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Abstract: Two important components of connectionist models 
are the connectivity between units and the propagation rule for 
mapping outputs of units to inputs of units. The biological 
domains where these models are usually applied are 
nonconservative, in that a single output signal produced by one 
unit can become the input to zero, one, or many subsequent units. 
The connectivity matrices and propagation rules common in these 
domains reflect this nonconservativism in both learning and 
performance. 

CASCADE is a connectionist system for performing material 
handling in a discrete parts manufacturing environment. We have 
described elsewhere the architecture and implementation of 
CASCADE [PARU86 a and its formal correspondence [PARU86c], ] 
[PARU87a] with the PDP model [RUME86]. The signals that 
CASCADE passes between units correpond to discrete physical 
objects, and thus must obey certain conservation laws not 
observed by conventional neural architectures. 

This paper briefly reviews the problem domain and the 
connectionist structure of CASCADE, describes CASCADE’s 
scheme for maintaining connectivity information and 
signals, and reports some experiments with the system. 

propagating 

11. The Domain of Material Handling 
Primitive factory operators fall into two classes, Material 

Handling and Processing. CASCADE formalizes and extends 
previous approaches to Material Handling in the context of a 
connectionist architecture. 

1.1. Manufacturing = Processing + Material Handling 
Algebraically, a factory making discrete goods applies a series of 

state-changing operators to inventory. Some state components, 
such as shape, hardness, and color, reflect the part’s specification, 
and make up its junctional state. Other components of state, 
such as a part’s location in the plant or the length of time it has 
been there, are irrelevant to its function, and make up its 
non- junctional state. 

For each state component, there is a primitive operator that 
changes only that component. Most processing machines 
implement complex operators that correspond to the composition 
of several primitive operators. For example, a painting robot 
changes a part’s color, and also its size, its weight, and (because of 
the time consumed by the operation) its age. 

“Processing” is the set of all primitive operators that change a 
part’s functional state. “Material Handling” is the set of all 
primitive operators that change a part’s non-functional state. 
Material handling thus includes the traditional functions of 

moving material between workstations (changing its location), and 
storing it in a warehouse (changing its age). It also includes 
transportation and aging that occur as components of a complex 
operator, such as drying paint by moving a part through a heated 
tunnel. Thus material handling occurs in almost every machine in 
a plant, as parts and requests for parts move back and forth. 

This model of manufacturing represents only one view of a 
complex enterprise ([PARU87b], [FOX83]), but an important view 
economically. If material does not reach machines fast enough to 
keep them busy, productivity suffers, but if excessive work-in- 
process inventory (WIP) accumulates, carrying costs, response time 
to customer orders, and scrap due to engineering changes all 
increase. Monitoring and controlling WIP is not managed well by 
raw human intelligence, and represents a major locus of interest in 
the manufacturing community. 

1.2. Previous Work 
CASCADE is inspired by the Japanese KANBAN system of 

inventory flow control [HALL81], [SCH082], [SUGI77]. In 
KANBAN, a set of modular workstations request parts from one 
another by passing tickets back and forth. The factory relaxes 
into a steady state of production determined by the performance 
of the workstations and the number of tickets in circulation. 

WAN performs well for a factory with a stable production 
schedule, where the flow of parts remains in a steady state for a 
long period of time. Its behavior rapidly deteriorates, though, 
when the loading and product mix of the shop change frequently. 

KANBAN resembles a neural net model in which machines 
correspond to neurons, transport links correspond to connections, 
and parts and requests correspond to neural impulses. CASCADE 
formalizes the connectionism implicit in WAN, and extends it 
to support the changeability of a flexible manufacturing 
environment. 

2. A Model for Material Handling 
We generally follow the Parallel Distributed F’rocessing (PDP) 

model [RUME86]. [PARU86c], [PARU87a] relate CASCADE to 
PDP formally. 

2.1. Objects in CASCADE 
CASCADE manipulates three basic kinds of objects. 

A container represents a parcel of material that can be moved 
and stored as an entity. Containers are strongly typed on the 
basis of the functional state of their contents, and two containers 
of the same type are interchangeable in the manufacturing process 
is concerned. 
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A unit is a collection of containers that are geographically and 
functionally related. There are two types of units, corresponding 
to two types of relations between containers. 

1. If all the containers in a unit have the same type, the 
unit is a TOMP. No functional processing can take 
place in such a unit, otherwise incoming containers 
would differ in type from outgoing ones. 

2. If the containers in a unit are participants in the same 
functional operation, the unit is a process. A process 
consumes containers of zero or more types and 
produces containers of zero or more types. It differs 
from a TOMP in two ways. Its behavior is stochastic 
rather than deterministic (at least from the perspective 
of the material handling system), and its output can be 
of a different type than its input. 

