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Abstract 
In Artificial Intelligence, well-understood reason- 

ing systems and tractable reasoning systems have often 
seemed mutually exclusive. This has been exempli- 
fied by nonmonotonic reasoning formalisms and 
inheritance-with-exceptions reasoners. These have 
epitomized the two extremes: the former not even 
semidecidable, the latter completely ad hoc. 

We previously presented a formal mechanism for 
specifying inheritance systems? and minimal criteria 
for acceptable inheritance reasoning. This left open 
the problem of realizing an acceptable reasoner. Since 
then. Touretzky has developed a reasoner that appears 
to meet our criteria. We show that his reasoner is for- 
mally adequate, and explore some of the implications 
of this result vis-ii-vis the study of nonmonotonic rea- 
soning . 

1. Introduction 
Nonmonotonic reasoning formalisms have been 

the subject of much interest lately (cf. [AI 19801, 
[AAAI 19861). They provide principles for represent- 
ing and reasoning with rules that generally hold but 
are subject to exceptions. Although the ability to rea- 
son with such rules appears to be a central facet of 
intelligence, the formalisms developed to this point 
have been intractable. For example, in the general 
case default logic is not even semidecidable. 

Motivated by a need to build systems with good 
computational properties, many researchers have 
sacrificed formal precision. Faced with the worst-case 
intractability of formal systems, they have despaired 
of formalism altogether. While this has sometimes led 
to very fast “inference” mechanisms. there has often 
been little more than vague intuitions about exactly 
ivhat these mechanisms infer. A canonical example of 
this has been the use of inheritance reasoning in AI 
systems. 

’ Parts of this work were done at the University of British 
Columbia, and supported in part by an I.W. Killam Predoctoral 
Scholarship and by NSERC grant A7642. 

Inheritance reasoners represent a system’s 
knowledge as a connected set of nodes. The nodes 
represent classes and/or individuals, with associated 
sets of properties. The connections indicate the flow 
(or inheritance) of properties from “more general” to 
“less general” nodes. Such systems frequently make 
provision for exceptions to inheritance, allowing 
“peculiar” individuals or classes to preempt the nor- 
mal flow of properties. 

In the absence of adequate semantic characteriza- 
tions of inheritance systems, correct inference has typ- 
ically been defined (to the extent it has been defined 
at all) in terms of intuitions and the behaviour of par- 
ticular systems. This has lead to anomalous results, 
including mismatches between intuition and system 
performance (see [Etherington 1987b] or [Touretzky 
19861 for examples). 

In earlier work [Etherington & Reiter 1983; Eth- 
erington 1987b], we presented a formal mechanism for 
specifying inheritance systems, and minimal criteria 
for acceptable inheritance reasoning. This left open 
the problem of realizing an acceptable reasoner. Since 
then, Touretzky has developed a reasoner that appears 
to meet our criteria. We show that 
mally adequate, and explore some 
of this result visd-vis the study of 
soning . 

his reasoner ‘ib for- 
of the implications 
nonmonotonic rea- 

2. The Inheritance Language 
For the purposes of this paper, we adopt 

Touretzky’s [1986] network representation, which 
differs from that in [Etherington 1987b].2 This 
representation has four link types, shown in Figure 1. 
Each link has one interpretation if it originates from 
an individual-node, and another if from a class-node. 
Relational links have a third interpretation when they 
connect two individual-nodes. (We use upper and 
lower case letters for classes and individuals, respec- 
tively .) 

and 
2 Specifically, strict links and exception links are not treated, 
relational links have been added. 
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Example 1 3. The Inferential Distance Algorithm 

We can illustrate IS-A and ISN’T-A links with an 
example from [Fahlman et nl 19811. Consider the fol- 
lowing facts about invertebrates: 

Molluscs are normally shell-bearers. 
Cephalopods are Molluscs, 

but normally are not shell-bearers. 
Nautili are Cephalopods and are shell-bearers. 
Fred is a Nautilus. 

Our network rep 
Figu s-e 2. 

resentation of these facts is given in 

Shell-bearer 

Mollusc 

Cephalopod 

Nautilus 

T 
Fred b 

Figure 2 - Network representing facts about Molluscs. 

Given the intuitive link definitions, above, one 
can see the correspondence between the facts con- 
tained in the English description and the links in Fig- 
ure 2. What remains to be done is to describe how 
such structures can be used to retrieve the information 
that common sense suggests is contained in the exam- 
pie. For example, are Cephalopods Shell-bearers? 

