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Abstract: This paper describes a new approach to 
inheritance reasoning in semantic networks allowing 
for multiple inheritance with exceptions. The ap- 
proach leads to a definition of inheritance that is 
both theoretically sound and intuitively attractive: 
it yields unambiguous results applied to any acyclic 
semantic net, and these results conform to our own 
intuitions in the cases in which the intuitions them- 
selves are firm and unambiguous. Since, however, the 
definition provided here is based on an alternative, 
skeptical view of inheritance reasoning, it does not al- 
ways agree with previous definitions when it is applied 
to nets about which our intuitions are unsettled, or 
in which different reasoning strategies could naturally 
be expected to yield distinct results. 

1. Introdpction 

This paper describes a new approach to inheritance rea- 
soning in semantic networks allowing for multiple inheritance 
with exceptions. Like the previous approaches of [Touretzky, 
19861 and [Etherington, 19871, but unlike many others, such as 
[Roberts and Goldstein, 19771 or [Fahlman, 19791, the approach 
presented here leads to a definition of inheritance which is both 
theoretically sound and intuitively attractive: it yields unam- 
biguous results applied to any acyclic semantic net, and the re- 
sults conform to our intuitions in the cases in which our intuitions 
themselves are firm and unambiguous. Since, however, the defi- 
nition provided here is based on an alternative, skeptical view of 
inheritance reasoning, it does not always agree with these previ- 
ous definitions when it is applied to nets about which intuitions 
are unsettled, or in which different reasoning strategies could 
naturally be expected to yield distinct results. 

We do not attempt in this paper to provide any system- 
atic comparison of our approach to nonmonotonic inheritance 
either with those of [Touretzky, 19861 and [Etherington, 19871, 
or with other similar approaches to nonmonotonic reasoning. 
This project of comparison and evaluation is begun in [Tour- 
etzky et d, 1987a1 and [Touretsky et al, 1987b], where we set 
out a partial design space for the classification of inheritance sy5 
tems and investigate the consequences of various design decisions. 
However, we will note here that while the credulous reasoners of 
Touretzky and Etherington may produce an exponential number 
of extensions from a single network, the kind of skeptical reasoner 
we describe always produce a unique extension. Skepticism 
therefore prove to be more practical in some applications. 
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2. Notation 

Letters from the beginning of the alphabet (a, b, c) will repre- 
sent objects, and letters from the middle of the alphabet (p, q, r) 
will represent kinds of objects. We use letters from the end of the 
alphabet (u, u, w, Z, y, z) to range over both objects and kinds. 

An assertion will have the form x + y or z $, y, where 21 
is a kind. If z is an object, such an assertion should be inter- 
preted as an ordinary atomic statement: a + p and b $, p, for 
instance, are analogous to Pa and -Pb in logic; they might rep 
resent statements like ‘Tweety is a bird’ and ‘Jumbo isn’t a bird’. 
If z is a kind, these assertions should be interpreted as generic 
statements: p --t q and r $t q, for example, might represent the 
statements ‘Birds fly’ and ‘Mammals don’t fly’. There is noth- 
ing in ordinary logic very close in meaning to generic statements 
like these, since they can be true even in the presence of ex- 
ceptions. In particular, ‘Birds fly’ can’t be interpreted to mean 
VZ[PZ I> Qz], and ‘Mammals don’t fly’ doesn’t mean anything 
like Vz[Rz 1 N&Z]; for detailed argumentation on this point, 
with supporting linguistic evidence, see [Carlson, 19821. 

Capital Greek letters will represents nets, where a net con- 
sists of a set I of individuals and a set K of kinds, together with 
a set of positive links and a set of negative links, both subsets of 
(I x K) U (K x pi). We identify the positive and negative links 
in a net with our positive and negative assertions. 