3. Connectivity and Propagation in CASCADE 
One motive for developing the parallel between material 

handling and connectionist models is the adaptive nature of such 
models. These models learn by modifying the weights in their 
connectivity matrices. Weights can be modified locally, on the 
basis of the experience of an individual unit, without invoking a 
global “learning module” that knows the state of the entire 
system. Such a local learning scheme offers great promise in 
coping with the complexity of a large material handling network 
in a flexible manufacturing environment, where part types, 
quantities, and distribution are continually changing. 

This section develops the notion of conservation in propagation 
rules, describes CASCADE’s implementation of such rules, and 
reports some simple experiments with the system. 

Every container belongs to exactly one unit at a time, and moves 
from unit to unit as the system operates. 

An aggregate is a collection of units that are in the same 
geographical area. There are two types of aggregates, 
corresponding to the two types of units. 

1. A mover is a collection of TOMP’s, and models a single 
geographically limited material handling module, such 
as a conveyor loop, a zone of an AGV (automatic 
guided vehicle) system, or an ASRS (automatic storage 
and retrieval system). 

2. A workstation is a collection of processes that run on a 
single geographically local and functionally integrated 
set of machines (typically, a machine tool with 
associated transfer and inspection mechanisms). 

Every unit belongs to exactly one aggregate, and retains this 
association unless the system is reconfigured. 

2.2. Messages Among Units 
Each TOMP has a maximum and a minimum capacity for 

containers of its type, and is connected to one or more other units 
on adjacent aggregates. If its population (the number of 
containers it contains) exceeds its maximum capacity, it seeks to 
spill the excess to a neighboring unit. If its population falls below 
its minimum capacity, it seeks to fill up to the minimum from its 
neighbors. Thus the units form a network through which 
containers and requests for containers propagate. 

This behavior results in a mechanism that is a superset of 
KANBAN. We can set capacities to make TOMP’s behave like 
links in a traditional KANBAN system [PARU86a]. However, 
because we can push as well as pull material through a CASCADE 
net, we can distribute material ahead of time to anticipate changes 
in production requirements, and thus avoid. MAN’s problems 
when production is not steady-state. 

The requests and acquisitions that result from fills and spills are 
local messages, allowing one TOMP to propagate its constraints to 
its nearest neighbors. The TOMP’s correspond to neurons in a 
neural net, while requests and containers correspond to inter- 
neural impulses and capacities correspond to neural threshholds. 

Experiments with CXXADE [PARU86c] show that it does 
control WIP levels and reduces waiting time for parts at machines. 

3.1. Conservation in Propagation Rules 
In the PDP model, signals travel from unit to unit through 

connections. A propagation rule determines whether the output 
from one unit reaches the input of another. In the simplest 
propagation rules, the vector that represents the inputs to each 
unit is computed as the product of the output vector and a 
connectivity matrix, and a single output can contribute to many 
inputs, or to none. That is, neural propagation does not conserve 
impulses. It can effectively multiply a single impulse by routing it 
to many inputs, or destroy an impulse by not passing it anywhere. 

A system can differ from this standard model in two ways. 

1. It might require quantitative conservation of signals, so 
that the total output at one time step equals the total 
strength input at the next. This constraint can be 
implemented by normalizing each column in the 
connectivity matrix so that total output equals total 
input. 

2. It might require qualitative conservation, in *which 
signals are discrete packets that must be propagated 
intact. This constraint can be implemented by 
interpreting the weights, not as shares into which 
signals are divided, but as the probability that a 
packet from one unit arrives at another. 

CASCADE exhibits both quantitative and qualitative 
conservation. If a container leaves one unit, the same container 
must arrive at precisely one unit. Thus the weights in each 
column of the connectivity matrix for containers in CASCADE 
sum to one, and each is interpreted as the probability that a 
container from the source will go to the target. 

Requests are not subject to the same physical constraints that 
containers are. In our system, though, each request results in the 
delivery of a container. If propagation multiplies requests, the 
system as a whole will send many more containers than needed 
toward the node that initiated the request, and the rest of the 
network will starve for that type of container. Thus, we require 
propagation to conserve requests as well as containers. 

3.2. Implementing Connectivity and Propagation 
One can model connectivity in CASCADE as weight matrices 

interpreted probabilistically, as outlined above. Containers and 
requests have distinct matrices, reflecting different connectivities. 
In our implementation, each unit stores its column of each of the 

matrices, t for container connectivity and 7 for request 
connectivity. ci is the probability that the next container spilled 
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from this unit will be sent to unit i, and ri is the probability that 
the next request for a container will be sent to unit i. The total 
number of units is n, and the probability interpretation requires 

n-l n-l 

&.=pi=l 
i=O i=O 

Entries in Z and t can be nonzero only if physical connections exist 
between the associated aggregates, and in most installations these 
connections do not vary dynamically, so in practice these vectors 
are sparse and only their nonzero elements need be manipulated. 