To show how the information in Example 1 is 
actually encoded in Figure 2, we must briefly describe 
how conflicting inheritance is resolved. Looking at 
Figure 2, Cephalopods could be Shell-Bearers by virtue 
of the chain of IS-A links through Mollusc. On the 
other hand, they might not be, because of the ISN’T-A 
link. The usual approach decides conflicting inheri- 
tance by choosing the value most closely-connected 
with the node in question, but this “shortest-path 
heuristic” can lead to anomalous results [Etherington 
1982, 1987b; Touretzky 19861. 

A better approach is the inferential distance algo- 
rithm,3 which arbitrates such conflicts by appealing to 
a topological view of the network. This approach 
avoids the failings of the shortest-path heuristic, yet 
remains faithful to the intuitions that make inheri- 
tance networks appealing. In particular, more specific 
facts prevail over those less specific. Essentially, if an 
individual could inherit propertv P because she IS-A 
B, and property -P because she IS-A C, then the ambi- 
guity is resolved by considering relationships between 
B’s and C’s. If C IS-A B and not vice versa, -P is 
inherited; otherwise, if B IS-A C and not vice versa, P 
is inherited; otherwise, neither is inherited. 

As an illustration, consider the network of Figure 
2. Because Nautilus is a subclass of Cephalopod, which 
is a subclass of Mollusc, inferential distance gives the 
desired results: Nautili, such as Fred, are Shell- 
Bearers, while Cephalopods not known to be Nautili 
are not. In the network of Figure 3, however, neither 
Republican nor Quaker is a subclass of the other, SO 
inferential distance sanctions no conclusions about 
whether Nixon is a Pacifist. 

3 Due to space limitations, we can only present an oversim- 
Plified q?Proximation of the algorithm. The interested reader is 
referred to Touretzky’s [1986] dissertation. 

(1) IS-A: A->@B: Normally A’s are B’s, but there may be exceptions. 
a->*B: The individual a belongs to the class B. 

(2) ISN’T-A: AO-{*>@B: Normally A’s are not B’s. 
ao-j-/+>@B: a is not an B. 

(3) RELATED: A.=R= >@B: Normally A’s are related by R to B’s, 
ao=R- --BOB: Normally a is related by R to B’s. 
ao=R=>ob: a is related by R to b. 

(4) UNRELATED: A*$#=R#/=>@B: Normally A’s are not related by R to B’s, 
aowR{#=>@B: Normally a is not related by R to B’s. 
ao$#=R$#=>ob: a is not related by R to b. 

Figure 1 - Links and informal semantics. 

. 
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\o’ Nixon 

Figure 3- A genuinely ambiguous inheritance net. 

Touretzky [1985, 19861 also explores the applica- 
tions of ‘inferential distance to “‘inheritable relations”. 
These are relations between classes and/or individuals 
that, like class-membership, may be inherited by 
subclasses/instances and may be subject to exceptions 
For example, consider Example 2, whose correspond- 
ing network is shown in Figure 4. 

Example 2 

Citizens dislike crooks. 
Elected crooks are crooks. 
Gullible citizens are citizens. 
Gullible citizens don’t dislike elected crooks. 
Dick is an elected crook. 
Fred is a gullible citizen. 

In this example. citizens generally dislike crooks, and 
hence elected crooks. However, Fred, the gullible 
citizen, doesn’t dislike Dick, the elected crook. 

citizen l =dislike=> l crook 
? 1‘ 

gullible citizen b #dislike*> b elected crook 

f t 
Fred o o Dick 

Figure 4- Inheritable relations. 

The inheritance mechanism for inheritable rela- 
tions is similar to that for property inheritance except 
that, in addition to exceptions to IS-A inheritance, 
exceptions to relations (such as gullible citizens not 
disliking elected crooks) must be accounted for. 

4. Default Logic 
In the spirit of [Etherington & Reiter 19831, we 

present a translation from Touretzky’s inheritance net- 
works to default logic [Reiter 19801. The proof-theory 
of default logic then provides minimal criteria that 
inference algorithms for inheritance systems should 
satisfy. Unfortunately, this presupposes a familiarity 
with default logic, which could not be reasonably be 
presented to the neophyte in the space available. We 

can only present a sketchy refresher. 
For our purposes. a (ilormnl) defadt is a rule of 

inference, of the form: 

which can be interpreted as saying that if 01(y) is 
known and it is consistent to believe p(Z), then it is 
reasonable to assume p(Z). The defaults can be 
viewed specifying preferred ways of extending one’s 
knowledge about the world. 

and 
defa 
satis 
may 

5. Default Logic and Inheritance Networks 
In section 3, we presented a number of links that 

could be used to create inheritance networks. We now 
interpret these, using defaults and first-order formu- 
lae, as theories of default logic. 

