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Abstract 

This paper presents an approach to default reasoning based 
on an extension to classical first-order logic. In this approach, 
first -order logic is augmented with a “variable conditional” 
operator for representing default statements. Truth in the 
resulting logic is based on a possible worlds semantics: the 
default statement C-P is true just when p is true in the least 
exceptional worlds in which 01 is true. This system provides a 
basis for representing and reasoning about default statements. 
Inferences of default properties of individuals rely on two 
assumptions: first that the world being modelled by a set of sen- 
tences is as uniform as consistently possible and, second, that 
sentences that may consistently be assumed to be irrele\.ant to a 
default inference -are, in fact.-irrelevant to the inference. Two 
formulations of default inferencing are proposed. The first 
involves extending the set of defaults to include all combinations 
of irrelevant properties. The second involves assuming that the 
world being modelled is among the simplest worlds consistent 
with the defaults and with what is contingently known. In the 
end. the second approach is argued to be superior to the first. 

1. Introduction 

I\lany commonsense assertions about the real world express 
default or prototypical properties of individuals or classes of 
mdlvlduals; rather than strict conditional relations. Thus for 
example. “birds fly” seems to be a reasonable enough assertion, 
even though birds with broken wings generally don’t fly, and 
quite probably no penguin flies. The import of “birds fly” then 
certainly isn’t that all birds fly, but rather is more along the 
lines of “typically birds fly”. The issues and problems of such 
“exception-allowing general statements” have of course been 
extensively addressed in Artificial Intelligence, most notably 
with the various default reasoning schemes and approaches based 
on various theories of uncertainty. 

In [Delgrande 861 and [Delgrande 87a] another alternative 
was introduced. In this approach. “birds fly” is interpreted as “all 
other things being equal, birds fly”, or “ignoring exceptional 
conditions, birds fly”. For this approach, an operator, 3, is 
introduced into classical first-order logic (FOL). The statement 
c~3 p is interpreted as “in the normal course of events, if cy then 
0”. In the resulting logic. called N. one can consistently assert, 
for example, that: 

(x)(Bird(x) 3 ny(x)). Bird(opus). but +7y(opus>; 

or that: 

(x)(Ruven(x) 3 Black(x)) and 
(x)((Raven(x) A Albino(x)) 3 ~BZack(x)). 

or that: 

(x>(Pengzfin(x) 3 Bird(x)), (x)(Bird(x) 3 $Zy(x)) and 
(xUenguin(x) 3 +Zy(x>>. 

Thus in the first case, all birds normally fly, but opus is a bird 

that does not fly. In the second and third examples, the sen- 
tences Bre satisfiable while having the antecedents of the condi- 
tionals being true also. 

An advantage of this approach is that one can represent and 
reason about defaults. Thus it is a theorem of the system that 

OQ 3 (((we- pII>-(a* +>I. 

Hence, if 01 is possible and (r3/3 is true, then it is not the case 
that ~~37p is true. As a second example, we have the derived 
rule: 

If I-N (x)(P(x)*Q(x)) and i--N (x>(&d =’ R(x)) 

then tN (x>Wx)*R(x)). 

From this it follows that we can say say that ravens are nor- 
mally black: black things are not white; and hence ravens are 
normally not white. 

This approach arguably provides an appropriate basis for 
representing and reasoning about statements of default proper- 
ties; in particular, it is meaningful to talk about the consistency 
of a set of default statements. However the logic N did not - in 
fact could not - allow modus pmens as a rule of inference for 
the variable conditional. For. if it did, then in the first example 
above we could deduce Fly(opus) and so arrive at an incon- 
sistency. Similarly, in the second example, if we knew 
Raven(ops) and AZbino(ops). then we could conclude both 
BLack(opus) and ~BZack(opus). 