These vectors are the locus both of propagation 
monitoring changes in the environment. 

decisions 

3.2.1. Propagation Decisions 
When a unit is ready to spill or fill, it generates a random 

number 0 < r 5 1, and uses it to select an element from the 
appropriate vector. This element then becomes the target of the 
request or container being output. For instance, a spilling unit 
sends its excess container to cj such that 

j-l 

C ilci ci<r5 
i=O i=O 

3.2.2. Modifying the Vectors 
Some principles for managing the connectivity vectors in a 

are the same for both container and request connectivities, 
apply in general to any connectionist architecture that requir 
conservative propagation rule. 

o Bayesians will set the initial values in the connectivity 
vectors for a unit on the basis of their a prioris. 
Others will probably set them to l/n, dividing the 
probability equally among them. 

unit 
and 

*es a 

e As the system learns, certain weights change, and the 
remaining values in the vector must be adjusted in the 
opposite direction to keep the total at 1. One 
computationally simple strategy is to adjust the desired 
entry by a, then divide every element in the vector by 
1 +a. 

* As individual weights approach zero, the associated 
units are for all practical purposes disconnected from 
the sending unit. Once “forgotten” in this way, they 
will never be selected. It is easy to show that if the 
desired containers exist in the system, allowing 
connection weights to attain zero value insures that 
requests will be satisfied in bounded time. In 
applications where this irrevocable forgetting is 
undesirable, we set maximum and minimum limits 
beyond which a unit’s weight is not adjusted. 

The actual adjustments made to individual weights are 
determined differently for containers and requests. The protocols 
outlined here reflect the semantics of our application, and may be 
different for a different application. 

The container vector I for a unit records the probability of 
selecting each of that unit’s neighbors as the recipient of a spilled 
container. The weights reflect our judgment that a given neighbor 
desires containers. Two events affect this judgment. 

1. When a neighbor requests a container, we know that it 
has some interest in receiving containers. So when a 
unit receives a request, it augments the container 
weight for the requesting neighbor (say, by R). 

2. When one unit spills a container to another, the 
receiving neighbor is less likely to need one than it was 

before the spill. So its weight in the sending unit 
should be decremented (say, by S). 

The sizes of adjustments for receiving a request or delivering a 
spill are tuning parameters. Their ratio R/S reflects the impact of 
a single request. If this ratio is greater than one, the spilling unit 
interprets a single request as expressing a relatively long-term 
interest in receiving containers. If it is less than one, the spilling 
unit attaches much less significance to the long-term implications 
of a single request. The average value of R and S reflects how 
quickly the spilling unit shifts its attention to a requesting unit. 

The request vector i for a unit records the probability of 
selecting each of that unit’s neighbors as the recipient of a request 
issued by the unit. The weights reflect our judgment that a given 
neighbor has a container in stock, or has access to a container 
from one of its neighbors. We modify these weights on the basis 
of the neighbors’ cost of effort (COE) in filling past requests. In 
the present implementation, the COE is the number of units that 
were searched to find a container. Each time a neighbor 
successfully satisfies a request, we augment its weight (in the 
current implementation, by UjCOE, where U is a constant). Each 
time a neighbor fails to satisfy a request, we decrement its weight 
(in our implementation, by a constant v). Again, the average 
value of U and V determines the stability and rate of learning of 
the system, while their ratio controls whether success or failure has 
more impact on the learned behavior. 

This back-propagation error-correction algorithm is similar to 
that used in the perceptron convergence theorem [ROSEfX]. It 
differs from the classical procedure in two main ways. 

1. Traditional systems distinguish the learning and 
performance phases. In the learning phase, the system 
converges to a stable set of connection weights that 
produce a desired output pattern by modifying those 
weights using back-propagation. During the 
performance phase, weights are not modified and the 
network is no longer adaptive. Our problem domain 
requires continual adaptive behavior, merging the two 
phases by modifying connection weights during 
performance. This strategy is necessary since the 
desired output pattern is not fixed, but continually 
varies as containers move through the system. 

2 The classical approach modifies connection weights 
proportional to the magnitude of error, the difference 
between output produced and desired output. In our 
system the desired output pattern is variable, so the 
traditional notion of error is not well defined. The 
same activation level may be an error during one trial 
and correct during another. Therefore we apply a 
constant negative reinforcement on error. Our system 
propagates back the cost of achieving a success rather 
than the degree of failure. The magnitude of 
connection weight adjustment is proportional to this 
COE of success. 

The depth to which search proceeds before reporting failure, and 
the number of trials that a unit makes before reporting failure, are 
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parameters of the model. In the implementation described here, 
the search proceeds depth-first, and each unit tries only one 
neighbor before reporting success or failure. 