Lower case Greek letters will range over sequences of links, 
among which we single out for special consideration the paths, 
defined inductively as follows: each assertion is a path; and if 
u --+ p is a path, then both Q + p --t q and u + p fi q are 
paths. As this notation indicates, paths are special kinds of link 
sequences-joined, in the sense that the end node of any link 
in a path is identical with the initial node of the next link. It 
follows from their definition that paths are subject also to two 
further constraints. First, a negative link can occur in a path, if 
at all, only at the very end: a + p j+ q is a path, but a f, p --) q 
isn’t. Second, an individual can occur only as the initial node of 
a path: p ---) a + q isn’t a path. 

Paths will be said to enable assertions, or statements, much 
in the way that proofs enable their conclusions: a path of the 
form z + CT + y is said to enable the assertion z + y, and 
likewise, a path of the form z 4 u f, y is said to enable the 
assertion x ft y. As this suggests, it is often natural to under- 
stand a path-like a proof-as representing a particular chain of 
reasoning behind the assertion it enables. The path a --) p + q, 
for example, might enable the assertion ‘Tweety flies’, while rep 
resenting an argument like “Tweety flies because he is a bird and 
birds fly.” 
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3. Inheritance 

Since we identify the links in a net with assertions, a net 
can be viewed as a set of hypotheses, or axioms. Let us say 
that an assertion A is supported by a net I’ if we can reasonably 
conclude that A is true whenever all the links in I’ are true- 
if the information contained in r would naturally lead to the 
conclusion that A. We want to know what we can conclude from 
a given net; so our object is to define the general conditions under 
which a net I’ supports an assert’ion A. 

l[n the context of ordinary deductive logic, we often find our- 
selves in a similar situation, when we want to know what state- Figure 1: I’r Figure 2: I’a. 

ments are deducible from a given set of hypotheses. There, it is a 
common practice to approach the question in a roundabout way. including that of [Touretzky, 19861, presume the topdown ap- 
Instead of defining the relation of deducibility directly, one first preach. They are guided, more or less explicitly, by a picture of 
characterizes the deductions-sequences of statements represent- inheritance according to which properties are imagined to flow 
ing certain kinds of arguments, or chains of reasoning-and then downward through the semantic net, from more general to more 
defines a statement as deducible from a set of hypotheses if those specific kinds and then finally to individuals, unless the flow is 
hypotheses permit a deduction of that statement. interrupted, somehow, by an exception. Formally, this ((prop 

Of course, the process of drawing conclusions from a set of erty flow” picture leads to the construction of compound paths 
hypotheses through inheritance reasoning is quite different from through the process of backward c/a&zing, according to which, at 
the process of drawing conclusions through deduction. Still, we the inductive step, a compound path of the form z 4 y -+ Q is 

find it helpful in the case of inheritance to follow a similar kind assembled by adding the direct link z + y to the path y ---f Q. 

of roundabout strategy in describing the consequences of a set of The present treatment, on the other hand, is intended to 
hypotheses. Instead of trying to specify directly the statements capture a kind of bottom-up approach to inheritance reasoning. 
supported by a given net, we first characterize the arguments This approach seems especially natural when one wants to push 
or chains of reasoning- represented, now, by paths-that are the analogy, as we do, between paths and arguments-since ar- 
permitted by a net. As in the case of ordinary deducibility, this guments, at least as they are usually represented (say, by proof 
relation between sets of hypotheses and the chains of reasoning sequences), tend to move from the beginning forward. Formally, 
they permit is really the central idea; and it will be the primary the bottom-up approach leads to the construction of compound 
focus of our attention. Once we have identified the paths that a paths through the process of forward chaining: at the inductive 
net permits, it is natural to describe the statements supported step, the compound path (T -+ a: --+ y is assembled by adding the 
by a net by stipulating that a net supports a statement just in direct link z --+ y to the path c 4 z; and likewise, the compound 
case it permits a path enubhg that statement. path C.T --3 z f, y is assembled by adding the direct link a: f, y 

to the path u 4 x. This adherence to forward chaining is one 
of the central principles guiding our approach. Mot only does it 

4. IVIotivatiora 

In this section we examine several simple examples of nets 
and the paths they should permit, in order to illustrate the prin- 
ciples underlying our general characterization of the permission 
relation, which is then presented in Section 5. 