Depending on whether it originates from a class A 
n individual a, an IS-A link to B is interpreted by: 

A (x ) : B (x ) 

B(x) 
or B(a) 

respectively. Similarly, ISN’T-A links from classes or 
individuals are identified, respectively. with: 

A (x) : -B(x) 
-B(x) Or 

-B (a) . 

The three forms of RELATED link for relation R - 
class-class, individual-class, and individual-individual 
- are represented, respectively, by: 

A (x)A B(y) : R(x,y) B(y) : R(a,y) 
R(x9y) 

9 
why) 

and R(a,b) . 

Finally, the three forms of UNRELATED link respec- 
tively yield: 

A(x) A B(y) : -R(x,y) B(y) : -R(a,y) 
-R (X7Y) 

? 
-R hY) 

and -R(a,b) . 

These mappings allow Touretzky’s inheritance 
networks to be interpreted as default theories. For 
example, the default logic representation of the net- 
work in Figure 2 is: 

M (x ) : Sb (x ) C (x ) : M (x ) N (x ) : C (x ) 
’ D= Sb (x) ’ iv (x ) C(x) ’ 

C (x ) : -Sb (x ) N (x ) : Sb (x ) 
-Sb(x) ’ Sb (x) I 

W= 

4 (using the obvious abbreviations) 
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Since the extensions of normal default theories 
represent orthogonal sets of beliefs that might be justi- 
fied given the first-order world-description and the 
defaults, we clearly must require that the conclusions 
drawn by an inheritance reasoner lie within a single 
extension of the corresponding default theory. This 
does not provide a complete characterization of an 
inheritance reasoner. however, since it does not 
specify which extension should be chosen in cases 
where there are more than one. Happily, inferential 
distance also provides a mechanism for choosing 
among multiple extensions. 

6. Relating Inferential Distance and Default 
Logic 

Touretzky [1984] considers the possibility of 
applying the inferential distance topology to default 
theories, and gives some examples. The idea is that 
the notions which lead one link to be preferred to 
another in a network might also be applicable to help 
resolve conflicting defaults in default theories, 
without changing the forms of the defaults themselves 
(as in [Reiter and Criscuolo 19831). It is not clear 
from Touretzky’s presentation, however, exactly how 
the results of this application correspond to the results 
sanctioned by default logic. In this paper, we begin to 
explore this question. 

Conceptually, the inferential distance algorithm 
eliminates those extensions that violate the “hierarchi- 
cal” nature of the representation. then draws those 
conclusions that hold in the remaining extensions. 
This approach captures the semantic intuition that 
properties associated with subclasses should override 
those associated with superclasses. which is the funda- 
mental raisorz d’t?tre for inheritance representations. 
That it also avoids the pitfalls of incorrect behaviour 
that curse shortest-path inference algorithms is shown 
by the following theorem.’ 

Theorem 

In the absence of “no-conclusion” links, the 
ground facts returned by the inferential dis- 
tance algorithm lie within a single extension of 
the default theory that corresponds to the inher- 
itance network in question. 

The theorem begins to determine the connections 
between Touretzky’s work and default logic, by show- 
ing that ground facts returned by inferential distance 
- e.g., “Clyde is an elephant”, or “Clyde loves Fred” 
- belong to a common extension of the corresponding 

j The proof of the theorem is given in [Etherington 1987a]. 

default theory. However, inferential distance also 
sanctions normative conclusions, such as “Albino- 
elephants are [typically] herbivores”. We have begun 
to explore the relationship such statements inferred 
under inferential distance bear to the underlying 
default theory, but our results are only preliminary. 

I 

Touretzkv also allows “no-conclusion.’ links, 
which allow inheritance to be blocked without explicit 
cancellation. Default logic has no analogue for the 
no-conclusion link, and we have not considered them 
here. It appears straightforward to add a similar capa- 
city to the logic, assuming such links prove useful. 
The proof of the theorem suggests that its generaliza- 
tion to networks with no-conclusion links vis-&vis such 
an extended logic would present no problems. 

Touretzky [1986] explores the properties of 
inferential distance inheritance reasoning in detail. 
He also provides a constructive mechanism for deter- 
mining the ‘grounded expansions’ (analogous to exten- 
sions) of a network. Many of his results bear a super- 
ficial similarity in form and proof to the correspond- 
ing results for default logic. We speculate (as has 
Touretzkv) that this is no accident. In the next sec- 
tion, we suggest that the two approaches are so closely 
related that an inferential distance reasoner can be 
viewed as a restricted default logic theorem-prover. 

