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Abstract 

The use of circumscription for formalizing 
commonsense knowledge and reasoning requires 
that a circumscription policy be selected for 
each particular application: we should specify 
which predicates are circumscribed, which pred- 
icates and functions are allowed to vary, what 
priorities between the circumscribed predicates 
are established, etc. The circumscription policy 
is usually described either informally or using 
suitable metamathematical notation. In this pa- 
per we propose a simple and general formalism 
which permits describing circumscription poli- 
cies by axioms, included in the knowledge base 
along with the axioms describing the objects of 
reasoning. This method allows us to formalize 
some important forms of metalevel reasoning in 
the circumscriptive theory itself. 

1. Introduction 

The logic approach to the problem of knowledge rep- 
resentation, proposed by John McCarthy (1960), stresses 

the analogy between a knowledge base and an axiomatic 
theory. Knowledge about the world can be expressed by 
sentences in a logical language, and an intelligent pro- 
gram should be able to derive new facts from the facts 
already known, as a mathematician can derive new math- 
ematical results from the facts already proved. 

Further research has shown that formal theories like 
those used for the formalization of mathematics are not 
adequate for representing some important forms of com- 
monsense knowledge. The facts that serve as a basis for 
default reasoning require more powerful representational 
languages. Several extensions of the classical concept of a 
first-order theory have been proposed to resolve this dif- 
ficulty. We concentrate here on one of these extensions, 
the concept of circumscription (McCarthy 1980, 1986). 

Here is a simple blocks world example illustrating 
McCarthy’s approach to formalizing default reasoning. If 
there is no information to the contrary, we assume that 
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a given block is located on the table and that its color is 
white. Block B is red. We want a formalization of these 
assumptions to allow us to conclude by default that all 
blocks other than B are white (since B is the only block 
which is known to be an exception) and that all blocks 
are on the table (since no information to the contrary is 
available). We can express the given assumptions using 
two abnormality predicates abl and ab2, as follows: 

TabI x A block x > ontable x, (1) 

Tab2 x A block x > white x (2) 

(the blocks that are not abnormal are on the table; the 
blocks that are not abnormal in a certain other sense are 
white). The axiom set will also include the formulas 

block B, red B, l(white x A red x). (3) 

Axioms (1 )-( 3) are not sufficiently strong for justify- 
ing the desired results about the positions and colors of 
blocks, because they do not say whether there are few 

or many “abnormal” objects. McCarthy’s method con- 

sists in circumscribing abl and ab2, i.e., assuming their 

“minimality” subject to the restrictions expressed by the 
axioms. 

There are several different minimality conditions 
that can be applied in conjunction with a given axiom set. 
Each kind of minimization corresponds to a different “cir- 
cumscription policy”. In the existing literature on appli- 
cations of circumscription, these “policies” are described 
either informally, or using some kind of metamathemati- 
cal notation, or by establishing a standard convention, as 
in “simple circumscriptive theories” of (McCarthy 1986). 

It has been suggested, on the other hand, that cir- 
cumscription policies may be described by axioms in- 
cluded in the knowledge base along with the axioms de- 
scribing the objects of reasoning (Lifschitz 1986), (Perlis 
1987). We propose in this paper a simple but power- 
ful formalism for expressing such “policy axioms”, which 
leads us to the concept of a circumscriptive theory. Our 
circumscriptive theories are similar to McCarthy’s simple 
circumscriptive theories in the sense that such a theory 
is completely determined by its axioms, without any ad- 
ditional metamathematical specifications. But this for- 
malism is substantially more expressive; for instance, we 
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can axiomatically describe priorities in the sense of (Mc- suffice. In this preliminary report we discuss only such 
Carthy 1986). cases.’ 

In this preliminary report we discuss only a special 
case of circumscriptive theories: theories with “propo- 
sitional” policies. Most applications of circumscription 
discussed in the literature use policies of this kind. The 
final version of the paper will present the general case and 
will also contain proofs of theorems and the discussion of 
methods used for determining the effect of circumscrip- 
tion in the examples. 