Consider, first, the simplest kind of case imaginable, a linear 
net I’1 (Figure 1). Just to fix an interpretation, let a = Tweety, 
p = Ganaries, q = Birds, and r = Flying Things. I’r explicitly 
contains the information, then, that Tweety is a canary, that 
canaries are birds, and that birds fly. Now given just this infor- 
mation, we would certainly want to allow a chain of reasoning 
along the lines of “Since Tweety is a canary, a kind of bird, and 
birds fly, Tweety flies” -so we want the net I’r to permit the 
compound path a + p --p q --* r, representing this argument. 
In just the same way, we want the net I’s (Figure 2), with b = 

embody a different metaphor for inheritance reasoning (Uargu- 
ment construction” instead of Uproperty flow”), but it leads also 
to different technical results, as illustrated by our discussion of 
the net l?r in Section 6, below. 

In our approach, then, compound permitted paths are as- 
sembled through forward chaining, but of course, not every path 
constructible through forward chaining from the materials in a 
given net should be permitted by that net. Conflicts can in- 
terfere, as in the net I’s (Figure 3). This net has come to be 
known as the Nixon Diamond, because of the interpretation un- 
der which a = Nixon, q = Quakers, r = Republicans, and p = 
Pacifists. What Fe tells us explicitly, under this interpretation, is 
that Nixon is both a Quaker and a Republican, that Quakers are 
pacifists, and that Republicans are not pacifists. Unrestricted 
forward chaining would allow us to construct from this informa- 
tion both the paths a --, Q --t p and a 4 r + p. But since these 

Jumbo, s = Royal Elephants, t = Elephants, and UL = Flying two paths conflict, enabling the contradictory statements a --t p 
Things, to permit the path b 4 s 4 t + U, which represents an and a f, p, we don’t want l?s to permit both these paths at once. 
argument something like “Jumbo is a royal elephant, a kind of Given just the information contained in I’s, we wouldn’t want to 
elephant, and elephants don’t fly; so Jumbo doesn’t fly.” conclude both that Nixon is a pacifist and that he isn’t. 

These examples illustrate some of the compound reasoning What you say about inheritance depends crucially on your 
paths that can be constructed by assembling the direct links treatment of nets, like this Nixon Diamond, which contain com- 
contained in a net, but they don’t yet tell us, when we think pound conflicting paths. One option is to suppose, although you 
of the construction as proceeding inductively, how these paths can’t permit both of two such paths, that it is always reasonable 
are to be assembled. There are, of course, two natural options to permit one or the other. In the case of the Nixon Diamond, 
for assembling compound paths from direct links: roughly, top for example, this strategy would lead us to the conclusion that 
down and bottom-up. Most treatments of inheritance reasoning, either the path a 4 q --f p or the path a -+ r f, p should be 



Figure 3: I’s 

permitted. What lies behind thii strategy is a kind of credulity 
or belief-hunger-the idea that it’s best to draw as many conclu- 
sions as possible from a given net, even at the cost of making 
arbitrary choices among conflicting arguments. As developed in 
[Touretzky, 19861, this strategy involves associating with each 
net containing compound conflicting paths a number of consis- 
tent extensions, reminiscent of the “fixed points” of [McDermott 
and Doyle, 19801, or the “extensiom? of [Reiter, 19801. For this 
reason, because they can consistently be associated with a num- 
ber of different extensions, nets like these are often described as 
‘ambiguous.” 

We take a different point of view. Rather than supposing 
that an inheritance reasoner should try to conclude as much as 
possible from a given net, we adopt a broadly skeptical attitude, 
according to which conflicting arguments tend to neutralize each 
other. We begin with the idea, which will have to be explained 
in more detail, that a compound argument is neutralized by any 
conjla’cting argument which is not itseZf preempted. Given just 
the information in the Nixon Diamond, for example, our inheri- 
tance reasoner won’t conclude either that Nixon is a pacifist or 
that he isn’t. It won’t conclude that he is a pacifist, since the 
information contained in the net provides the materials for con- 
structing an argument to the contrary; it won’t conclude that 
he ‘isn’t a pacifist, since the net also provides the materials for 
constructing an argument that he is. 

