
Case-Based Problem Solving wit
Knowledge ase of Learned Cases

Wendy G. Lehnert
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

Recent experiments indicate that a case-based
approach to the problem of word pronunciation
is effective as the basis for a system that learns
to pronounce English words. More generally, the
approach taken here illustrates how a case-based
reasoner can access a large knowledge base con-
taining hundreds of potentially relevant cases and
consolidate these multiple knowledge sources us-
ing numerical relaxation over a structured net-
work. In response to a test item, a search space
is first generated and structured as a lateral in-
hibition network. Then a spreading activation
algorithm is applied to this search space using
activation levels derived from the case base. In
this paper we describe the general design of our
model and report preliminary test results based
on a training vocabulary of 750 words. Our ap-
proach combines traditional heuristic methods for
memory organization with connectionist-inspired
techniques for network manipulation in an effort
to exploit the best of both information-processing
methodologies.

I. Introduction

While many researchers have proposed various rea-
soning mechanisms for case-based systems [Bin, 1986,
Kolodner, Simpson, and Sycara-Cyranski, 1985, Ham-
mond, 1986, Rissland and Ashley, 1986, Lebowitz, 19861,
we have very little experience with truly large memories. A
realistic memory for any case-based reasoner must contain
hundreds or thousands of cases. With this many available
cases we can expect to see significant competition among
a large number of potentially relevant cases at any given
time.’ It is therefore important to develop techniques for
memory access and conflict resolution which will enable US

to effectively arbitrate large numbers of contributing cases.
It is all too easy to design ad hoc heuristics that apply to
a limited set of examples operating in conjunction with a
hand-coded memory. We have developed a more general

‘This research was supported by NSF Presidential Young Inves-
tigators Award NSFIST-8351863 and DARPA grant N00014-85-K-
0017.

strategy for handling case-based memories with a special
concern for the difficulties of scaling up.

The problem of word pronunciation is an ideal task for
experiments in case-based learning and reasoning. Sym-
bolic pronunciations available in a standard dictionary
grant us easy access to a large corpus of data which is com-
pletely free of the representational problems encountered
in tasks like legal reasoning or medical diagnosis. By cir-
cumventing these otherwise important issues, we have been
able to concentrate our efforts on the automatic construc-
tion of a large case-based memory, indexing techniques
for that memory, and strategies for resolving competition

+ among multiple cases.

To illustrate the effectiveness of our ideas we have im-
plemented PRO, a system that learns to pronounce words
using a knowledge base organized around cases. PRO cre-
ates its knowledge structures in response to supervised
training items where each item contains a word and a se-
quence of phonemes representing that word’s correct pro-
nunciation. At any time we can interrupt PRO’s learning
mode to test PRO on arbitrary vocabulary items. We cur-
rently have an on-line data base of 850 word/pronunciation
pairs which can be used as training items, test items, or
both.

Construction 0

e

When PRO examines its training items it does not
create one case per training item. Rather, PRO segments
an input word into a partition of substrings which maps
onto the targeted phoneme string in a credible fashion. We
will refer to each mapping from a substring to a phoneme as
a “hypothesis.” A case is then a fixed-length subsequence
of hypotheses contained in the mapping of a segmentation
to a phoneme sequence.

To illustrate, suppose we have associated the segmen-
tation (SH OW T I ME) with the phoneme sequence (sh 6
t ; m). This produces five hypotheses (SH/sh, OW/6, T/t,
I/;, and ME/m). In principle, we could design our cases
to record sequences of either arbitrary or fixed lengths (al-
though sequences of length 1 would fail to encode any con-

Lehnert 301

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

textual information). The selection of a case length is a
design decision that benefits from some experimentation:
we have found that 3 is an effective length for the word
pronunciation task. So the item “showtime” is then asso-
ciated with the following seven cases:

1.
2.
3.
4.
5.
6.
7.

(START**/0 START*/0 SH/sh)
(START*/0 SH,‘sh OW/a)
(SH/sh OW/G T/t)

K’”
w I/7)
11; MV-4

(I/7 ME/m END*/0)
(ME/~ END*/0 END**/O)

The null hypotheses serve only to mark places at the
beginning and end of each word. These place markers are
necessary if we want to maintain sequences of uniform
length.