The reason that inconsistency does not arise with the above 
examples is that the truth of a3p depends not on the present 
state of affairs, but on @‘simpler” or “less exceptional” states of 
affairs. Thus Raven(opus)+ Black(ops) is true if, in the least 
exceptional states of affairs in which opus is a raven, opus also is 
black. Hence in such states of affairs, exceptional conditions 
such as being an albino. being painted red, being in a strong yel- 
low light, etc. are “filtered out”. In this way, it is quite possible 
that Raven(opus)+ Black(opus) is true. even 
Raven(opus)~BZeck(opus) is not. 

though 

However it nonetheless seems reasonable that if we knew 
only that Raven(opusj3 Black(opus) and Raven(opus) that we 
should be able to conclude “by default” that BZack(ops) is true. 

One possible way to do so is to translate assertions expressed in 
iV into appropriate statements of some default logic for reasoning 
deductively about individuals. Thus, the previous formula 
would have the 
Raven(x): MBlack(x) 

intuitively acceptable translation 

BZack(x) 
in the formalism of [Reiter SO]. 

In this paper. a second alternative for reasoning deduc- 
tively about default and prototypical properties of individuals is 
described. Consider where we know only that 

(xXRaven(xh BLack(x RavenCopus). 
and Has-wings(opus). 

Given this information we cannot deduce anything about opus’s 
blackness, simply because it is consistent with what is known 
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that opus may not in fact be black’. However. if we pragmati- 
tally and Q priori decide that the world at hand is one of the 
least exceptional worlds consistent with what’s known, and we 
decide also that having wings is irrelevant to blackness. then we 
could conclude BZack(ops). In terms of ‘states of affairs” or 
“possible worlds” this means that if we assume that the world 
being modelled is as “normal” as possible consistent with the 
above sentences, and that havmg wings is irrelevant to blackness 
then BZack(ops) must be true at the world being modelled. 

The next section provides an overview of related work in 
Al. while the following section provides a brief description of 
the logic N. Section 4 introduces the overall approach to default 
reasoning. Section 5 expands on this. and describes two 
approaches to default inferencing. Section 6 discusses some 
examples of default reasoning in this framework. while the last 
section examines what we have gained from this approach. 
Further details and proofs of theorems may be found in [Del- 
grande 87b]. 

Another approach in Al for dealing with default properties 
is prototype theory [Rosch 781. [Brachman 853. Here member- 
ship in the extension of a term is a graded affair and is a matter 
of similarity to a representative member or prototype. Proto- 
type theory is concerned generally with descriptions of individu- 
als. or predicting properties of individuals. Hence such 
approaches appear to address a concern that is somewhat 
different from ours - perhaps recognismg an individual as a 
bird. based on the fact that it flies, or alternatively, predicting 
whether an individual flies, given other information about it. 
However in the present approach we want to attribute flight as 
following in the normal courseof events from the conditions of 
being a bird. In such a case. notions of typicality and resem- 
blance to a prototype appear too weak for our requirements. 

Finally. Donald Nute [Kute 861 has investigated default 
reasoning in a conditional logic for representing subjunctives, 
However his approach is limited to reasoning with a restricted 
set of sentences in a propositional logic. 

2. Related Work 
Much of the work in AI for dealing with defaults and pro- 

totypical properties has centred around systems of default and 
non-monotonic reasoning. McDermott and Doyle, for example. 
in their augmentation of first-order logic [McDermott and Doyle 
SO]. represent “birds fly” by the statement: 

(x)((Bird(x) A MFZy(x)) 3 Fly(x)). 

This can be interpreted as “for every x. if it is true that x is a 
bird, and it is consistent that x flies, then conclude that x flies”. 
On the other hand, in Reiter’s system [Reiter 801. “birds fly” 
would be represented by the rule: 

Bird(x): MFZy(x) 

fly(x) 
This can be interpreted as “if something can be inferred to be a 
bird, and if that thing can be consistently assumed to fly. then 
infer that that thing flies. Circumscription [McCarthy 801 per- 
mits similar inferencing: in this case, one typically circumscribes 
an “abnormality” predicate to minimise the number of abnormal 
(with respect to flight) birds. 

