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Abstract

The thesis of this paper is that default reasoning
can be accomplished rather naturally if an appro-
priate strategy of belief revision is employed. The
idea is based on the premise that new beliefs in-
troduced into a situation change the structure of
current beliefs to accomodate the new beliefs as
exceptions. It is easy to characterise these excep-
tions in beliefs if we extend the belief language to
include some modal operator and prefix the ex-
ceptions with the operator. This serves to make
the exceptions syntactically explicit, which can
then be processed in a routine way by a default
reasoning theorem prover.

I. Introduction

Default reasoning tries to model the phenomenon of hu-
man reasoning that makes us jump to conclusions that
are typical of what we know. Paraphrasing a classical ex-
ample, a case of default reasoning is this: If we know that
Tweety is a bird, and that birds in general can fly, then we
are led to conclude that Tweety can fly if there is no evi-
dence of an exception such as the fact that Tweety might
be a penguin. There are many approaches that have been
taken to characterise default reasoning. Among them are
the following three: The nonmonotonric logic of [McDer-
mott and Doyle, 1980}, the default logic of [Reiter, 1980},
and the circumscription approach of [McCarthy, 1980].

Belief revision basically concerns the maintenance of
a knowledge base to reflect changes made to it. Some
major efforts in this field are the truth (or reason) main-
tenance systems of [Doyle, 1979] and [de Kleer, 1986},
where the emphasis is on justifying beliefs. In this paper
our emphasis is on devising a strategy of modifying be-
liefs (given as a set of sentences) syntactically in 2 manner
that will support default reasoning.
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The thesis of this paper is that default reasoning can
be accomplished rather naturally if such a strategy of be-
lief revision is employed. The idea is based on the premise
that new beliefs introduced into a situation (or world)
changes the structure of current beliefs to accomodate
the new beliefs as exceptions. It is easy to characterise
these exceptions in beliefs if we extend the belief language
to include some modal operator and prefix the exceptions
with the operator. This servesto make the exceptions of a
belief syntactically explicit, which can then be processed
in a routine way by a default reasoning theorem prover.
A fundamental difference in our approach to default rea-
soning from those of McDermott and Doyle, Reiter, and
McCarthy is the syntactic explicitness we confer on ex-
ceptions. In their approaches, exceptions are not directly
distinguisable from defaults in the set of sentences denot-
ing beliefs.

A broad description of our approach is this: First we
establish the concept of worlds of beliefs, where a world
can be regarded as a state of beliefs or knowledge of an
intelligent reasoning agent (The agent would “move” from
world to world upon the acquisition of new beliefs). As-
sociated with a world are certain belief-related entities to
be described shortly. Second, we use a modal operator
in our language of beliefs to represent the exceptions to
beliefs. This is described in Section II, where we also out-
line a method to deduce “default theorems” from a set
of beliefs. With this language, we can then manipulate
the beliefs to reflect new exceptions upon acquiring new
beliefs. This is outlined in Section III.

We take beliefs to be characterised by a type of
clausal formulas which we shall introduce in the next sec-
tion, and regard a clause as a unit of belief. With each
world we associate these three entities:

B — the new belief
Bc — the current beliefs
Bp — the future beliefs



Bc represents the set of current beliefs — those things
that the agent believed when he first moved into the cur-
rent world. B represents the new belief acquired by the
agent in the current world after an unspecified period of
stay. For simplicity, we assume new beliefs come in one
unit at a time (the unit is a clause). Also, we shall not be
concerned with how the new belief is acquired since this
depends on what the agent is. Two scenarios can prevail
when f is acquired by the agent:

1. The new belief is consistent with the current beliefs.
We regard 8 as an additional information over the
agent’s current beliefs, and add it to B¢ to yield his
future beliefs Br.

2. The new belief is inconsistent with the current be-
liefs. We regard § as a correction of what the agent
believed, and revise B to Bp in a manner to be
elaborated later.

The acquisition of the new belief # heralds the agent’s
transition into a new world whose current belief is the
Bpr just derived from the previous world. The cycle of
hopping from world to world continues indefinitely in this
fashion.

The first scenario above is straightforward, where be-
lief revision is more akin to belief refinement since By is
more specific than B¢ in its characterisation of what the
agent believes. The second scenario is where all the chal-
lenges lie, and so we shall concentrate on it for the rest of
the paper. We now turn our attention to the belief lan-
guage and how default reasoning is employed on beliefs.

II. Default Reasoning on Beliefs

We call an expression of the form op where ¢ is some
first-order formula a crterm. A clause is a disjunction of
literals and o-terms. Free variables in clauses are assumed
to be universally quantified.