The cases PRO identifies correspond to a moving
“window” on the lexical item, although we cannot say
that the window has a fixed length in terms of the let-
ters spanned. Since each hypothesis may contain 1, 2, 3,
or even 4 letters (as in OUGH/ii) from the input word, the
size of this window can vary from 1 letter (at the beginning
or end of the word) to as many as 12 letters (at least in
principle) depending on the hypotheses involved.

Each case identified during training is indexed under
the substring of its leading hypothesis and stored within
a tree structure.2 The indexing substring points to a sep-
arate tree for each hypothesis associated with that sub-
string. For example, the substring “0~” could have two
hypotheses associated with it: OW/a (as in “show”) and
OW/ou (as in “how”). To store the sequence (OW/B T/t
I/i) we would add this case to the tree headed by OW/&
If T/t has never followed OW/8 before, we must create a
new branch for the tree. Otherwise, if T/t had been en-
countered after OW/a during training, we would traverse
the branch already constructed and next check to see if
I/? is present in the tree at the next level. Since we are
operating PRO with a fixed sequence length of 3, each of
our trees is limited to a depth of three hypotheses.

PRO updates its knowledge base by expanding tree
structures as needed, and updating frequency data for each
case encountered during training. Each node of a case tree
is associated with a positive integer which indicates how
many times this particular node has been visited during
training. If T/t has followed OW/a 13 times before, we
will now update that count to 14. If I/; has never followed
(OW/a T/t) b e ore, we create a new node for the tree and f

21n fact, we also index each case under the last hypothesis as
well as the first. Indices using trailing hypotheses access trees that
traverse case sequences backwards whereas cases indexed by leading
hypotheses go forwards. This dual encoding becomes important when
we use frequency data during test mode.

initialize its frequency count at 1. It follows that frequency
counts can never increase as we traverse branches out from
a root node: frequencies typically diminish as we move
downward through a tree.

In general, there is more than one way to segment
a character string and match those segments against the
phoneme sequence encoding the string’s pronunciation.
PRO must therefore access its knowledge base during
training in order to identify preferred segmentations with
high degrees of credibility. Since segmentation errors dur-
ing training encourage additional segmentation errors dur-
ing subsequent training, as well as impaired performance in
test mode, PRO is very conservative about segmentation
judgments. If PRO cannot identify a preferred segmen-
tation, PRO will ignore the training item and make no
attempts to modify its knowledge base in response to that
item. This strategy of “timid acquisition” is the only way

to guarantee effective learning in the absence of negative
examples [Berwick, 19861.

We have found that a very effective heuristic for filter-
ing multiple segmentations can be devised by maximizing
(1) known hypotheses, (2) new hypotheses which partially
match some known hypothesis, and (3) known hypotheses
with high frequency counts. However, these filters can still
fail if PRO is subjected to an “unreasonable” training ses-
sion at the start. To get PRO off on the right foot, we
must begin with an initial training session that makes it’
easy for PRO to identify valid hypotheses.

At the beginning, when PRO’s knowledge base is
sparse, it is important to train PRO with training pairs
that do not result in multiple segmentations. In gen-
eral, three-letter words satisfy this constraint because most
three-letter words map to a sequence of three phonemes.
Once PRO has built a knowledge base in response to some
such initial training session, we can move on to four and
five-letter training words with confidence. Apart from this
general restriction, PRO is not overly sensitive to the de-
sign of its training sequences. At worst, PRO will not learn
anything from a poorly placed training item if it has not
“worked itself up” to that item adequately.

ase:

When PRO is in test mode it receives a lexical item
and attempts to produce a unique phoneme sequence in re-
sponse to that item. Because PRO’s knowledge base does
not remember training items in their entirety, there is no
guarantee that PRO will produce a correct pronunciation
for a word it previously encountered during training. How-
ever, PRO does tend to have a somewhat higher hit rate
for items seen in training compared to novel test words.
We will discuss PRO’s performance in test mode at the
end of this paper.