A general limitation with these approaches is that one can- 
not generally reason about defaults. Thus in Reiter’s approach, if 

3. A Logic for Representing Defaults 

In [Delgrande 87a] a conditional logic [Chellas 75].[Nute 801 
called ZV. for representing default statements, was presented. 
The language of this logic is that of FOL, but augmented with a 
binary connective 3. The intended interpretation of ~3 /3 is “if 
cy then normally 0” or “all other things being equal, if (Y then p”. 
In this logic one can represent statements such as “ravens are 

normally black” or “albino ravens are normally not black”. 
Truth in the logic is based on a possible worlds semantics. Infor- 
mally, (r3 8 is true at a world if, ignoring exceptional condi- 
tions, p is true whenever (Y is. What this amounts to is. if we 
consider “less exceptional” states of affairs, then a3 fi is true 
just when the least exceptional worlds in which cy is true also 
have 8 true. 

The accessibility relation E between worlds in this system 
then is formulated so that Ewlwz holds between worlds wi and 
w2 just when w2 is at least as uniform. or at least as unexcep- 
tional, as wl. In [Delgrande 87a]. the following conditions were 
argued to be required for the accessibility relation E: 

Reflexive: Eww for all worlds w. 

Transitive: If Ewlw2 and Ew2w3 then Ew1w3. -- 
we knew that every penguin had to be a bird and that birds nor- 
mally fly but that penguins do not normally fly, there is no 
means within the system of concluding that birds that aren’t 
penguins normally fly. Similarly, in most systems the assertions 
‘penguins are birds” and “typically penguins aren’t birds” can be 
asserted without difficulty - in Reiter’s system the default rule 
is never applied and in McDermott and Doyle’s the truth value 
of the formula NY(X) is independent of that of MFZy(x). Yet 
these sentences seem to be inconsistent: if every penguin must 
necessarily be a bird, then it certainly seems that “typically 
penguins aren’t birds” should be false. 

A second. epistemological difficulty with these approaches 
is that their semantics rests on a notion of consistency with a set 
of beliefs. Thus, in the above approaches, one would conclude 
that a bird flies if this does not conflict with other beliefs. How- 
ever the issue of whether birds fly or not (or normally fly or 
whatever) is a matter that deals with birds and the property of 
flight. and not with particular believers. Hence the relation 
between birds and flight. whatever it may be. should be phrased 
independently of any set of beliefs. Yet, on the other hand. if all 
that I know is that birds normally fly and that opus is a bird. 
then it would seem reasonable to assume that, ceteris paribus. 
opus flies. Thus perhaps these approaches are best viewed as tel- 
ling us how to consistently extend a belief set, rather than as 
representing the relation between, say. birds and flight. 

Forward Connected: If Ew1w2 and Ewlw3 then either Ew2w3 or 
Ew3w2. 

The propositional modal logic corresponding to this accessibility 
relation is the standard temporal logic S4.3 [Hughes and Cress- 
well 681: it subsumes S4 but does not subsume S5. 

The language L for representing defaults has the following 
primitive symbols: denumerably infinite sets of individual vczri- 
abZe5 x, y, 2, ’ * . . individual constants a. b, c, . and predicate 
symbols, P. Q, R. . . (each with some presumed arity), together 
with commas, parenthesis. and the symbols y, 1, 3, and Q. 
Variables and constants together make up the set of terms. The 
set of well-formed formulae (wffs) is specified in the usual 
fashion. Where no confusion arises, lower-case words may be 
used to stand for constants and capitalised words may be used to 
stand for predicate symbols. As usual. conjunction, disjunction, 
biconditionality, and the existential quantifier are introduced by 
definition. The symbols (Y, (3. y,... will stand for arbitrary well- 
formed formulae of L. 