Although our approach is based, generally, on the skeptical 
idea that such paths tend to neutralize each other, the special 
brand of skepticism we adopt here is restricted in two ways. First, 
we suppose that only compound paths can be neutralized; and 
second, that paths can be neutralized only by conflicting paths 
which are not themselves preempted. Both of these restrictions 
are important; we examine them in turn. 

As an example of a net containing non-compound conflict- 
ing paths, consider I’4 (Figure 4). (Again, take a = Nixon and 
p = Pacifists.) According to the definition we provide, I’4 will 
permit both the conflicting paths o + p and a + p: our reasoner 
will conclude from I’4 both that Nixon is a‘pacifist and that he 
isn’t. This may seem odd, especially in light of our cautious, 
skeptical approach to I’s. It may appear, from a certain point 
of view, that I’4 presents us with nothing but a limiting case of 
the phenomenon found in I’s-so that consistency of principle 
should lead us to conclude, if I’z doesn’t permit either the path 
a + q -+ p or the path a + r + p, that I’d, likewise, shouldn’t 
permit either of the paths o + p or a f, p. But it is also possible 
to isolate a point of view from which our different treatment of 
the conflicting paths in I’s and I’4 seems just right. 

Remember, we are talking about the design of an inheritance 
reasoner, a mechanism for drawing conclusions from a certain 
kind of database-a set of statements that can be represented as 
the set of links in a net. Now when we think of the net I’s as 

a database, it is, of course, consistent: in fact, under the Nixon 
interpretation, all of the statements contained in I’s are true. 
Obviously, no one would want a reasoning mechanism to draw 
inconsistent conclusions from consistent information; so it follows 
at once that I’s can’t permit both the paths a -+ q + p and a + 
r 7% p, since these two paths enable the contradictory statements 
that Nixon is a pacifist (a --) p) and that he isn’t (a f+ p). On 
the other hand, when you look at I’4 as a database, it already 
contains both of these statements; so in this case, we are faced 
with the problem of drawing the appropriate conclusions from 
information that is already inconsistent. 

This is a notoriously diificult problem, but we find that it is 
both possible and useful to adopt in the context of inheritance 
reasoning a proposal that was originally formulated, in [Belnap, 
f977a] and [Belnap, 1977b], as a guide for deductive reasoning in 
the presence of inconsistency. As a general principle, then, we 
propose that a reasoner ought to be able to conclude from a set 
of statements every statement actually contained in that set, at 
least-even if the set is inconsistent. It follows, of course, that if 
our inheritance reasoner were actually provided with the infor- 
mation contained in I’,-that Nixon both is and isn’t a pacifist- 
then it ought to conclude from this information both that Nixon 
is a pacifist and that he isn’t. Thinking of deductive reason- 
ing, Belnap argues that the presence of inconsistent information 
shouldn’t enable a mechanical reasoner to derive arbitrary con- 
clusions, as it would in the case of a theorem prover using clas- 
sical logic. We have shown in [Thomason et al., 19861, however, 
that this much of the motivation behind relevance logic is al- 
ready built into inheritance reasoning, even in the simple case of 
monotonic inheritance. Thus, the reasoner we describe here will 
conclude from P4 both that Nixon is a pacifist and that he isn’t, 
but it won’t then go on to draw irrelevant conclusions from this 
contradiction: it won’t conclude, for instance, that Nixon is a 
Democrat. 

The second restriction on our broadly skeptical outlook is 
the idea that even compound arguments are neutralized only by 
those conflicting arguments that are not themselves preempted. 
This idea-that certain compound arguments cau be, as we say, 
preempted by others- really lies at the heart of our approach, 
allowing us to transform a simplistic and dogmatic skepticism 
into something much more interesting. 

