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Abstract 

Recent experiments indicate that a case-based 
approach to the problem of word pronunciation 
is effective as the basis for a system that learns 
to pronounce English words. More generally, the 
approach taken here illustrates how a case-based 
reasoner can access a large knowledge base con- 
taining hundreds of potentially relevant cases and 
consolidate these multiple knowledge sources us- 
ing numerical relaxation over a structured net- 
work. In response to a test item, a search space 
is first generated and structured as a lateral in- 
hibition network. Then a spreading activation 
algorithm is applied to this search space using 
activation levels derived from the case base. In 
this paper we describe the general design of our 
model and report preliminary test results based 
on a training vocabulary of 750 words. Our ap- 
proach combines traditional heuristic methods for 
memory organization with connectionist-inspired 
techniques for network manipulation in an effort 
to exploit the best of both information-processing 
methodologies. 

I. Introduction 

While many researchers have proposed various rea- 
soning mechanisms for case-based systems [Bin, 1986, 
Kolodner, Simpson, and Sycara-Cyranski, 1985, Ham- 
mond, 1986, Rissland and Ashley, 1986, Lebowitz, 19861, 
we have very little experience with truly large memories. A 
realistic memory for any case-based reasoner must contain 
hundreds or thousands of cases. With this many available 
cases we can expect to see significant competition among 
a large number of potentially relevant cases at any given 
time.’ It is therefore important to develop techniques for 
memory access and conflict resolution which will enable US 

to effectively arbitrate large numbers of contributing cases. 
It is all too easy to design ad hoc heuristics that apply to 
a limited set of examples operating in conjunction with a 
hand-coded memory. We have developed a more general 
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strategy for handling case-based memories with a special 
concern for the difficulties of scaling up. 

The problem of word pronunciation is an ideal task for 
experiments in case-based learning and reasoning. Sym- 
bolic pronunciations available in a standard dictionary 
grant us easy access to a large corpus of data which is com- 
pletely free of the representational problems encountered 
in tasks like legal reasoning or medical diagnosis. By cir- 
cumventing these otherwise important issues, we have been 
able to concentrate our efforts on the automatic construc- 
tion of a large case-based memory, indexing techniques 
for that memory, and strategies for resolving competition 

+ among multiple cases. 

To illustrate the effectiveness of our ideas we have im- 
plemented PRO, a system that learns to pronounce words 
using a knowledge base organized around cases. PRO cre- 
ates its knowledge structures in response to supervised 
training items where each item contains a word and a se- 
quence of phonemes representing that word’s correct pro- 
nunciation. At any time we can interrupt PRO’s learning 
mode to test PRO on arbitrary vocabulary items. We cur- 
rently have an on-line data base of 850 word/pronunciation 
pairs which can be used as training items, test items, or 
both. 

Construction 0 

e 

When PRO examines its training items it does not 
create one case per training item. Rather, PRO segments 
an input word into a partition of substrings which maps 
onto the targeted phoneme string in a credible fashion. We 
will refer to each mapping from a substring to a phoneme as 
a “hypothesis.” A case is then a fixed-length subsequence 
of hypotheses contained in the mapping of a segmentation 
to a phoneme sequence. 

To illustrate, suppose we have associated the segmen- 
tation (SH OW T I ME) with the phoneme sequence (sh 6 
t ; m). This produces five hypotheses (SH/sh, OW/6, T/t, 
I/;, and ME/m). In principle, we could design our cases 
to record sequences of either arbitrary or fixed lengths (al- 
though sequences of length 1 would fail to encode any con- 

Lehnert 301 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



textual information). The selection of a case length is a 
design decision that benefits from some experimentation: 
we have found that 3 is an effective length for the word 
pronunciation task. So the item “showtime” is then asso- 
ciated with the following seven cases: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

(START**/0 START*/0 SH/sh) 
(START*/0 SH,‘sh OW/a) 
(SH/sh OW/G T/t) 

K’” 
w I/7) 
11; MV-4 

(I/7 ME/m END*/0) 
(ME/~ END*/0 END**/O) 

The null hypotheses serve only to mark places at the 
beginning and end of each word. These place markers are 
necessary if we want to maintain sequences of uniform 
length. 