7. Tractability 
As we mentioned earlier. tractabilitv is the rock 

on which formalism founders. Logic-based approaches 
in AI tend to be semi-decidable or worse, and so do 
not lend themselves to implementation. Conversely, 
informal systems often have attractive computational 
complexities (e.g., O(N) for inheritance in a hierar- 
chy). Furthermore, there has been an expectation that 
massively-parallel machine architectures could yield a 
further logarithmic improvement. Still, we argue that 
it is not particularly useful to do “I-don’t-know-what”, 
very quickly. Can principled commonsense reasoning 
be done quickly? 

The answer appears to be “yes, although perhaps 
not as quickly as unprincipled reasoning”. For exam- 
ple, one proposed parallel architecture for inheritance 
reasoning involves parallel marker-passing machines 
[Fahlman 19793. Touretzky shows that there are net- 
works for which parallel marker-passing algorithms 
cannot derive the conclusions sanctioned by the 
inferential distance algorithm. However, he also 
shows that any network can be “conditioned”, by 
adding logically-redundant links, in such a way that a 
parallel marker-passing algorithm caiz return correct 
results. Unfortunately, this conditioning, which must 
be done each time the network is modified, is expen- 
sive (Touretzky [1986] gives a polynomial-time algo- 
rithm that adds 0(IV2) links in the worst case) and is 
apparently not amenable to parallel marker-passing 
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implementation [Touretzky 1982: personal communica- 
tion; 19831. 

Compared with the worst-case undecidabilitv of II 
default theories, however, a polvnomial-time/space 
update algorithm and a linear-time inference algo- 
rithm do not seem entirelv unattractive. Given the _ 
theorem above, such algorithms correctly determine 
inheritance in the presence of exceptions. Thus, they 

Another discrepancy between the two approaches 
is that there are no strict (exception-free) links in 
Touretzkv’s scheme. Brachman [1985] and others have 
argued that this is a serious shortcoming in a 
knowledge representation system. We have not con- 
sidered the feasibility of adding such links. It is 
clearly possible, but we have no idea what the compu- 
tational cost would be. 

algorithm for computing with such default theories. 

8. Discussion 
If we are suggesting that inferential distance can 

be used to reason with some class default theories, we 
should at least consider how close the relationship 
between the two approaches is. For example, while 
we showed that all conclusions reached by inferential 
distance lie within a single extension of the underlying 
default theory, those conclusions mav actuallv be more 
tightly constrained. In the Quakerikepublican exam- 
ple no conclusion is reached about Dick’s being a Paci- 
fist. The default theory has 2 extensions, however, 
one supporting each possibility. Inferential distance? 
in this case, returns conclusions that lie in the inter- 
section of the extensions. 

It seems that this is a general situation. Certain 
extensions are ruled out altogether (those correspond- 
ing to possible inferences clearly superceded by infer- 
ences associated with subclasses). It appears that con- 
clusions are returned that lie in the intersection of 
those extensions that reflect genuine ambiguities in 
the network. This remains to be proved. 

Since the default theories that represent hierar- 
chies are normal. it would seem that a result analo- 
gous to Reiter’s [1980] “semimonotonicity” theorem 
might be expected for networks. This result guaran- 
tees that adding new defaults to a normal default 
theory never causes extensions to “go away”, so a rea- 
soner committed to one extension may remain so com- 
mitted on discovering new default information. 
Unfortunately, this is not the case. While the set of 
extensions for the underlying theory does not contract, 
some that may have been preferred initially may not 
remain so given new defaults, and vice versa. This is 
not unexpected, given Touretzky’s observation that 
networks must be “reconditioned” after each update. 

9. Conclusions 
We have explored a correspondence between 

default theories and inheritance networks with excep- 
tions. Using the proof-theory of default logic as 
minimum correctness criteria for inheritance- 
determination, we showed that Touretzky’s inferential 
distance algorithm is a satisfactory inheritance rea- 
soner. More importantly, we were able to turn our 
notion of satisfactory around and find that Touretzky’s 
algorithm provides a tractable proof-theory for certain 
classes of default theories. Such tractable algorithms 
are welcome not only for their own sake. but because 
they suggest that intractability may not be the inevit- 
able cost of formal adequacy in commonsense reason- 
ing. 

The formality/tractability controversy has long 
divided AI, with little communication (beyond 
epithets) between the camps. Recently there has been 
interest in exploring the terrain between the encamp- 
ments. Early reports, including this one, suggest that 
the ground is fertile. Perhaps the natives are even 
friendly! 
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