Sentences of L are interpreted in terms of a model 
M = <U’, E. DI. V> where W is a set, E is a reflexive, transitive 
and forward connected binary relation on elements of W. DI is a 
domain of individuals, and V is a function on terms and predi- 
cate symbols so that 

1. for term t. V(t)E DZ. 
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2. for n-place predicate symbol P. V(P) is a set of (n+l)- sentences constraining how the world must be or could be. while 
tuples <tl, . . . ,t,,w> whereeachtiEDIandwE W. C is a set of contingent sentences constraining how the world 

being modelled is. 
as “all ravens must 

Informally W is a set of possible worlds. E is an accessibility 
relation on possible worlds, and V maps atomic sentences onto 
worlds where the sentence is true, and predicate symbols onto 
relations in worlds. For wff (Y. the symbolism IIc#’ stands for 
the set of worlds in M in which cy is true. The symbolism t$ cy 
is used to express that 01 is true in the model M at world w (or 
simply true. if some M and w are understood). Validity, denoted 
i= cy. and satisfiability have their usual definitions. For conveni- 
ence. we define a world selection function f. in terms of which the 
truth conditions for 3 are specified: 

Thus in D we would include statements such 
be birds” and “all ravens are normallv black”. 

Defbition: f(w. Ilall”) = {wr I Ewwl and e1 cy. and for all w2 
such that Ewrw2 and es cy. we also have Ew,wl}.’ 

This function then, given a world w and proposition Ilall”, picks 
out the least exceptional worlds in which a! is true. Given a 
model M = < W. E, DI, V> , truth at a world w is given by: 

Definition: 

(i> For n-place predicate symbol P, terms t,, . . . , t,, and 
wE W. I=$?&,, . . . ,tJ iff 
<V(tJ, . . . , v(t,>. w> E V(P). 

(ii> *lo! iff not * ~11. 

(iii> ecz3/3 iff ifecrthenep. 

(iv> +! a 3 0 iff f(w. Ildl”) C IIpP. 

(v) l=V<x>a iff f or every V’ which is the same as V 
except possibly V(x) * V(x). and where 
M’= <W.E.DI,V’>.~~I. 

The conditional logic N is the smallest set of sentences of L. 
that contains classical first-order logic and that is closed under 
the following axiom schemata and rule of inference. 

Axiom Schemata2 

VN (x>(a*P> 3 (cr*(x)P> if (Y contains no free 
occurrences of x. 

Rule of Inference 

RCM From p 3 y infer (cw+/3> I> (cy3y). 

The notions of theoremhood in A’. and derivability and con- 
sistency are defined in the usual manner. The symbolism r 7N CY 
means that 01 is derivable from r in N. We obtain: 

Theorem: i=cu iff , -IIl a. 

Soundness is proven by a straightforward inductive argu- 
ment. Completeness is proven by showing that there is a canoni- 
cal N-model, in which every non-theorem of N is invalid. This 
proof is an adaptation of the method of canonical models in 
first-order modal logics [Hughes and Cresswell 841, but modified 
to accommodate the variable conditional operator. 

4. Default Reasoning: Initial Considerations 
A default theory T is an ordered pair <D. C> where D is a 

set of wffs of N and C is a non-empty consistent set of wffs of 
FOL. D is intended to represent necessary or conditional 

Included in C would be statements such as ‘opus is a ra;en” and 
“everyone taking CMPT882 this semester is under 6 feet tall”. 
The goal is to define a “default” provability operator which, fol- 
lowing [McDermott and Doyle SO], I will write as T I- p to indi- 
cate that p follows by default from T. 