The cases PRO identifies correspond to a moving 
“window” on the lexical item, although we cannot say 
that the window has a fixed length in terms of the let- 
ters spanned. Since each hypothesis may contain 1, 2, 3, 
or even 4 letters (as in OUGH/ii) from the input word, the 
size of this window can vary from 1 letter (at the beginning 
or end of the word) to as many as 12 letters (at least in 
principle) depending on the hypotheses involved. 

Each case identified during training is indexed under 
the substring of its leading hypothesis and stored within 
a tree structure.2 The indexing substring points to a sep- 
arate tree for each hypothesis associated with that sub- 
string. For example, the substring “0~” could have two 
hypotheses associated with it: OW/a (as in “show”) and 
OW/ou (as in “how”). To store the sequence (OW/B T/t 
I/i) we would add this case to the tree headed by OW/& 
If T/t has never followed OW/8 before, we must create a 
new branch for the tree. Otherwise, if T/t had been en- 
countered after OW/a during training, we would traverse 
the branch already constructed and next check to see if 
I/? is present in the tree at the next level. Since we are 
operating PRO with a fixed sequence length of 3, each of 
our trees is limited to a depth of three hypotheses. 

PRO updates its knowledge base by expanding tree 
structures as needed, and updating frequency data for each 
case encountered during training. Each node of a case tree 
is associated with a positive integer which indicates how 
many times this particular node has been visited during 
training. If T/t has followed OW/a 13 times before, we 
will now update that count to 14. If I/; has never followed 
(OW/a T/t) b e ore, we create a new node for the tree and f 

21n fact, we also index each case under the last hypothesis as 
well as the first. Indices using trailing hypotheses access trees that 
traverse case sequences backwards whereas cases indexed by leading 
hypotheses go forwards. This dual encoding becomes important when 
we use frequency data during test mode. 

initialize its frequency count at 1. It follows that frequency 
counts can never increase as we traverse branches out from 
a root node: frequencies typically diminish as we move 
downward through a tree. 

In general, there is more than one way to segment 
a character string and match those segments against the 
phoneme sequence encoding the string’s pronunciation. 
PRO must therefore access its knowledge base during 
training in order to identify preferred segmentations with 
high degrees of credibility. Since segmentation errors dur- 
ing training encourage additional segmentation errors dur- 
ing subsequent training, as well as impaired performance in 
test mode, PRO is very conservative about segmentation 
judgments. If PRO cannot identify a preferred segmen- 
tation, PRO will ignore the training item and make no 
attempts to modify its knowledge base in response to that 
item. This strategy of “timid acquisition” is the only way 

to guarantee effective learning in the absence of negative 
examples [Berwick, 19861. 

We have found that a very effective heuristic for filter- 
ing multiple segmentations can be devised by maximizing 
(1) known hypotheses, (2) new hypotheses which partially 
match some known hypothesis, and (3) known hypotheses 
with high frequency counts. However, these filters can still 
fail if PRO is subjected to an “unreasonable” training ses- 
sion at the start. To get PRO off on the right foot, we 
must begin with an initial training session that makes it’ 
easy for PRO to identify valid hypotheses. 