Accordingly, we build formulas of a circumscriptive 

theory from the symbols included in ;F and P and the 

additional propositional constants Vpc (P E P, C E 
.7= U P) using the symbolism of second-order predicate 
logic. (Thus formulas may include function and predi- 
cate variables of any arities; we need such variables for 
expressing minimality.) Vpc reads: C is varied as P is 
minimized. 

The paper does not assume familiarity with previous 
work on circumscription. A better understanding of the 
motivation behind the theory of circumscription can be 
gained by reading (McCarthy 1980, 1986). 

2. Theories with Propositional Policies 

A circumscriptive theory T is defined by a finite 
set of formulas, axioms. We will sometimes identify 

2’ with the conjunction of (the universal closures of) 
its axioms. Thus 2’ can be viewed as a sentence. If 

FUU = {Cl,.. . , Cl} then we will also write this sen- 
tence as T( Cl, . . . , Cl). 

The language of a circumscriptive theory is defined 
in the same way as a first-order language, i.e., by a finite 
set .?= of function constants and a finite set P of predicate 
constants. (We treat object constants as 0-ary function 
constants.) 

Consider an m-ary predicate constant P E P. In 
any model of a given axiom set, P is interpreted as a 
mapping from Urn, where U is the universe of the model, 
into {false, true). By the minimality of P at a point 

(Xl,... ,x,) we understand the impossibility of replac- 
ing the value of P at that point by a smaller value (i.e., 
changing it from true to false) without losing the prop- 
erties expressed in the axioms.’ To make this condition 
precise, we should specify which additional changes in the 
values of P and in the values of other predicates or func- 
tions, if any, we are allowed to make along with chang- 
ing P(zr,... , xm) to false. In other words, for any n- 
ary function or predicate constant C E .7= U P and any 

point (~1,. . . , yn>, a circumscription policy should define 
whether the value C(yr, . . , yn) is allowed to vary in the 
process of minimizing P(xi, . . . , xm). 

This can be done formally by introducing, for 
each predicate constant P E P and each constant 
C E .7= U P, an additional predicate constant Vpc, 
whose arity is the sum of the arities of P and C. 
“Policy axioms” will contain subformulas of the form 

VPC(Xl,~~-~~rn,Yl,~-- , yn) expressing that, when P is 
minimized at point (~1,. . . ,xm), C may be varied at 

(Yl,... , yn). In simple applications, however, we think 
of each predicate Vpc as being either identically true or 
identically false, so that the propositional symbol cor- 
responding to the universal closure of this formula will 

’ This understanding of minimality is in the spirit of 
the “pointwise” approach to circumscription (Lifschitz 
1986). 

3. The Semantics of Circumscriptive Theories 

To define the semantics of circumscriptive theories, 

we will construct, for every predicate constant P E P, 
a sentence which expresses the minimality of P. Let 

Cl,.**, cl be distinct variables similar to Cr , . . . , Cl (i.e., 
if Ci is an Ia-ary function (predicate) constant then c; is 
an n-ary function (predicate) variable). Recall that P is 
among the constants Cl,. . . , Cl, so that there is a corre- 
sponding predicate variable p in the list cl, . . . , cl. Then 
the minimality condition for P in T is 

GEc1 . . . C[[P@) A 1p(-j’) 

where ZY is a tuple of distinct object variables. This for- 
mula will be denoted by Minp. It says that it is im- 
possible to change the interpretations of the constants 

Cl,..., Cl so that the value of P at some point z will 

change from true to false, the interpretations of the con- 
stants Ci which are not allowed to vary as P is mini- 
mized will remain the same, and the new interpretations 

of Cl,. . . , Cl will still satisfy T. 
For example, if the language of T has two unary 

predicate constants, P and Q, and no other predicate or 
function constants then Minp is 

dxpq[P(x) A lp(x) A (+pp 3 p = P) 

A (+PQ 1 q = Q> A T(P, q)l- 
(4’) 

2 The generality afforded by treating Vpc as a predi- 
cate is needed for describing some circumscriptions with 
multiple minima, as in Example 2 from (McCarthy 1980), 
and for formalizing temporal minimization, as in Section 
6 of (Lifschitz 1986). 
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A model of a circumscriptive theory 2’ is any model 
M of the axioms of T which satisfies Minp for each P E 
P. A theorem of T is any sentence which is true in every 
model of T. 