The first part of this enterprise is startlingly easy. Con- 
sider for example where all that is known is 
Bird(opus)+F’Zy(ops) and Birdcops). As argued. we should 
not be able to conclude from this that K?y(opus>. simply because, 
while the truth of Birdcops) relies of this state of affairs, the 
truth of Bird(opus)+FZy(opus) relies on other less exceptional 
states of affairs, and there is no necessary connection between 
this state of affairs and the other states of-affairs. Yet nonethe- 
less it does seem reasonable to conclude F7y(opus> “by default”. 
The key point here is that in drawing this default conclusion, 
one is relying on a tacit assumption: that the world at hand is as 
unexceptional as possible, consistent with what is known. That 
is. given the above, it is entirely consistent that opus is a 
penguin, is tethered. or simply (for no known reason) does not 
fly. The default conclusion relies on assuming that if none of 
these exceptional factors are known to hold, they are 
not to hold. This assumption can be stated as follows: 

assumed 

The Assumption of Normality: The world being modelled is 
among the least exceptional worlds according to D in which 
the sentences of C are true. 

Thus it seems that we would want to say that T - p just when, 
in the presence of “background information” D. p is true in all 
least exceptional worlds in which C is true3. Hence: 

Temporary Definition: T - p iff (so it seems> D --,,. C=&-p. 

This does in fact work 
example if we have that 

in a large class of simple cases. For 

D = {Raven(x)+BZack(x). 

(Raven(x)~AZbino(x))3 ~Black(x)},~ 
C = {Raven(a)}, 

then we can make the default conclusion that Black(a). If we 
have that C = {Rauen(a).AZbino(a)~. then we can derive by 
default that -Black(a); we cannot now derive Black(a). because 
we cannot prove 

{Raven(x)*Black(x). (Raven(x>AAZbino(x>>* ~BZack(x)} 

Similarly, 
TV (Raven(a>AAZbino(a>>3 
if we have 

Black(a). 

D = {Qu.uker(x>+ Pacifist(x). Rep&can(x)+ 4’acijist(x>) 

and learn that Quaker-(a) then we can conclude Pacifist(a). If we 
learn also that Republican(a). then we can conclude nothing con- 
cerning whether a. by default, satisfies Pacijist. 

However the approach to this point also fails to work for a 
large class of simple cases. If we have that: 

D = {Raven(x)+ Black(x)}, 
C = {Raven(a). Has-wings(a)} 

then the relation 

{Raven(x)+ Black(x)} 

tN (Raven(a)lWas_wings(a))3 Black(a) 

1 Note that the apparent circularity in this and the next definition is benign. 
2 I am following the conventions of [Chellas 751 and [Nute 801 for naming ax- 

ioms and rules of inference. 
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worlds where Raven(a) is true. Black(a) is also true. However 
there are models where, in the simplest worlds where Raven(a) 
and Has-wings(a) are true. Black(a) may not be true. Hence 
(Raven(a)AHas_wings(a))3 Black(a) is not entailed by D. 

It seems however that, based on what is known, there is no 
good reason for supposing that having wings has any effect on 
blackness. In a word. having wings seems irrelevant to whether 
a raven is black. This is the second assumption that I make in 
order to be able to draw default inferences in a default theory. 
It may be stated as: 

Assumption of Relevance: Only those sentences known to 
bear on the truth value of a conditional relation will be 
assumed to, in fact, have a bearing on that relation’s truth 
value. 

This is of course rather vague, and part of 
section is to make this notion more precise. 

the task in the next 

5. Two Approaches for Default Reasoning 

The general idea in this paper is to use the logic N for 
representing defaults, and use metatheoretic considerations to 
sanction contingent default inferences. To this end, two assump- 
tions were identified in the previous section as being essential for 
default inferences. In the previous section also, the formal sys- 
tem N was used to suggest an initial approach for default 
inferencing. As mentioned though. this approach fails for a wide 
class of simple cases. Two approaches are presented in this sec- 
tion to rectify these difficulties. ‘The general idea in both 
approaches is to consider only a subset of the models of a default 
theory T for default inferences. Interestingly, the approaches 
derive from somewhat complementary intuitions, yet there is a 
high degree of symmetry between them. 