At the beginning, when PRO’s knowledge base is 
sparse, it is important to train PRO with training pairs 
that do not result in multiple segmentations. In gen- 
eral, three-letter words satisfy this constraint because most 
three-letter words map to a sequence of three phonemes. 
Once PRO has built a knowledge base in response to some 
such initial training session, we can move on to four and 
five-letter training words with confidence. Apart from this 
general restriction, PRO is not overly sensitive to the de- 
sign of its training sequences. At worst, PRO will not learn 
anything from a poorly placed training item if it has not 
“worked itself up” to that item adequately. 

ase: 

When PRO is in test mode it receives a lexical item 
and attempts to produce a unique phoneme sequence in re- 
sponse to that item. Because PRO’s knowledge base does 
not remember training items in their entirety, there is no 
guarantee that PRO will produce a correct pronunciation 
for a word it previously encountered during training. How- 
ever, PRO does tend to have a somewhat higher hit rate 
for items seen in training compared to novel test words. 
We will discuss PRO’s performance in test mode at the 
end of this paper. 
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PRO begins its analysis of a test word by produc- 
ing a search space of all possible hypothesis sequences 
it can associate with that word. Note that this search 
space will not, in general, contain all possible segmenta- 
tions of the input word since most segmentations will not 
be associated with hypotheses recognized by the knowl- 
edge base. For example, any segmentation of “showtime” 
containing the substring “wti” will be rejected since PRO 
will not have any hypotheses in memory using the string 
“wti.” The complexity of our search space is therefore lim- 
ited by the knowledge base available to PRO. PRO also 
limits its search space by eliminating any segmentations 
which place hypothesis boundaries between letters that 
have never been divided between two hypotheses during 
training (PRO creates a small data base of this informa- 
tion during training in addition to the case-based memory 
described above). For the task of word pronunciation the 
greatest sources of ambiguity result from vowels and vowel 
combinations, so those are places where the search space 
tends to “fan out.” 

The search space of possible word pronunciations 
which PRO generates must now be resolved to a single 
preferred pronunciation. This selection process is made on 
the basis of information available in PRO’s case base. To 
access the case base, we transform our search space into a 
structured network utilizing lateral inhibition and spread- 
ing activation. 

To begin, we create inhibitory links between any pair 
of hypotheses that share overlapping substrings from the 
input word. All such hypotheses are in competition with 
one another and must resolve to a preferred winner. These 
inhibitory links provide negative activation throughout the 
network, which is essential to the process of identifying a 
preferred path through the net. Figure 1 shows a sam- 
ple search space for the word “showtime”. (In actuality, 
this search space would be much larger if PRO had any 
substantial training behind it). All positive activation for 
the network comes from the case base by adding addi- 
tional ‘“context-nodes” to the network. A context node is 
added to the network wherever three consecutive hypothe- 
ses correspond to a complete branch of some tree in PRO’s 
knowledge base. The context node is then connected to 
the three hypotheses that spawned it, and initialized at a 
positive level of activation. This level of activation is com- 
puted on the basis of frequency data available in the case 
trees.3 Once all possible context nodes have been gener- 
ated, connected up, and initialized, we are ready to relax 
the network. 

SThe precise value is f(x,y) = rnd (10(1-(f-21(1-~ll) where x 
and y represent the frequency of this particular hypothesis sequence 
relative to the first hypothesis in the sequence and the last hypothesis 
in the sequence. In other words, x tells us how often this sequence 
follows an instance of the first hypothesis and y tells us how often this 
sequence precedes an instance of the third hypothesis. x,y E (O,l], 
f(x,y) E (1,101 and f(x,y) - 10 as either x or y - 1. 

Figure 1: A search space network 

A standard relaxation algorithm (see Feldman and 
Ballard 1982) is then applied to our network representa- 
tion until all activation levels have stabilized or the number 
of iterations reaches 30. In general, the network stabilizes 
before 20 iterations, and we then evaluate the activation 
levels associated with each candidate pronunciation in the 
network. A path in the network receives as its activation 
level the lowest activation level found over all the hypoth- 
esis nodes contained in that path. Happily, most paths 
zero-out, leaving only a few with positive levels of activa- 
tion, Of those with any positive activation there is usu- 
ally one with a maximal activation level. In the case of a 
unique maximal path, we have a strong preference for a 
single word pronunciation. In the case of multiple maxi- 
mal paths, PRO picks one arbitrarily and returns that as 
the preferred pronunciation. 