We have defined theorems in model-theoretic terms, 
not in terms of proofs. In view of the incompleteness 
of second-order logic, a definition based on deduction in 
second-order predicate calculus would not be equivalent 
to the one given above. We will develop the theory en- 

tirely in model-theoretic terms. In particular, the expres- 
sions “A implies B”, “B follows from A”, where A, B are 

sentences or sets of sentences, will mean that every model 
of A is a model of B. 

The definition of a model given above includes a min- 

imality condition for each predicate constant P in the 
language. This looks like a serious limitation: in applica- 
tions, it is often desirable to minimize only some of the 
available predicates. But minimizing a predicate P re- 
mains nominal unless the circumscription policy at least 
allows us to vary P itself. It is easy to see, for instance, 
that the assumption ~Vpp makes the first 3 conjunctive 
terms in (4’) inconsistent, and thus makes the whole for- 
mula trivially true. We can use the axiom Vpp to say 
that P is in fact among the predicates which we want to 
minimize.3 

The minimality conditions Minp have a simple 
model-theoretic meaning. Denote the interpretation of a 
symbol C in a model M by M[C]. In particular, for each 
propositional constant Vpc, M[Vpc]l is a truth value, 
true or false. We are interested in the models of the 
axioms of T with a fixed universe U. Let Mod(T, U) be 
the set of all such models. For every predicate constant 
P E P and every 5 E Urn, where m is the arity of P, we 
define a reflexive and transitive relation (preorder) LP’ 
on Mod(T, U) as follows: Ml spt Mz if 

(i) Ml [VQC] = M~[VQC] for all Q E P, C E F U P, 

(ii) for all C E F-UP, if MI [Vpc] = f a2se then Ml [C] = 

M2ucn, 
(iii> M~UP~(t> 5 M2UPII(S). 

Symbol 2 in part (iii) of this definition refers to the 
usual ordering of truth values (false < true). Notice 
that, in view of (i), Ml [Vpc] in (ii) can be equivalently 
replaced by M2 [Vpc] . 

Proposition 1. A model M E Mod(T, U) is a model of 
T iff it is minimal in Mod(T, U) relative to each preorder 
<pt. - 

3 This use of Vpp was suggested by John McCarthy. 

To formalize the 
troduction, we take 

4. Example 

blocks world example from the in- 

3 = (B), 7’ = (block, ontable, white, red, abl, ab2). 

Formulas of a circumscriptive theory with these function 

and predicate constants may also contain 6 x (1 + 6) = 42 

propositional symbols Vpc (P E P, C E 3 U P). Let 
the axiom set of T consist of formulas (l)-(3) plus the 
axioms 

V abl,abl, (5) 

V abl,ontabIe, (6) 

V ab2,ab2, (7) 

V ab2,white, (8) 

V ab2,red- (9) 

Axioms (5) and (7) tell us that abl and ab2 are mini- 
mized. According to (6), the interpretation of the predi- 
cate constant ontabZe is allowed to vary in the process of 
minimizing abl. This postulate is motivated by the fact 
that abl is introduced for the purpose of describing the 
locations of blocks. Axioms (8) and (9) are motivated by 
similar considerations: ab2 is used for characterizing the 
colors of blocks. 

It can be proved that the formulas 

abl x 3 false, ab2 x s x = B (10) 

are theorems of T. These formulas, along with axioms 
(1) and (2), imply the desired conclusions: 

block x > ontable x, block x A x # B > white x. 