Example: -Bird(z) v Fly(z) V oPenguin(z) is a
clause. orterms are used to demote exceptions, in the
sense that oPenguin(z) is the exception to the expres-
sion that all birds can fly. For a more natural reading,
we shall often express clauses in non-clausal form such as
Bird(z) A ~aPenguin(z) — Fly(z).

A pew belief is a clause without o-terms, i.e., we as-
sume new beliefs to be exception-free. A belief is a clause,

80 B¢ and By are sets of clauses which may contain o
terms.

As we shall see, the proof theory for beliefs is simple
and conceptually appealing. There are two notions of
logical consequence:;

Bt ¢  which informally means
“Strictly speaking, o is true”

Bol ¢ which informally means
“By default, @ is true”

where B i8 a set of beliefs and ¢ is a first-order formula.

1. Definition of Bl ¢

For a set B of beliefs, define sirici(B) to be the set of
clauses transformed from B by replacing each o-term oy
by ¢ (ie., strict(B) is a theory where exceptions are
not distinguishable). We then define B+ p iff p is a
theorem of strict(B) according to some standard system
of first-order provability (such as resolution refutation).
We shall also use the turnstile & for standard first-order
provability since there should be no danger of confusion.
Hence Bt o iff strict(B) & .

3. Definition of Bol ¢

A term like o9 in a set of beliefs B is interpreted to mean
that ¢ is provable from B, i.e., t iff B - ¢. Informally,
we define B o |- p iff © is provable in a deduction system
incorporating the rules of first-order logic and the meta-
inference rule;

From B\, infer o

This can be defined more rigorously using a system of
modal logic, but we shall not do this since the broad con-
cepts behind the meaning of o - should be clear. Know-
ing this meaning, we can adapt the resolution refutation
method to incorporate the meta-inference rule using the
following strategy:

1. o-terms are not unifiable with any literal.

Example:  oPenguin(z) and -Penguin(Penny)
are not unifiable.

2. The free variables of o-terms in a clause are affected
by substitutions when that clause is used during res-
olution.

Example: Resolving the unit clause ~Paa with the
clause Paz vV of3y(Qzy A -~Pyb)) v Rzb yields the
resolvent o{3y(Qay A ~Pyb)) V Rab where the free
variable z has been substituted with a.
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3. A oterm op that has no more free variables is re-
moved from the clause if, by “spawning” another res-
olution refutation process to prove ¢ from B, the
prove fails. If op was the last item in the clause and
the proof failed, then as usual the resolvent is the
empty clause, o say, which denotes the success of the
refutation.

The rationale for this strategy is that we try to re-
fute terms like oy, i.e., disprove B |- o, in the same way
that we try to refute ordinary literals through unification.
Hence the o-terms may be viewed as “literals” where the
“unification” process is the spawning of a separate reso-
lution refutation process.

Example:  The resolvent cy(Qay A ~Pyb) v Rab ob-
tained above can be reduced to Rab if we can refute
Bt 3y(Qay A ~Pyb).
Example: Let B be these beliefs:
Bird(z) A ~aPenguin(z) — Fly(z)
Penguin(z) — -Fly(z)
Penguin(z) — Bird(z)
Bird(T'weety)
Penguin(Penny)

Then strict(B) is the same theory but with the first
clause replaced by Bird(z)A~Penguin(z) — Fly(z). We
then have the following (free variables assumed univer-
sally quantified):

(a)  BF Bird(z) A ~Penguin(z) — Fly(z)
Birds that are not penguins can fly
(b) BV Bird(z) — Fly(z)
We cannot conclude that all birds can fly,
or, strictly speaking, not all birds can fly
() B ol Bird(z) — Fly(z)
By default, all birds can fly,
or, generally speaking, all birds can fly
(@)  BY Fly(Tweety)
Strictly speaking, we cannot conclude that
Tweety can fly
(e B ot Fly(Tweety)
By default, (or probably) Tweety can fly
(f) B olf Fly(Penny)
We cannot conclude that by default Penny
can fly
(h) B oV Fly(Chirpy)
We cannot conclude that by default Chirpy
can fly

We now explain the derivation of those cases above
involving o I
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Case (c). To prove B o | Bird(z) — Fly(z) by res-
olution refutation, we resolve Bird(k) and ~Fly(k) (k
is a skolem constant) with the first clause of B to get the
resolvent nPenguin(k). Now we spawn another refuta-
tion process to refute B I Penguin(k), which succeeds
(note that the skolem constant k does not unify with
Penny). So the original resolvent oPenguin(k) is re-
duced to the empty clause o, and we have thus proved
B o} Bird(z) — Fly(z).