Once a test item has been resolved, PRO discards 
the network representation constructed for that item and 
moves on to the next test item with a clean slate. No mod- 
ifications to PRO’s knowledge base are made during test 
mode. 
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At this time we have assembled a corpus of 850 train- 
ing items consisting of words chosen at random from a 
dictionary and ranging in length from 3 to 8 letters. We 
have collected data for PRO’s performance on a test set 
consisting of the first 200 words from a 750-word train- 
ing session. This test set of “familiar” words contains 50 
three-letter words, 100 four-letter words, and 50 five-letter 
words. We have also tested 100 novel words not found in 
the 750-word training session (50 four-letter words and 50 
five-letter words). We ran PRO on both test sets at three 
different times during training: (1) after 250 words, (2) 
after 450 words, and (3) after all 750 words. 

It is important to note that the complexity of a given 
test item changes as PRO processes additional training 
items and increases its knowledge base. There are three 
factors that contribute to the complexity of PRO’s task 
during test mode: (1) the number of hypotheses in mem- 
ory9 (2) the number of cases (hypothesis sequences) in 
memory, and (3) the frequency data associated with each 
case in memory. We will refer to these three factors as the 
“Hypothesis Base,” the “Case Base,” and the “Statistical 
Base.” 

As the Hypothesis Base grows, we will see the search 
space for a given test item increase since additional seg- 
mentations may be possible and more hypotheses may be 
associated with each plausible segmentation. As the Case 
Base grows, we see more context nodes generated in re- 
sponse to a given test item since there are more hypothesis 
sequences available to reinforce the search space. As the 
Statistical Base grows, we do not see additional complexity 
in the structures we generate, but we may see some effects 
on the time’required to stabilize the network during the re- 
laxation process. On the basis of only 750 training items, it 
is not possible to say whether effects from a growing Sta- 
tistical Base will alter the number of iterations required 
during network relaxation. 

We can easily plot growth curves for the Hypothe- 
sis Base as a function of training items processed. Table 
1 shows how the number of hypotheses increases during 
training. Note that a sharp growth rate during the first 200 
items (630 phonemes) drops off to a much slower growth 
rate during the remaining 550 items. During the initial 
growth spurt we average about 1 new hypothesis for ev- 
ery 2 training items. After the initial growth spurt, we 
pick up roughly 1 new hypothesis for every 10 training 
items. By the end of this training session PRO has iden- 
tified 180 hypotheses. While the growth rate during the 
last 550 items appears to be linear, we must assume that it 
will become increasingly harder to identify new hypotheses 
as more training items are processed. Since we have not 
trained enough to see our curve level off, it is difficult to 
say where the ceiling on hypotheses might be. However, it 
is safe to say that this growth process will eventually reach 
an asymptote, at which point the Hypothesis Base cannot 
increase the complexity of our search spaces any further. 

Hypothesis Base 
200 , 

03 

0 500 1000 1500 2000 2500 3000 

Target Phonemes 

Processed during Training 

Table 1. Hypothesis Base Growth Curve 

A similar growth curve for the Case Base tells a differ- 
ent story. Table 2 shows how the number of cases in PRO’s 
memory increase as PRO processes the same 750 training 
items. Now we see a largely linear function throughout: 
PRO generates roughly 2.1 new cases for each training item 
it processes. By the end of this training session PRO has 
generated a knowledge base containing 1591 cases. 

Target Phonemes 

Processed during Training 

Table 2. Case Base Growth Curve 

As with the Hypothesis Base, we must assume that 
the Case Base will eventually saturate and cease to acquire 
new cases. Unfortunately, our limited training experience 
does not allow us to speculate about how many training 
items might be required before saturation sets in. At the 
very least, we can say that saturation in the Hypothesis 
Base necessarily precedes saturation in the Case Base, and 
it will probably take the Case Base a while to settle down 
after the Hypothesis Base has stabilized. 