The First Approach: Consider the statement cw3y. This 
statement is true at a world w in model M iff f<w. Ilc#‘)C IIylI”. 
Intuitively, ,0 is irrelevant to the truth of this statement if 
knowing p doesn’t alter our judgement of the truth of the conse- 
quent of the conditional. Hence, according to our truth condi- 
tions for the conditional, p is irrelevant to cu3y iff 

f(w.llaA~llM) GllyllM and f(w.llaA+llM) E Ilyll”. So one approach is 
to assume, whenever possible, that a proposition /3 has no effect 
on the truth value of cu3y. Hence, informally, we begin with a 
set of assertions D and extend this set by iteratively considering 
each conditional cy3y in D and each wff /3 of FOL. and if 
aA/33y is consistent, adding it to D. Thus if D is 

(Raven(x)+ Black(x). (Raven(x>AAZbino(x))+ -Black(x)} 

we will add statements including 

(Raven(x)AHas_wings(x))3 Black(x) and 
(Raven(x)AAZbim(x)A+?as~wings(x)h yBZack(x). 

However, this isn’t quite right. If D is {Q(x)3P(x). 
R(x>*-.lf'b)} 
(Q(x)fW(x)>* I? ye 

could consistently add either 
x or (Q(x)AR(x))~-P(X) (but not both) by 

this recipe. The solution is to add aAP3y only if there is no 
other “relevant” conditional that denies y. This can be accom- 
plished as follows: 

Definition: a3y is supported in r if there is /3 such that: 

1. t-FOL aDfl* 

2. rtNk-Y* 

3. If there is 6’ such that c -FoL (YIP’ and r CN -@‘=3 y> 
then tFoL p D>p’. 

L’sing this we can define the procedure for forming an extension. 
If PO. 61. . . . is some ordering of wffs of FOL. we obtain: 

Definition: An extension E(D) of D is defined by: 

1. EO = D. 

2. Et+1 = 6. where 6 is defined by: 
Initially 6 = Izr. 
For each DL-,ar+y, 6=S U {cxAP,+y} if 
oA/3,3y is supported in D; 
6 = 6 U icrA~pl+ y) otherwise. 

3. E = I&,. 
i=O 

The procedure may be thought of as adding an inordinate 
number of default frame axioms to a set of defaults. in order to 
say that apparently irrelevant sentences are in fact irrelevant. 
Clearly only a single extension is produced. We obtain that 
D C E(D) and E(E(D)) = E(D) for an extension. Hence, under 
the process of forming an extension, an extension is a fixed point 
of the set of defaults. However, if D, G D2, it may not be the 
case that E(D,) C E(D,). An example is D1 = {cz+y} and 
D2 = D1 U {cyA/3~-y), wherein any E(D,) contains crA@+y but 
no E(D,) does. We also obtain: 

Theorem: E(D) is consistent if D is. 

Theorem: For any /3 E FOL and cz3yE D, aA/ yE E(D) or 
aA++yE E(D). 

We can define default provability as we did in the last sec- 
tion, but now incorporating assumptions of relevance via the 
extension. That is: 
Definitions T I- p iff E(D) tN C3p. 

Thus p follows by default from T if. considering all assumptions 
of irrelevance, p follows conditionally from the known facts C. 

This approach yields reasonable default inferences, with 
one exception. Consider where we have D = (~3fl. P3y. 
a3 -ty) and C = (01). If would seem that in this case the best 
strategy is to conclude neither y nor my. However, since Dt 
NC31Y, then in the extension of D we will also conclude yy. 
There seems to be no obvious remedy for this difficulty in this 
approach: fortunately it does not occur in the next approach. 

The Second Approach: This approach is perhaps the comple- 
ment of the first. Whereas before we added assumptions to D to 
constrain the models that we wanted to consider-for a default 
inference, here we assume that the world at hand is among the 
simplest worlds. consistent with what 
Thus for example if we know only that 

is known contingently. 