Case (e). To prove B o F Fly(Tweety), we re-
solve —Fly(T'weety) with the first clause of B to get
-Bird(Tweety) V oPenguin(Tweely). Spawning a refu-
tation process to refute B - Penguin{Tweety) succeeds,
8o our resolvent is reduced to ~Bird(T'weety). This finally
resolves with Bird(T'weety) to yield the empty clause.

Case (f). Similarly to case (e), we encounter the re-
solvent ~Bird(Penny) V aPenguin(Penny).

Further resolution with other clauses yield the resolvent
oPenguin{Penny). But now we cannot reduce this fur-
ther since we cannot refute B  Penguin(Penny). Hence
B olf Fly(Penny).

Case (g). Similarly to the above two cases, we en-
counter the resolvent ~Bird(Chirpy)vaPenguin(Chirpy).
This reduces to ~Bird(Chirpy) since we can refute B -
Penguin(Chirpy). But we cannot refute ~Bird(Chirpy).
Hence B o If Fly(Chirpy).

III. Belief Revision Strategy

In section I, we mentioned that belief revision occurs when
the new belief § is inconsistent with the current beliefs
Bc. In the context of o I, we can take this to mean that
belief revision occurs if BU{f} ol and BU{f} o}
=g for some formula . We shall assume this to be our
policy for belief revision for the time being. Later we shall
remark on a more relaxed policy. Before we proceed, we
need some definitions.

The unification condition of a literal and its conju-
gate Rty ...r, and ~RY ...#, is the formula
(ts =8 A.. Aty = t,). Wesay two literals are unifiable if
they are conjugates with a unification condition that does
not include the equality ¢ = ¢’ where ¢ and ¢’ are distinct
constant symbols (i.e., we take ¢ # ¢’ as an axiom for
distinct ¢, ¢').

Example:  The unification condition of ~Qzb and Qaz
is(z=aAb=1z).



We assume that with each new belief § there is one
specially designated literal denoted by ug. This literal will
be printed in bold, such as in Bird(z) — Fly(x). This
designation of ug is to reflect the preferred way to express
a new belief, where ug is the consequent implied by the
antecedent in an implication. This scheme is a natural one
since there is normally a preferred way to express beliefs.
For instance, the expression Bird(z) — Fly(x) is more
natural than the expression -Fly(z) — ~Bird(x).

If o is a unification condition, then f[o] is the formula
derived as follows: First transform the clause § to the
clause #’ by replacing ug by —o, then prefix §’ by the
universal quantifiers Vv, ...V, for each variable v; in §’
to obtain o).

Example: For the new belief § = -Pzy Vv Qax and
the unification condition ¢ = (2 = a A b = ),

pflo] = VaVy(~Pzy Vv -(z =a Ab = z)).

Simplifying, we get Slo] = VaVy~(PzyAz=aAb=2)
=Vy-~{PbyAz=a) =-Jy(PbyAz=a)

Now we can explain the belief revision strategy. The
clauses in the future beliefs B are:

* the new belief A, and
% clauses derived from B¢ as follow:

1 For each clause in B¢ that does not contain lit-
erals unifiable with ug, put the clause in By.

2 For each remaining clause ¢ in Bg, first trans-
form it to ¢’ in which each literal { of ¢ that is
unifiable with ug has been replaced by {vo-g|o]
(¢’ is therefore weaker than c). Put the resultant
¢ in Br.

(In both 1 and 2, "literals” mean ordinary liter-
als, not those that occur in crterms.)
Example: To illustrate case 2, assume -Bird(z) Vv
Fly(z) is is a clause in Bc. This clause would be trans-
formed to the following before being put in By:
=Bird(z) v Fly(z) v oOstrich(z)
if B = ~Ostrich(y) v -Fly(y)
=Bird(z) v Fly(z) v o(z = Tweety)
if p = -Fly(Tweety)
=Bird(z) v Fly(z) V o(Caged(Tweety) A z = Tweety)
if B = —Caged(Tweety) Vv -Fly(Tweety)
~Bird(z) v Fly(z) vo(3z HasAilment(z, z))
if § = HasAslment(y, z) v -Fly(y)

It can be verified that the By thus derived is consis-
tent with 8. To see this quickly, suppose Bc contains just

Fly(Tweety), and § = -Fly(Tweety). Then Bc and
are inconsistent. However, the transformed clause in By
is  Fly(Tweety) vo(Tweety = Tweety), which is a valid
formula. So By contains this valid formula and g, and is
therefore trivially consistent with § (valid formulas can
optionally be dropped from Br since they provide no ad-
ditional information). Thus, the transformation process
serves to weaken the clauses of Be to ensure consistency

with g.

Example: I f = ~Ostrich(y) v Bird(y) and Bc is

~Bird(z) v Fly(z) v aPenguin(z)
=Ostrich(z) v ~Fly(z)
Ostrich(Ossie)

then Bg is inconsistent with 8 since

Bcu{B} ot Fly{Ossie), and
Bc U {8} o —Fly(Ossie).

