 

the abstract module is 8-8-8. 

The main technical result of this paper is to show 
that multiple-layer hierarchical systems can be built 
without necessarily paying a penalty in terms of the 

q  convergence time. To do this it was shown that the 
Backpropagation algorithm, when cast in terms of an 
autoassociative, three-layer network, could be made 
into a modular system where modules at different 
levels of abstraction could be coupled. Almost all of the 
results are based on empirical tests, although there are 
some analytical arguments to suggest that the 
experimental results should have been expected. The 
experimental results are very encouraging. The 
conventional Backpropagation architecture, when 
extended to three internal levels instead of one, did not 
converge, whereas the comparable modular 
architecture (with twice as many connections, 
however) converged in a time comparable to that of the 
much smaller system with only one internal layer. 

q  > 0.75 #ill, 0.5 > 0.25 s 0.25 
The main disadvantage of this scheme arises in 

the use of the network. In the case where a sensory 
input is provided and a motor response is desired, only 
one-half of the inputs to the abstract layer will be 
present. This places a much greater demand on the 
abstract layer to determine the correct pattern instead 
of an alternate. A more realistic assumption might be 
to assume that both sensory parts and motor parts of 
the pattern are present, and the pattern completion 
problem is no worse than in the feedforward system. 
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Having shown that modules of three-layer 
autoassociative systems can be built, we now ask 
whether error propagation at the internal level is 
really necessary. Consider that making the weight 
adiustment formula anisotropic actually improved 
convergence. Thus it seems plausible that a mixed 
learning system would be possible where the output 
weights are adjusted based on error correction but the 
internal weights are adjusted based on some other 
criterion. We conjecture the substitute criterion may 
only need to have certain smoothness properties and 
produce different internal states for the different input 
patterns. Thus there is likely to be a large family of 
learning algorithms that will work in the modular 
architecture. 
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