Again, we begin with an example, the net I’s (Figure 5). 
This net results from adding the link p ft r to I’r, and the 
interpretations of these two nets will overlap as well. Just as 
before, we take a = Tweety, q = Birds, and r = Flying Things; 
but now let’s shift the earlier interpretation so that p = Penguins, 
giving some plausibility to the new link p f, r. If things are like 
this, what should we conclude about Tweety: does he fly or 
not? Well, there are two paths to consider: a + p + q + r, 
which enables the conclusion that Tweety flies, and a + p $, r, 
which enables the opposite conclusion. Since both of these paths 
are compound, and they enable conflicting conclusions, simple 
skepticism would bar us from reaching any conclusion at all. 
But evidently, in this case, we should reach a conclusion: we 
should conclude, in fact, that Tweety doesn’t fly-since he is 
a penguin, and penguins don’t fly. The reason we are able to 
conclude here that Tweety doesn’t fly-even though he is a bird, 
and birds fly-is that penguins happen to be a specific kind of 
bird, so that, in case of conflicts, the information we have about 
Tweety in virtue of his being a penguin should override whatever 
we would otherwise suppose to be true of him simply because he 
is a bird. 

This illustrates the central intuition behind preemption: that 
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Figure 4: I’4 Figure 5: I’z 

information about specific kinds should be aIlowed to override 
information about more general kind& As we define it, a path 
will be preempted in a net, roughly, when the net provides the 
materials for constructing a conflicting argument based on more 
specific information. In the case of I’s, for example, we will want 
to say that the path a 4 p 3 q --f r (telling us that Tweety flies 
because he is a bird) is preempted, since: (i) the net permits the 
path a t p (telling us that Tweety is a penguin), (ii) p’s are 
a specific kind of q (penguins are a specific kind of bird), and 
(iii) the net contains the direct link p $, r (telling us directly 
that penguins don’t fly). Focusing on (ii), it is easy to see in 
terms of the net topology that what makes p more specific than 
q, according to rz, is simply the fact that this net permits a path 
(a direct link, in this case) from p to q. So, restating in a way that 
combines (i) and (ii), we can say that the path a 3 p + q 4 r 
is preempted in I’s -precisely because there is a certain kind, p 
(penguins), such that I’z both permits the path o -+ p 4 q .- - . . 
(telling us that Tweety is a penguin and that penguins are a 
specific kind of bird) and contains the direct link p $, r. 

In this form, the idea of preemption can easily be generalized 
to apply to arbitrary nets and paths. We will say that a path 
of the form z -+ r + u 4 y (telling us that z’s, as V’S, are y’s) 
is preempted in a net I’ just in case there is a node z (z # v) 
such that I’ both permits a path of the form z + 71 + L 4 
TZ 4 t, (telling us that x’s are %‘a, a more specific kind of V’S) 
and contains ihe link z f, y (telling us that 28, in particular; 
are not y’s). With exact symmetry, we will say also that a path 
of the form z 4 T 4 w f, y is preempted id- if there is a 
node z (z # w) such that I’ both permits a path of the form 
x + r1 A B + & + v and contains the link z + y. 

5. The definition 

Let’s use the symbol ‘k’ to stand for the permission rela- 
tion, so that “I’ + 0’ means that the net I’ permits the path 
6. We have now considered the central principles underlying our 
approach to this idea-forward chaining, along with a certain 
kind of restricted skepticism. It remains only to organize these 
principles into a rigorous definition. Our adoption of forward 
chaining suggests that a bottom-up, inductive definition should 
be possible. In order to frame such a definition, however, we 
need to be able to associate with each path Q some measure of 
its %omplexity” in a given net I’, in such a way that it can be 
decided whether I’ + Q once it is known whether I’ b u’ for each 
path 19 less complex in I’ than u itself. 