D = {Raven(x)+ Black(x)). 
C = { Raven(opus), Has-wings(opus) 1 

then if the state of affairs modelled by C were among the sim- 
plest worlds according to D then, by the definition of 3, 
BZack(opus) must be true in that state of affairs. So the idea is to 
first make whatever conclusions we can about C under the 
assumption of normality. Given such an extension (or exten- 
sions) to C we can specify that p follows as default inference 
from T iff p follows in FOL from all extensions of C. 

There is a minor difficulty with this approach however 
arising again from the relative strength of defaults. Consider 
where we have: 

D = (Raven(x)+ Black(x). (Raven(x)r\AZbinu(x))+ -Black(x)}. 

Thus in the least exceptional states of affairs in which there are 
ravens, ravens are black, and in the least exceptional states of 
affairs in which there are albino ravens. ravens are not black. 
From this it follows that the states of affairs in which there are 
ravens are less exceptional than the states of affairs in which 
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there are albino ravens. This means that if we have that 
C = (Raven(opus). AZbino(ops)), then in extending C we should 
only consider the second default. 

It is interesting also to see how this approach handles possi- 
ble transitive relations in the defaults. Consider where we have 
that 

D=(Qu.aker(x)+ Pacijist(x). Pacifist(x)+ Vegetarian(x)} 
and C={Quaker(a)}. 

If we assume that the world at hand is among the least excep- 
tional consistent with C. then we can conclude PaciJist(a). How- 
ever, given this new information. it now also becomes reasonable 
to conclude that Vegetarian(a). barring evidence to the contrary. 
So effectively we need to “iterate” over default transitivities, 
while allowing for the fact that particular transitivities may not 
be warranted. Hence in the above example, if we were to add 
Qzuker(x)+~Vegetarian(x) to D. we would still want to con- 
clude Pacifist(a) but not be able to conclude Vegetarian(a). This 
is accomplished as follows: 

Definition: A maxim.aZ contingent extension E(C) of C is defined 
by: 

1. cc=c. 

2. If D TV a3 y and I-F~L Ci3a! and if there is CY’ so that 
t- FoL CiJa’ and D t--~ -(a’*~> then I-~L CYD~’ 

then Ci+i =CiU(~~y). 

3. E(C) = ‘~Ci- 
i=O 

This means that c~>y is added to Ci, if Ci implies 01 and for any 
o’ implied by C,. which conflicts with the default conclusion of 
y, cy’ IS lml?lled by cy. If we use I-’ for default derivability in 
this approach. we obtain: 

Definition: If T= <D. C> then T I-’ p iff f%!?(C) tFoL p. 

‘Vote that the number of extensions will typically be finite. Two 
extensions are distinct if and only if there are transitivities in 
the defaults that conflict. That is. we get more than one exten- 
sion only if we have defaults of the form a+y along with 
a3P. @=-ly. We obtain also that. with respect to default 
derivability, the inferences of the first approach subsume those 
of the second: 

Theorem: If Tt-’ p then TI- p. 

The two approaches exhibit a high degree of symmetry. 
The first approach involves extending D. The basic issue in this 
approach concerns satisfying the assumption of relevance; the 
assumption of normality is trivially satisfied. The second 
approach on the other hand involves extending C. The basic 
issue in this approach concerns satisfying the assumption of nor- 
mality; the assumption of relevance is trivially satisfied. Of the 
approaches. the first is similar, from a technical standpoint, to 
other procedures for forming maximal sets of formulae. How- 
ever, it does not appear to lend itself to any straightforward 
implementation. In addition it sometimes leads to over-strong 
inferences. The second appears to have somewhat more promise 
for providing a basis for an implementation. In addition, the 
quantifier-free fragment of the logic N is decidable and so the 
second approach applied to specific individuals is easily seen to 
yield a decidable system. The next section describes a set of 
example default inferences under the second approach. 