Remark 1. We decided for each abnormality predicate 
separately which predicates are varied when that partic- 
ular abnormality is minimized. This is different from the 
use of circumscription in (McCarthy 1986), where the set 
of varying predicates is the same for all kinds (aspects) 
of abnormality. Our approach appears to make formal- 
izations more modular. 

Remark 2. The predicates Vpc used in this example do 
not have function symbols among their subscripts P, C. 
Our formalism allows C to be a function; this would have 
been essential, for instance, if we introduced the function 
symbol color instead of the predicates white and red. 
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5. Generating Sets 7. Adding Axioms to a Circumscriptive Theory 

Formulas (10) provide, in a sense, a complete de- 
scription of the effect of minimization in the theory T 
from Section 4. Let us say that a formula of a circum- 
scriptive theory is V-free if it does not contain any of the 
symbols Vpc. We say that a set G of V-free theorems 
generates T, or is a generating set for it, if the union of G 
with the V-free axioms of 7’ implies all V-free theorems 
of T. Using this terminology, we can say that formulas 
(10) generate T. 

Every circumscriptive theory is generated, of course, 
by the set of its V-free theorems. But in this example 
we have a very simple generating set: a finite set of first- 
order (actually, even universal) formulas. Finding a sim- 
ple generating set for a given circumscriptive theory is 
important, because the predicates Vpc play an auxiliary 
role, and we are primarily interested in V-free theorems. 
Methods for computing simple generating sets for some 
classes of circumscriptive theories based on the ideas of 
(Lifschitz 1985) will be p resented in the final version of 
the paper. 

6. Policy Axioms 

The axioms of a circumscriptive theory which are 
not V-free will be called its policy axioms. 

The policy axioms used in Section 4 tell us that some 
of the propositions Vpc are true, but say nothing about 
the others. We could have included the negations of any 
of the remaining propositions Vpc in the list of axioms, 
and that would not have changed the set of V-free theo- 
rems of ‘7. This is a special case of the following theorem: 

Proposition 2. If V pc does not occur in the axioms of a 
circumscriptive theory T then the circumscriptive theory 
obtained from T by adding 1Vpc to the axiom set has 
the same V-free theorems as T. 

Thus only “positive” information about Vpc is es- 
sential. We will include only such information in axiom 

sets. 

The following notation is useful for specifying policy 
axioms. If M c P and C c 3 U P then V[M : C] 
stands for the conjunction APE-, cEc Vpc (expressing 
that the predicates and functions in C are varied when 
the predicates in M are minimized). For instance, axioms 
(5)-(g) can be written in this notation as 

The set of theorems of a circumscriptive theory T 
depends on the set of its axioms non-monotonically: some 
theorems of T may be lost if axioms are added to T. For 
instance, if we add the formula Tontable B to the axioms 
of the theory from Section 4 then the first of theorems 
(10) will be lost ( 1 g a on with its corollary ontable B). In 
this extended theory abl, like ab2, is equivalent to x = B. 

There is an important special case when adding an 
axiom makes the set of theorems bigger, as in first-order 
theories. We say that a policy axiom is pure if it contains 
no symbols from 3 U P. For instance, axioms (5)-(g) 
are pure policy axioms. 

Proposition 3. If a circumscriptive theory T2 is ob- 
tained from a circumscriptive theory Tl by adding pure 
policy axioms then 

(i) every model of T2 is a model of Tl, 
(ii) every theorem of Tl is a theorem of TX. 

Add, for instance, Vblock,&,& to the axiom set of the 
theory T from Section 4. The new axiom expresses our 
intention to minimize the predicate block. The new the- 
ory has some theorems that are not theorems of T, such 
as block x = x = B. But, according to Proposition 3, no 
theorems of T are lost. 