The natural thing to think is that we might be able to iden- 
tify the complexity of a path, in this sense, with its length-but 
this won’t work, since shorter paths can be neutralized by longer, 
conflicting paths. To see what will work, we first introduce an 

auxiliary idea. As we recall from Section 2, a path is a joined 
sequence of links containing a negative link, if at all, only at the 
very end. Let’s say, now, that a generalized path is a sequence 
of links joined like an ordinary path, except that it can contain 
negative links anywhere, and perhaps more than one. Formally, 
we can catch this idea by specifying that each assertion is a gen- 

As it turns out, this idea of degree provides just the right 
notion of path %omplexity” for an inductive definition of b, the 
permission relation between nets and paths: it can be decided 
whether I’ k cr entirely on the basis of information regarding 
paths whose degree in I’ is less than that of Q, along with in- 
formation about the direct links contained in I’ itself. On the 
other hand, in order to assure that degr(o) should always be 
well-defined, we need to restrict our attention to nets which are 
acyclic, in the sense that they contain no generalized paths whose 
initial nodes are identical with their end nodes. (This is a com- 
mon restriction; much of the analysis in [Touretaky, 19861, for 
instance, also applies only to acyclic nets.) Given this idea of 
degree, then, and restricting ourselves to acyclic nets, we can 
now present our definition of the permission relation. 

Although the definition is inductive at heart, it has the over- 
all structure of a definition by cases: it deals separately with 
compound paths and direct links (non-compound paths). Only 
in the case of compound paths is there any need to resort to 
induction; direct links can be handled all at once, as follows. 

Case I: CY is a direct link. Then I’ k o iff 0 E I’. 

It is important to note that even if c is a direct link, it could easily 
turn out that degr(c) > 1, since I’ might contain a compound 
generalized path from the initial node of c to its end node. On 
the other hand, if degr(a) = 1, then the path a has to be a direct 
link. Thus, in addition to taking care of all the direct links at 
once, whatever their degree, Case I serves also as the basis clause 
for the induction on degree which extends the permission relation 
from direct links to compound paths. The inductive clause is as 
follows. 

Case II: Q is a compound path with, say, degr(o) = n. As an in- 
ductive hypothesis, we can suppose it is settled whether 
I’ + u’ whenever degr (a’) < n. There are then two 
subcases to consider, depending on the form of B. 

u is a positive path, of the form x 4 ul -B u -+ y. 
Then I’ k Q iff 

(a) r + x + u1 4 U, 

04 u --) Y E r, 

(4 x f+ Y er r, 

(d) For all u such that I’ k x + T 4 v with 
v f, y E I’, there exists z (% # V) such that 
r1=x--t~~1-‘Z--,7z~wand%-ryEr. 

Q is a negative path, of the form x 4 ul 4 u + y. 
Then I’ + u iff 

(a) r j= x --) u1 4 U, 

W u % Y E r, 

(4 x + Y e r, 
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(d) For all v such that I’ b z 4 r 4 v with 
v 4 y E I’, there exists z (Z # v) such that 
r1=5--,71424724uandzf,yEr. 

It should be clear that this definition of the permission re- 
lation accurately represents the general approach to inheritance 
reasoning described in Section 4. Case I tells us that any state- 
ment actually contained in a net should be permitted by that 
net. The two subcases of Case II, dealing respectively with pos- 
itive and negative compound paths, are perfectly symmetric. In 
each subcase, the clauses (a) and (b) capture the idea of for- 
ward chaining: compound paths are permitted by a net only if 
they can be constructed by adding direct liiks from the net to 
initial permitted segments of those paths. The clauses (c) and 
(d) take care of conflicts. What (d) says is that, even if a com- 
pound path is constructible through forward chaining, it can be 
permitted only if each potentially conflicting compound path is 
preempted. Of course, only compound conflicting paths can ac- 
tually be preempted, since preemption involves the intermediate 
nodes of path, and direct links have no intermediate nodes; but 
if, for skeptical reasons, we don’t want a path to be permitted 
which conflicts with an unpreempted compound path, we cer- 
tainly don’t want to permit a path that conflicts with a direct 
link. This is the force of the clause (c). 