Unlike the Hypothesis Base and the Case Base, the 
Statistical Base will continue to change as long as training 
continues. If training items are repeated, we would not 
see any operational differences in the Statistical Base, as 
long as all training items are repeated with the same fre- 
quency. However, interesting effects would be derived from 
the Statistical Base if some segment of the training cor- 
pus were repeated heavily in the absence of compensating 
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repetitions throughout the entire training corpus. Words 
encountered often would then influence the relaxation pro- 
cess more heavily than words seen less frequently. This is 
an important feature of our model as far as psychological 
validity is concerned. Since the frequency distribution for 
words in everyday use is not uniform, one could argue that 
not all words are equal in the mind of a lexicon-processing 
human. Any psychological account of phonetic interpre- 
tation should therefore be responsive to this question of 
frequency distributions and predict behaviors that vary in 
response to manipulations of word distributions. 

Given the increased complexity of PRO’s pronuncia- 
tion task as its knowledge base grows, it is not surprising 
to see some degradation in PRO’s test mode performance 
as we move through the training corpus. After training on 
250 words, PRO returns a hit rate of 94.7% on the num- 
ber of phonemes it can correctly identify in the test corpus 
of familiar words. By the time PRO has processed 750 
training words, this hit rate has dropped to 89.9% - the 
error rate has doubled. At the same time, the Hypothe- 
sis Base has grown by a factor of 1.4 and the Case Base 
has expanded by a factor of 2.5. It is interesting to note 
that PRO’s performance is not significantly correlated with 
word lengths: shorter words do not necessarily fare better 
than longer words. 

While PRO’s performance drops slightly over time for 
familiar words, we see an increase in performance levels for 
novel words. After 250 words PRO correctly identifies 66% 
of the phonemes for our test group of 100 words not present 
in the training corpus. By the time PRO has processed 750 
training words, this success rate has risen to 75%. It is 
not surprising to see PRO behave differently for these two 
groups of test items in its early stages of training. Further 
experimentation is needed to determine whether these two 
performance curves eventually converge and stabilize. 

100 
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Percentage of Correct Phonemes 
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trained rords 
0 

novel sords 
LI 

baseline 
e 

500 1000 1500 2000 2500 3000 

Target Phonemes 

Processed during Training 

Table 3. Comparative Hit Rates in Test Mode 

Table 3 shows the two performance curves for famil- 
iar and novel words along with a baseline curve designed 
to factor out the effects of the Case Base. The percent- 
ages contained in the baseline result from test runs that 
substitute random guesses in place of PRO’s relaxation al- 
gorithm. For these baseline hit rates we generate search 
spaces derived from the Hypothesis Base just as PRO does. 
But instead of adding context nodes and relaxing the net- 
work, we simply pick a path at random from the search 
space. After 250 words, the random algorithm exhibits a 
hit rate of 60%. After 750 words, this hit rate has dropped 
to 55% due to the larger search spaces that result from a 
growing Hypothesis Base. 

The network representation generated by PRO dur- 
ing test mode provides a simple formalism for defining a 
search space of possible responses to a given test item. 
This search space is further influenced by the addition of 
context nodes derived from PRO’s Case Base. The re- 
laxation algorithm applied to this network representation 
provides us with a powerful strategy for integrating the 
relative strengths of relevant cases. A large number of 
competing cases and mutually-supportive cases influence 
the contributions of one another and eventually stabilize 
in a global consensus. 

When evaluating PRO, we must remember that the 
techniques used here will be most effective in a domain 
characterized by a tendency toward regularities. In spite 
of its idiosyncrasies, the phonetic patterns of English do 
satisfy this requirement to a large extent. Even so, excep- 
tions abound and PRO must maintain a delicate balance 
between its ability to recognize special “one shot” cases 
and its responsiveness to general patterns. 