Using the belief revision strategy, By is

~Bird(z) v Fly(z) vV oPenguin(z) v oOstrich(z)
=Ostrich(z) v ~Fly(z)

Ostrich(Ossse)

-Ostrich(z) Vv Bird(z)

Note that Br o I ~Fly(Ossie) but Br o lf Fly(Ossie).
The latter can be demonstrated using the adapted resolu-
tion refutation method described earlier, where it will be
found that the term oOstrich(Ossie) cannot be removed
from the resolvent encountered.

At the beginning of this section, we remarked that
belief revision occurs when B¢ is inconsistent with g
(all reference to consistency here is taken with respect
to ol ). It seems natural to relax this condition to
allow belief revisions to also occur under certain situa-
tions. For imstance, in the Bc of the last example, if
Ostrich(Ossie) is not a clause in Bc, then although Bc
would not be inconsistent with £, we would still like the
belief revision to take place. The intuitive motivation be-
hind this is the observation that for this reduced B, we
have Bg U {f} U {320strich(z)} as inconsistent. Gen-
eralizing this, a more relaxed policy for proceeding with
belief revision is when Bg U{f}US is inconsistent, where
S is a set of formulas of the form 3z, ... 3z, P(z1, ..., 2s),
where P is an n-ary predicate in Bc (i.e., every predicate
in B¢ has a "witness”).

There are two points about the belief revision strat-
egy that should not be missed. First, any clause in Bg can
play the role of the default expression for the next world.
Thus if # in the above example was -~Superbre2d(z) v
Fly(x) (all superbreed birds can fly), then the future
beliefs Br would be
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-Bird(z) v Fly(z) vV aPenguin(z)
-Ostrich(z) V ~Fly(z) v aSuperbreed(z)
Ostrich(Ossie)

~Superbreed(z) v Fly(z)

This will allow us in the future world to deduce that os-
triches generally cannot fly:

By ot~ Ostrich(z) — —~Fly(z),
unless they are superbreed birds, which can fly:

Br \ Superbreed(z) — Fly(z).

The second point is that the strategy has a natu-
ral “undo” property. Suppose the above four clauses are
now the current beliefs Bc, and the new belief is that
superbreed birds are in fact abnormal, and so cannot fly,
i.e., B =~Superbreed(z) vV -Fly(x). First, observe that
Bg ¥ Ostrich(z) — —Fly(z), i.e., we are unable to derive
from Bc our past belief that, strictly speaking, ostriches
cannot fly. Now, Br is

-Bird(z) v Fly(z) V oPenguin(z) V oSuperbreed(z)
-Ostrich(z) v ~Fly(z) v oSuperbreed(z)
Ostrich(Ossie)

~Superbreed(z) V Fly(z) V oSuperbreed(z)
-Superbreed(z) vV ~Fly(z)

where the last clause is 8, and the first and fourth clauses
are weakened from the corresponding clauses in Be. It
can be shown that Br F Ostrich(z) — -Fly(z), ie.,
we have recovered our past belief that, strictly speaking,
ostriches cannot fly.

IV. Conclusion

This paper has given an illustration of our thesis that de-
fault reasoning can be accomplished rather naturally if
an appropriate strategy of belief revision is employed. An
assumption behind our model of default reasoning is that
the beliefs in the very first world are consistent and free
of exceptions (i.e., contains no crterms). The consistency
of these first beliefs ensures that B of every accessible
future world will also be consistent. As we move from the
first world, exceptions will be gradually incorporated into
the beliefs as o-terms. This strategy of tagging exceptions
with a modal operator is reminiscent of, yet fundamen-
tally different from, McDermott and Doyle’s use of the
modal operator M, McCarthy’s approach of designating
a predicate to stand for abnormal circumstances (circum-
scription), and Reiter’s default logic. The fundamental
difference is that in our approach, the exceptions to de-
faults are syntactically explicit.
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1t seems that a disadvantage of our approach is that
formulas tend to get longer and longer as more exceptions
are acquired. We have not investigated whether this is a
serious disadvantage, and we suspect that the syntactic
complexity arising from the longer formulas merely makes
explicit the theorem-proving complexity latent in other
approaches to default reasoning.

We have not in this paper probed deeper into the
relationship between our approach to default reasoning
and the more classical approaches. Further study of this
relationships will clarify many relevant issues and perhaps
also uncover some intriguing facts. Finally, we remark
that our approach also embodies an elegant illustration of
non-monotonic logic: The theorems provable in Bc may
not always be provable in Br. These are the theorems
that were previously inferred but now have to be retracted
because they are inconsistent with new beliefs.
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