302 Cognitive Modeling

PRO begins its analysis of a test word by produc-
ing a search space of all possible hypothesis sequences
it can associate with that word. Note that this search
space will not, in general, contain all possible segmenta-
tions of the input word since most segmentations will not
be associated with hypotheses recognized by the knowl-
edge base. For example, any segmentation of “showtime”
containing the substring “wti” will be rejected since PRO
will not have any hypotheses in memory using the string
“wti.” The complexity of our search space is therefore lim-
ited by the knowledge base available to PRO. PRO also
limits its search space by eliminating any segmentations
which place hypothesis boundaries between letters that
have never been divided between two hypotheses during
training (PRO creates a small data base of this informa-
tion during training in addition to the case-based memory
described above). For the task of word pronunciation the
greatest sources of ambiguity result from vowels and vowel
combinations, so those are places where the search space
tends to “fan out.”

The search space of possible word pronunciations
which PRO generates must now be resolved to a single
preferred pronunciation. This selection process is made on
the basis of information available in PRO’s case base. To
access the case base, we transform our search space into a
structured network utilizing lateral inhibition and spread-
ing activation.

To begin, we create inhibitory links between any pair
of hypotheses that share overlapping substrings from the
input word. All such hypotheses are in competition with
one another and must resolve to a preferred winner. These
inhibitory links provide negative activation throughout the
network, which is essential to the process of identifying a
preferred path through the net. Figure 1 shows a sam-
ple search space for the word “showtime”. (In actuality,
this search space would be much larger if PRO had any
substantial training behind it). All positive activation for
the network comes from the case base by adding addi-
tional ‘“context-nodes” to the network. A context node is
added to the network wherever three consecutive hypothe-
ses correspond to a complete branch of some tree in PRO’s
knowledge base. The context node is then connected to
the three hypotheses that spawned it, and initialized at a
positive level of activation. This level of activation is com-
puted on the basis of frequency data available in the case
trees.3 Once all possible context nodes have been gener-
ated, connected up, and initialized, we are ready to relax
the network.

SThe precise value is f(x,y) = rnd (10(1-(f-21(1-~ll) where x
and y represent the frequency of this particular hypothesis sequence
relative to the first hypothesis in the sequence and the last hypothesis
in the sequence. In other words, x tells us how often this sequence
follows an instance of the first hypothesis and y tells us how often this
sequence precedes an instance of the third hypothesis. x,y E (O,l],
f(x,y) E (1,101 and f(x,y) - 10 as either x or y - 1.

Figure 1: A search space network

A standard relaxation algorithm (see Feldman and
Ballard 1982) is then applied to our network representa-
tion until all activation levels have stabilized or the number
of iterations reaches 30. In general, the network stabilizes
before 20 iterations, and we then evaluate the activation
levels associated with each candidate pronunciation in the
network. A path in the network receives as its activation
level the lowest activation level found over all the hypoth-
esis nodes contained in that path. Happily, most paths
zero-out, leaving only a few with positive levels of activa-
tion, Of those with any positive activation there is usu-
ally one with a maximal activation level. In the case of a
unique maximal path, we have a strong preference for a
single word pronunciation. In the case of multiple maxi-
mal paths, PRO picks one arbitrarily and returns that as
the preferred pronunciation.

Once a test item has been resolved, PRO discards
the network representation constructed for that item and
moves on to the next test item with a clean slate. No mod-
ifications to PRO’s knowledge base are made during test
mode.

Lehnert 303

At this time we have assembled a corpus of 850 train-
ing items consisting of words chosen at random from a
dictionary and ranging in length from 3 to 8 letters. We
have collected data for PRO’s performance on a test set
consisting of the first 200 words from a 750-word train-
ing session. This test set of “familiar” words contains 50
three-letter words, 100 four-letter words, and 50 five-letter
words. We have also tested 100 novel words not found in
the 750-word training session (50 four-letter words and 50
five-letter words). We ran PRO on both test sets at three
different times during training: (1) after 250 words, (2)
after 450 words, and (3) after all 750 words.