3.3. Experimental Results 
Figure 1 shows the connectivity of some of the units (TOMP’s 

and processes) in ITI’s Advanced Manufacturing Center, a working 
CIM cell in which CASCADE is implemented. These particular 
units manipulate empty boxes into which processes pO7 and ~08 
pack finished parts. To demonstrate the system, we load TOMF’ 
t26 (an ASRS) with 15 empty boxes, and begin retrieving from pO7 

and ~08. When the 15 boxes from t26 are gone, we load 15 more 
at ~04 (a process that loads inventory at a manual workstation). 
For each retrieval we record the cost of effort, (COE), the number 
of units that, CASCADE searched to find the requested part. The 
minimum COE possible is 6 from t26 and 5 from ~04. 

Figure 1: “Empty Box” Units 
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As a control run, we assign probability l/n to each connection in 
each TOMP, and do not, vary these weights as the system 
operates. Thus later retrievals do not learn from the success or 
failure of earlier ones. Figure 2 shows the COE as a function of 
retrieval. The variability results solely from the stochastic search 
process. The median COE to retrieve a box is 22.5, the inter- 
quartile spread is 38.5, and the standard deviation is 28.9. 

Figure 2: Retrievals Without Learning 
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Figure 3 shows COE as a function of retrieval when the weights 
are allowed to vary in response to success and failure. For this 

trial, we augment the weight of a successful neighbor by O.l/COE, 
and decremented the weight of an unsuccessful one by 0.01. The 
COE drops as the system learns to go to t26 for boxes. Limited 
exploration of other units continues at trials 11, 13, and 14, even 
after focusing on t26. The COE rises when the boxes run out at 
t26, then drops as the system discovers the new source at ~04. 
Over the entire run, the median COE is 11, the inter-quartile 
spread is 13, and the standard deviation is 16. 

Figure 3: Retrievals With Learning 
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Figures 4 and 5 show how the probability assigned to each 
neighbor of TOMP’s tl2 and tO5, respectively, changes during the 
30 retrievals described in Figure 3. These TOMP’s are the major 
decision points in the system, and the weights of the connections 
between them and their neighbors are the main locus of learning in 
this experiment,. For each retrieval, the vertical space between the 
x axis and the line at y = 1.00 represents unit probability, and is 
divided into as many bands as the TOMP under consideration has 
neighbors. The relative width of each band shows the weight of 
the connection to the associated neighbor. 

Figure I-I: Connection Weights irom TOMP t12 
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For instance, Figure 4 shows three horizontal bands, one each for 
t54, tO5, and t61. In our experiment, requests all enter from t54, 
so it never succeeds or fails, and its probability remains constant. 
The weight of the connection to t05 increases through 
normalization when t61 fails, and increases through augmentation 
when it succeeds, so it increases monotonically. Similarly, the 
weight of the connection to t61 falls monotonically. Since t05 is 
on the route to both sources of empty boxes, it grows both before 
and after the switch from t26 to ~04. 
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Figure 5: Connec tion Weights from TOMP tB5 
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Figure 5 tells a similar story. Now the weight of tlz remains 

constant, since it does not participate in the competition. As long 
as t26 has boxes, t19 (which leads to it) gains weight. When we 
switch to ~04, tl9 rapidly loses weight and t40 (now on the correct 
route) becomes prominent. 

4. Summary 
CASCADE uses a connectionist model to manage the 

distribution and movement of inventory in a discrete 
manufacturing environment. It differs from traditional neural 
models in conserving its signals as they propagate between units. 
We have described a scheme that adjusts the connectivity of such 
a network dynamically and propagates signals with the required 
conservation. 

Ongoing research is probing several directions. 

e This system modifies weights as it uses them, and so 
merges learning and performance. Because of the 
conservation characteristics of the application, 
propagation of requests and containers is strongly 
serial, and a failed request is an expensive way to 
learn. Under some circumstances, it may be 
advantageous to add a separate parallel search of the 
network to set weights from time to time. In the 
multiprocessor environments for which CASCADE is 
intended, such a phase reduces the cost of futile 
requests. 

@A flexible manufacturing environment favors 
integration of learning and performance for material 
handling because the distribution of supply and 
demand for inventory varies continuously. Probably, 
though, certain distribution states recur periodically, 
due to repeated runs of the same parts and customer 
order cycles. We can store the weights periodically as 
a function of an estimator of system state, and then 
retrieve them to shorten the adaptation time. 

e Units in CASCADE can learn by modifying 
threshholds as well as their connectivity. 

their 

Some of the original ideas in CASCADE originated in discussions 
with Bob Judd. The work described in this report was financed 
by a grant from the Kellogg Foundation. 
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