6. Some Examples 

The second approach to default reasoning arguably leads to 
reasonable and intuitive default inferences. As a first example, 
assume that we have the default portion of a theory: 

D, = {Adult(x)+ Employed(x). Univ-st(x)+ -&npZoyed(x)} , 

say. adults are typically employed. while university students 
normally are not. If we knew that someone was an adult then 

we could conclude by default that that individual was 
employed. If we knew that someone was an adult and a univer- 
sity student, then we could draw no conclusion. If, on the other 
hand, we knew that someone was an adult and was Dutch. then 
we would still conclude that they were employed. Of course, 
we also know that university students are typically adults. and 
so the defaults could be augmented to: 

D2 = D1 U (Lhiv-a(x)3 Adult(x)}. 

Now if we were told that someone was an adult and a university 
student, we would conclude by default that that person was not 
employed. The reason that we can now draw a conclusion is 
that in any model of D2, in the simplest worlds in which some- 
one is a university student, that person is not employed (but is 
an adult). From the logic N, we have the relation: 

02 b-N Adult(x)+ VUniv-St(x). 

and so from N we can derive the default that, given D2, adults 
are normally not university students. 

Consider next the defaults: 

D3 = {Raven(x)+BZack(x), Raven(x)+Fly(x), 

(Raven(x)AAZbino(x))3 ~BZack(x)}. 

Not unexpectedly, we can conclude by default that ravens with 
wings are black. and that ravens that fly (or don’t fly) are black. 
Moreover albino ravens are concluded by default to fly but to 
not be black. Consider further where we augment the defaults 
so that we have: 

D4 = D3 U {Bear(x)+ BZack(x). 

(Bear(x)/Was_iZZness_X(x))3 +Zack(x)). 

The default conclusions in D3 go through as before. However, 
now if we learn that a particular raven has illness X then we 
would not conclude by default that the raven was not black: 
rather we would still conclude that the individual was black. 
The reason for this is that, by our notion of relevance, illness X 
has no apparent connection with the colouring of ravens, even 
though it clearly does for bears. 

Transitive relations among the defaults appear to be han- 
dled correctly. If we have: 

D5 = {Quaker(x)+ Pacifist(x). Pacijist(x)+ Vegetarian(x)). 

and we know contingently that Quuker(a) and Republican(a), 
then we could conclude by default than Vegetarian(a). If we 
were to augment D5 with either RepubZican(x)+qPacijist(x) or 
Republican(x)3 -Vegetarian(x) then in neither case could we 
form the default conclusion Vegetarian(a). Nor could we if 

~(RepbZican(x)3 PaciJist(x)) were added. If, on the other 
hand, we have: 

Db = {Quaker(x)=+ Pacifist(x). Pacifist(x)3 Vegetarian(x), 
(Pacifist(x)ARep.&Zican(x))3 ~Vegetarian(x)}, 

and we know that Quaker(a). then we could conclude 
Vegetarian(a). If we knew that Quuker(a) and Republican(a). 
then we could conclude that Pacifist(a). However, since we have 
that pacifists are normally vegetarian, but that republican 
pacifists are normally not vegetarian, we would conclude 
~Vegetarian(a). 

7. Discussion 
The logic N together with the approaches described in this 

paper provide a basis for representing, and reasoning about, 
default statements, and for performing default inferencing. 
Arguably the properties of the logic conform to commonsense 
intuitions concerning default statements. Arguably also, the 
logic is more appropriate for representing information about 
defaults than default logics or non-monotonic logics, in that its 
semantics does not rest on the notion of consistency with a given 
set of assertions. Thus the relation between ravens and black- 
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obligation [van Fraassen 721. The techniques presented herein 
then should, with simple modification. be applicable to default 
inferences concerning counterfactuals. subjunctives, and notions 
of obligation. Thus. as an example. if we had the stateinents “if 
John comes, it will be a good party” and “if John and Sue come, 
it will be a dull party” represented in one of the logics of [Lewis 
731, and if we also knew that only John would be going to the 

party, then using techniques similar to those of this paper it 
should be possible to formalise the reasoning that would let us 
conclude that (likely) it will be a good party. 
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