Both the clauses (a) and (d) in the inductive step refer to 
other paths of a certain form permitted by the net; but this is 
no problem, because at any step in the induction, paths of this 
form will always have a degree less than that of the path being 
considered. 

6. Some examples 

This definition of the permission relation yields the adver- 
tised results applied to the nets I’1 through I’s from Section 4. 
In order to highlight some of the interesting features of our defi- 
nition, we consider here the paths permitted by a couple of more 
complicated nets. 

We mentioned in Section 4 that credulous (or belief-hungry) 
inheritance reasoners would tend to associate with nets contain- 
ing compound conflicting paths a number of different consistent 
extensions, or fixed points. It is tempting, therefore, to sup 
pose that the set of paths permitted by a given net under the 
present skeptical analysis might simply be the intersection of 
the various extensions associated with that net according to the 
credulous analysis provided by [Touretzky, 19861. Nowever, nets 
like I’s (Figure 6)-which have the topology of faested Nixon 
Diamonds-show that this is not so. In this case, we have 
I’s k a 4 p $, q (the potentially conflicting path a 4 8 4 t 4 q 
poses no problem; this path is not permitted, since its initial seg- 
ment u 4 8 4 t is itself neutralized by the path u 4 r $, t). 
But the path a 4 p 4, q isn’t contained in all the Touretzky ex- 
tensions associated with this net; some contain instead the path 
O-+8-+t-+Q. 

The net I’7 (Figure 7) illustrates a different feature of our 
definition, resulting not so much from our particular brand of 
skepticism as from our adherence to forward chaining. Here, we 
have I’7 k o +p--+Q+S. The potentially conflicting path 
a 4 p 4 r $, 8 poses no problem since its compound initial 
segment o 4 p 4 r conflicts with the direct lmk a $, r. On 
the other hand, though I’7 permits a 4 p 4 q 4 8, and so 
supports the statement u 4 8, the net does not permit the path 
p 4 q 4 8, and indeed does not support the statement p --) 8. 

This kind of situation can seem a bit anomalous if one’s ideas 

Figure 6: I’s 

about inheritance reasoning are conditioned by the top-down or 
aproperty flow” approach, according to which individuals are 
supposed to inherit their properties strictly in virtue of belonging 
to certain classes of things-their ancestors in the network- 
which possess those properties. The problem is that, while I’7 
supports the statement that the individual a is an s, it is unclear 
how o could have inherited this property. After all, the only 
immediate ancestor of a in the network is the node p. According 
to the topdown approach, then, a must have inherited all the 
positive properties it does inherit simply in virtue of being a p; if 
it possess any particular property, such as being an 8, this could 
only be due to the fact that p’s possess that property. But as we 
have seen, I’7 doesn’t support the statement that p’s are 8’s. 

Against the background of the bottom-up or ‘argument con- 
struction” view of inheritance reasoning, however, the situation 
presented by this example is perfectly coherent. Since I’r con- 
tains the materials for constructing unpreempted, compound ar- 
guments enabling both the conclusion that p’s are s’s and the 
conclusion that p’s are not s’s, our broadly skeptical point of 
view forces us to withhold judgment, endorsing neither of these 
conclusions. The individual a, though, is a particular p for which 
the general kind of argument enabling the conclusion that p’s 
are not 8’9 is blocked: that argument depends on the informa- 
tion that p’s are r’s, but I’7 tells us explicitly that a is not an 
r. Since the general argument that p’s are not s’s is explicitly 
blocked for this particular individual, then, it cannot conflict in 
the case of o with the argument that p’s are s’s; so we conclude 
that a is an 8. 