It is important to note that the complexity of a given
test item changes as PRO processes additional training
items and increases its knowledge base. There are three
factors that contribute to the complexity of PRO’s task
during test mode: (1) the number of hypotheses in mem-
ory9 (2) the number of cases (hypothesis sequences) in
memory, and (3) the frequency data associated with each
case in memory. We will refer to these three factors as the
“Hypothesis Base,” the “Case Base,” and the “Statistical
Base.”

As the Hypothesis Base grows, we will see the search
space for a given test item increase since additional seg-
mentations may be possible and more hypotheses may be
associated with each plausible segmentation. As the Case
Base grows, we see more context nodes generated in re-
sponse to a given test item since there are more hypothesis
sequences available to reinforce the search space. As the
Statistical Base grows, we do not see additional complexity
in the structures we generate, but we may see some effects
on the time’required to stabilize the network during the re-
laxation process. On the basis of only 750 training items, it
is not possible to say whether effects from a growing Sta-
tistical Base will alter the number of iterations required
during network relaxation.

We can easily plot growth curves for the Hypothe-
sis Base as a function of training items processed. Table
1 shows how the number of hypotheses increases during
training. Note that a sharp growth rate during the first 200
items (630 phonemes) drops off to a much slower growth
rate during the remaining 550 items. During the initial
growth spurt we average about 1 new hypothesis for ev-
ery 2 training items. After the initial growth spurt, we
pick up roughly 1 new hypothesis for every 10 training
items. By the end of this training session PRO has iden-
tified 180 hypotheses. While the growth rate during the
last 550 items appears to be linear, we must assume that it
will become increasingly harder to identify new hypotheses
as more training items are processed. Since we have not
trained enough to see our curve level off, it is difficult to
say where the ceiling on hypotheses might be. However, it
is safe to say that this growth process will eventually reach
an asymptote, at which point the Hypothesis Base cannot
increase the complexity of our search spaces any further.

Hypothesis Base
200 ,

03

0 500 1000 1500 2000 2500 3000

Target Phonemes

Processed during Training

Table 1. Hypothesis Base Growth Curve

A similar growth curve for the Case Base tells a differ-
ent story. Table 2 shows how the number of cases in PRO’s
memory increase as PRO processes the same 750 training
items. Now we see a largely linear function throughout:
PRO generates roughly 2.1 new cases for each training item
it processes. By the end of this training session PRO has
generated a knowledge base containing 1591 cases.

Target Phonemes

Processed during Training

Table 2. Case Base Growth Curve

As with the Hypothesis Base, we must assume that
the Case Base will eventually saturate and cease to acquire
new cases. Unfortunately, our limited training experience
does not allow us to speculate about how many training
items might be required before saturation sets in. At the
very least, we can say that saturation in the Hypothesis
Base necessarily precedes saturation in the Case Base, and
it will probably take the Case Base a while to settle down
after the Hypothesis Base has stabilized.

Unlike the Hypothesis Base and the Case Base, the
Statistical Base will continue to change as long as training
continues. If training items are repeated, we would not
see any operational differences in the Statistical Base, as
long as all training items are repeated with the same fre-
quency. However, interesting effects would be derived from
the Statistical Base if some segment of the training cor-
pus were repeated heavily in the absence of compensating

304 Cognitive Modeling

repetitions throughout the entire training corpus. Words
encountered often would then influence the relaxation pro-
cess more heavily than words seen less frequently. This is
an important feature of our model as far as psychological
validity is concerned. Since the frequency distribution for
words in everyday use is not uniform, one could argue that
not all words are equal in the mind of a lexicon-processing
human. Any psychological account of phonetic interpre-
tation should therefore be responsive to this question of
frequency distributions and predict behaviors that vary in
response to manipulations of word distributions.

Given the increased complexity of PRO’s pronuncia-
tion task as its knowledge base grows, it is not surprising
to see some degradation in PRO’s test mode performance
as we move through the training corpus. After training on
250 words, PRO returns a hit rate of 94.7% on the num-
ber of phonemes it can correctly identify in the test corpus
of familiar words. By the time PRO has processed 750
training words, this hit rate has dropped to 89.9% - the
error rate has doubled. At the same time, the Hypothe-
sis Base has grown by a factor of 1.4 and the Case Base
has expanded by a factor of 2.5. It is interesting to note
that PRO’s performance is not significantly correlated with
word lengths: shorter words do not necessarily fare better
than longer words.