8. Priorities 

In some cases, the axioms imply a “negative corre- 
lation” between two minimized predicates, so that one of 
them can be minimized only at the price of increasing 
the values of the other. It may be desirable to establish 
relative priorities between the tasks of minimizing such 
“conflicting” predicates (McCarthy 1986). For example, 
when circumscription is used for describing an inheritance 
hierarchy with exceptions, it may be necessary to assign 
a higher priority to minimizing exceptions to “more spe- 
cific” default information. 

In the formalism of this paper, assigning a higher 
priority to P E P than to Q E P can be expressed by the 
axiom V[P : Q] (i.e., T/p*). With this axiom, minimiza- 
tion guarantees that no change in the interpretation of Q 
would make it possible to change a value of P from true 
to false. 

Consider, for instance, the following facts about the 
ability of birds to fly (McCarthy 1986). Things in general, 
normally, cannot fly; birds normally can. But ostriches 
are birds which normally cannot fly. Symbolically, 

V[abl : abl, ontable], (11) 
lab1 x > Tflies x, (13) 

V[ab2 : ab2, white, red], (12) Tab2 x A bird x 3 flies x, (14) 

(we drop the braces around the elements of M and C). ostrich x > bird x, (15) 
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Tab3 x A ostrich x > Tflies x. 

We would like to get the theorems 

abl x G bird x A -ostrich x, 

(16) l(happened A A happened B). (22) 
The circumscriptive theory with axioms (19)-(22) plus 
the policy axioms 

V[abl : abl, happened], (23) 

ab2 x s ostrich x, (17) V[ab2 : ab2, happened], (24) 

ab3 x s false. 

Natural candidates for the policy axioms are 

V[abl : abl, flies], 

V[ab2 : ab2, flies], 

V[ab3 : ab3,fZiesl. 

(18) 

But these axioms do not lead to the desired result, be- 
cause there is a conflict between minimizing ab2 on the 

one hand and minimizing abl and ab3 on the other. This 
can be fixed by assigning different priorities to the abnor- 

mality predicates .* We assign the highest priority to ab3, 
because the corresponding axiom, (16), gives the “most 
specific” information, and the lowest priority is given to 
abl. Formally, (18) is replaced by the following set of 
policy axioms: 

V[abl : abl, flies], 

V[ub2 : abl, ab2, flies], 

V[ub3 : abl, ub2, ab3, f lies]. 

(18’) 

This makes the theory stronger (Proposition 3). The cir- 
cumscriptive theory with axioms (13)-( 16) and (18’) has 
the desired property: it is generated by formulas (17). 

9. Reasoning about Priorities 

All policy axioms in the examples above are (con- 
junctions of) atoms. The use of more complex policy 
axioms allows us to formalize some forms of metalevel 
reasoning in the circumscriptive theory itself. Consider 
the following example. 

Imagine that we have two sources of information 
about the world, and that we assume by default that any 
event reported by any of the sources has in fact happened: 

Tab1 x A reported1 x > happened x, (19) 

-mb2 x A reported2 x > happened x. 

Two announcements made by different sources contradict 

has models of two kinds: in some of them happened A is 
true, in the others happened B. 

Giving a higher priority to one of the predicates ubl, 
ub2 would allow us to arrive at a definite conclusion about 
which event has actually happened. If, for instance, we 
consider the first source more reliable then we can add 
V[abl : ub2] to the axiom set. In the extended theory we 
can prove happened A and Ihappened B. 

The reasoning leading to the choice of a prioritiza- 
tion can be formalized in the following way. Using the 
propositional symbols pref erred1 and pref erred2, we 
can describe our approach to establishing priorities in 
this example by the axioms 

preferred1 > V[ubl : ub2], (25) 

preferred2 > V[ub2 : abl]. (26) 

In the theory with the axioms (19)-(26) we can prove 

pref erred1 > happened A, pref erred2 > happened B. 

Adding the axiom preferred1 would make happened A 
and 7 happened B provable. In this formulation, the 
choice of priorities is established by logical deduction. 
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