7. Implementations 

The theory described here has been implemented as a Com- 
mon Lisp program. The algorithm is a line-by-line translation of 
the definition in Section 5, except that, for reasons of efficiency, 
the degree degr(u) of each path u in P is not actually computed. 
Instead, the program performs a topological sort on the graph 
and orders potential paths according to the number T(x) which 
the topological sort assigned to the last node x of each path. It is 
easily shown that if ur = 5~1 4 ~1 4 yr and uz = xz 4 72 4 yz 
and T(yr) c T(yz), then either degr(q) < degr(uz), or there is 
no generalized path from zi through yz to yl. Therefore, a pro- 
gram whose notion of path complexity is based on topological 
order will always produce results in agreement with our defini- 
tion. It may consider paths in a different order than a definition 
based on degree, but it will only do so in situations where this 
cannot affect the result. 

In addition, we have been exploring parallel marker prop- 
agation inheritance algorithms. Purely parallel nonmonotonic 
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Figure 7: I’7 

inheritance-skeptical or credulous-is not possible on a marker 
propagation machine due to the necessity of handling preemp- 
tion. (By ‘purely parallel” we mean in time bounded by a con- 
stant times the depth of the graph.) However, a marker prop- 
agation machine can quickly find all relevant paths and make 
the uncontested inferences; it can then fall back on a serial al- 
gorithm to handle the difficult cases. We have developed a hy- 
brid (parallel-serial) inference algorithm for answering particular 
queries about whether a net I’ supports statements of the form 
x 4 y or x f, y. This algorithm runs in time proportional to 
W⌧, Y) l 1 1  + Nd⌧, ~1 1 , 

w 
h 

ere D(x, y) is the depth of the query 
(the length of the longest path between x and y) and ZVc(x, y) 
is the number of nodes contested with respect to the query. (A 
contested node is any node P on a path from z to y such that 
paths x --t ~1 --+ z and x + rz $, z exist; they need not be 
permitted paths.) The algorithm will be described in detail, and 
its correctness proved, in [Horty et al., 19871, a more complete 
version of this paper. 

8. ConcIm3ion 

We have presented in this paper a new, skeptical theory of in- 
heritance reasoning in nonmonotonic semantic networks. As far 
as we know, this theory represents the first significant alternative 
to the analysis of nonmonotonic inheritance reasoning presented 
in [Touretzky, 19861. (A 1 ess radical alternative is described in 
[Sandewall, 19861; although it differs in some ways from Tour- 
etzky’s, Sandewall’s is nevertheless a credulous theory.) The 
fact that there should be distinct but, perhaps, equally well- 
motivated accounts of correct reasoning in this context comes 
as something of a surprise; it is reminiscent of the situation in 
philosophical logic, where there are rival logic5 embodying dis- 
tinct conceptions of correct deductive reasoning. 

In the context of inheritance reasoning, the existence of these 
distinct approaches has a number of theoretical consequences, 
which we are exploring in our current research. Much of this 
research is focused more or less directly on inheritance theory: 
we are studying the relations among the different analyses of 
nonmonotonic inheritance reasoning [Touretzky et. al, 1987a], 
[Touretzky et. al., 1987b], and working to extend some of these 
analyses to more expressive nonmonotonic network languages. 
However, it is also possible that this research will shed some 
light on more general treatments of nonmonotonic reasoning. It 
has been shown in [Etherington, 19871, for example, that the de- 
fault logic of [Reiter, 19801 can be used to provide a specification 
for correct inheritance reasoning in nonmonotonic semantic net- 
works: Etherington establishes a close correspondence between 
these networks and certain kinds of default theories fUnetwork 

default theories”). But these results, linking default logic to 
nonmonotonic inheritance, presuppose a credzsZou8 analysis of 
inheritance reasoning; this bias towards a credulous approach 
to nonmonotonic reasoning is in fact built into both Reiter’s de- 
fault logic and the nonmonotonic logic of [McDermott and Doyle, 
19801. Since, as we have shown, there turns out to be au equally 
well-motivated skeptical theory of nonmonotonic reasoning, at 
least in the case of semantic networks, it might be useful at this 
point to seek a weaker version of default or nonmonotonic logic, 
exhibiting instead a bias toward skepticism-or perhaps a more 
general logic that is neutral between the credulous and skeptical 
approaches. 
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