While PRO’s performance drops slightly over time for
familiar words, we see an increase in performance levels for
novel words. After 250 words PRO correctly identifies 66%
of the phonemes for our test group of 100 words not present
in the training corpus. By the time PRO has processed 750
training words, this success rate has risen to 75%. It is
not surprising to see PRO behave differently for these two
groups of test items in its early stages of training. Further
experimentation is needed to determine whether these two
performance curves eventually converge and stabilize.

100

90

80

70

60

50

40

30

20

10

0

Percentage of Correct Phonemes

0

trained rords
0

novel sords
LI

baseline
e

500 1000 1500 2000 2500 3000

Target Phonemes

Processed during Training

Table 3. Comparative Hit Rates in Test Mode

Table 3 shows the two performance curves for famil-
iar and novel words along with a baseline curve designed
to factor out the effects of the Case Base. The percent-
ages contained in the baseline result from test runs that
substitute random guesses in place of PRO’s relaxation al-
gorithm. For these baseline hit rates we generate search
spaces derived from the Hypothesis Base just as PRO does.
But instead of adding context nodes and relaxing the net-
work, we simply pick a path at random from the search
space. After 250 words, the random algorithm exhibits a
hit rate of 60%. After 750 words, this hit rate has dropped
to 55% due to the larger search spaces that result from a
growing Hypothesis Base.

The network representation generated by PRO dur-
ing test mode provides a simple formalism for defining a
search space of possible responses to a given test item.
This search space is further influenced by the addition of
context nodes derived from PRO’s Case Base. The re-
laxation algorithm applied to this network representation
provides us with a powerful strategy for integrating the
relative strengths of relevant cases. A large number of
competing cases and mutually-supportive cases influence
the contributions of one another and eventually stabilize
in a global consensus.

When evaluating PRO, we must remember that the
techniques used here will be most effective in a domain
characterized by a tendency toward regularities. In spite
of its idiosyncrasies, the phonetic patterns of English do
satisfy this requirement to a large extent. Even so, excep-
tions abound and PRO must maintain a delicate balance
between its ability to recognize special “one shot” cases
and its responsiveness to general patterns.

For example, “move” “ love” and “cove” each require
a different pronunciation for “0”. However arbitrary these
may be, PRO can learn to favor the correct pronunciation
based on the contextual influence of an “m”, “1”) or “c”
before the segment “ov.” But now consider what happens
when we add an “r” to the end of each word. “lklover”
and “lover” retain the vowel sounds present in “move”
and “love”, but “cover” is not consistent with the sound
from “cove.” On the other hand, “over” is consistent with
“cove.” Using PRO’s limited case length of 3 hypotheses, it
is possible for PRO’s Case Base to miss essential discrim-
inating features when arbitrary conventions of this sort
arise. Failings of this kind do not imply that PRO is seri-
ously flawed. We could easily increase PRO’s case length
to 4 and handle the above instances without difficulty. If
we increased the case length we would necessarily increase
the size of the Case Base, but we would also decrease the
number of context nodes we generate since it is harder to
match a sequence of 4 hypotheses than a sequence of 3.
A design modification of this sort could only result in im-

proved performance, but at the cost of greater memory
requirements. If anything, we should be surprised that a
case length of 3 is as effective as it is.

If we did enough training to see the Hypothesis Base
and Case Base approach saturation, we would see the ef-
fects of the Statistical Base come into play. It is con-
ceivable that continued enhancements in the Statistical
Base might reverse any negative effects that appear during
growth periods for the Hypothesis Base and the Case Base.
We would speculate that the chances of this happening are
greater the sooner the Case Base settles down. If the Case
Base continued to grow at a significant rate after we had
exhausted half the words of the language, and performance
continued to degrade as the Case Base grew, then it is un-
likely that statistical effects would have enough impact to
do any good that far along. For this reason, it might be
desirable to minimize the size of the Case Base. At the
current time too little is known about PRO’s long term
performance to say much about these tradeoffs.