For example, “move” “ love” and “cove” each require 
a different pronunciation for “0”. However arbitrary these 
may be, PRO can learn to favor the correct pronunciation 
based on the contextual influence of an “m”, “1”) or “c” 
before the segment “ov.” But now consider what happens 
when we add an “r” to the end of each word. “lklover” 
and “lover” retain the vowel sounds present in “move” 
and “love”, but “cover” is not consistent with the sound 
from “cove.” On the other hand, “over” is consistent with 
“cove.” Using PRO’s limited case length of 3 hypotheses, it 
is possible for PRO’s Case Base to miss essential discrim- 
inating features when arbitrary conventions of this sort 
arise. Failings of this kind do not imply that PRO is seri- 
ously flawed. We could easily increase PRO’s case length 
to 4 and handle the above instances without difficulty. If 
we increased the case length we would necessarily increase 
the size of the Case Base, but we would also decrease the 
number of context nodes we generate since it is harder to 
match a sequence of 4 hypotheses than a sequence of 3. 
A design modification of this sort could only result in im- 



proved performance, but at the cost of greater memory 
requirements. If anything, we should be surprised that a 
case length of 3 is as effective as it is. 

If we did enough training to see the Hypothesis Base 
and Case Base approach saturation, we would see the ef- 
fects of the Statistical Base come into play. It is con- 
ceivable that continued enhancements in the Statistical 
Base might reverse any negative effects that appear during 
growth periods for the Hypothesis Base and the Case Base. 
We would speculate that the chances of this happening are 
greater the sooner the Case Base settles down. If the Case 
Base continued to grow at a significant rate after we had 
exhausted half the words of the language, and performance 
continued to degrade as the Case Base grew, then it is un- 
likely that statistical effects would have enough impact to 
do any good that far along. For this reason, it might be 
desirable to minimize the size of the Case Base. At the 
current time too little is known about PRO’s long term 
performance to say much about these tradeoffs. 

Although we have characterized PRO as a case-based 
reasoning system, it may be more narrowly described as 
a memory-based reasoning (MBR) system [Stanfill and 
Waltz, 19861. Within the MBR paradigm, PRO is very 
similar to MBRtalk [op. cit.] in its overall goals despite 
major differences between the two approaches. In terms of 
performance, MBRtalk attains a hit rate of 86%, but this 
is after training on 4438 words (PRO attained 76% after 
750 words). It is also the case the MBRtalk requires a 
massively parallel architecture (the Connection Machine) 
while PRO runs reasonably in a Common Lisp environ- 
ment with 4M of memory. 

Apart from further experimentation with PRO by ex- 
panding its training corpus, we see two general directions 
for future research. On the one hand, we would like to 
identify other problem areas where numerical relaxation is 
an effective strategy for accessing large knowledge bases or- 
ganized around cases. Any domain where frequency data 
tends to correspond with generalizations is a good can- 
didate for these investigations. On the other hand, we 
also want to investigate methods for generalizing numeri- 
cal relaxation to symbolic processes of constraint propaga- 
tion. Symbolic constraint propagation is a richer and more 
powerful technique than numerical relaxation. In domains 
where numerical data is inappropriate or unobtainable, we 
would still like to pursue the notion of network stabiliza- 
tion as an effective means for mediating competing cases 
in a large knowledge base of available cases. 

We therefore view PRO as a single application illus- 
trating a general framework for case-based reasoning sys- 
tems. The general utility of these methods can be deter- 
mined only by extensive experimentation. For example, 
the ideas behind PRO are now being applied to the task 
of conceptual sentence analysis [Lehnert, 1986, Lehnert, 
19871. As we gain more experience with PRO’s approach 
to case-based reasoning and memory organization, we will 

be in a better position to characterize the tasks and knowl- 
edge domains best suited to these techniques. 
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