Although we have characterized PRO as a case-based
reasoning system, it may be more narrowly described as
a memory-based reasoning (MBR) system [Stanfill and
Waltz, 19861. Within the MBR paradigm, PRO is very
similar to MBRtalk [op. cit.] in its overall goals despite
major differences between the two approaches. In terms of
performance, MBRtalk attains a hit rate of 86%, but this
is after training on 4438 words (PRO attained 76% after
750 words). It is also the case the MBRtalk requires a
massively parallel architecture (the Connection Machine)
while PRO runs reasonably in a Common Lisp environ-
ment with 4M of memory.

Apart from further experimentation with PRO by ex-
panding its training corpus, we see two general directions
for future research. On the one hand, we would like to
identify other problem areas where numerical relaxation is
an effective strategy for accessing large knowledge bases or-
ganized around cases. Any domain where frequency data
tends to correspond with generalizations is a good can-
didate for these investigations. On the other hand, we
also want to investigate methods for generalizing numeri-
cal relaxation to symbolic processes of constraint propaga-
tion. Symbolic constraint propagation is a richer and more
powerful technique than numerical relaxation. In domains
where numerical data is inappropriate or unobtainable, we
would still like to pursue the notion of network stabiliza-
tion as an effective means for mediating competing cases
in a large knowledge base of available cases.

We therefore view PRO as a single application illus-
trating a general framework for case-based reasoning sys-
tems. The general utility of these methods can be deter-
mined only by extensive experimentation. For example,
the ideas behind PRO are now being applied to the task
of conceptual sentence analysis [Lehnert, 1986, Lehnert,
19871. As we gain more experience with PRO’s approach
to case-based reasoning and memory organization, we will

be in a better position to characterize the tasks and knowl-
edge domains best suited to these techniques.

[Bain, 19861 Bain, W. A Case-based Reasoning System for
Subjective Assessment, Proceedings of the Fifth National
Conference on Artificial Intelligence pp. 523-527, 1986.

[Berwick, 1986] Berwick, R.C. Learning from positive-
only examples: the subset principle and three case stud-
ies in Machine Learning vol. 2. (eds. Michalski, Car-
bone11 and Mitchell). pp. 625-645. Morgan Kaufmann,
1986.

[Feldman and Ballard, 19821 Feldman, J.A., and Ballard,
D.H. Connectionist models and their properties Cogni-
tive Science Vol. 6, no. 3. pp.205-254, 1982.

[Hammond, 19861 Hammond, K. CHEF: A Model of Case-
Based Planning, Proceedings of the Fifth National Con-
ference on Artificial Intelligence pp. 267-271, 1986.

[Kolodner, Simpson, and Sycara-Cyranski, 19851
Kolodner, J., Simpson, R., and Sycara-Cyranski, K.
A Process Model of Case-Based Reasoning in Problem
Solving, in Proceedings of the Ninth International Joint
Conference on Artificial Intelligence pp. 284-290, 1985.

[Lebowitz, 19861 L b e owitz, M. Not the Path to Perdition:
The Utility of Similarity-Based Learning, Proceedings of
the Fifth National Conference on Artificial Intelligence
pp. 533-537, 1986.

[Lehnert, 19861 Lehnert, W.G. Utilizing episodic memory
for the integration of syntax and semantics CPTM #15.
Department of Computer and Information Science, Uni-
versity of Massachusetts, Amherst, MA, 1986.

[Lehnert, 19871 L h e nert, W .G. (in press) Learning to In-
tegrate Syntax and Semantics, Machine Learning Work-
shop, 1987.

[Rissland and Ashley, 19861 Rissland. E. and Ashley, K.
Hypotheticals as Heuristic Device Proceedings of the
Fifth National Conference on Artificial Intelligence pp.
289-297, 1986.

[Stanfill and Waltz, 19861 Stanfill, C., and Waltz, D. To-
ward memory-based reasoning. Communications of the
ACM, vol. 29, no.12. pp.1213-28, 1986.

306 Cognitive Modeling

