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We propose a theory of default reasoning satisfying a list 
of natural postulates. These postulates imply that know- 
ledge bases containing defaults should be understood not 
as sets of formulas (rules and facts) but as collections of 
partially ordered theories. As a result of this shift of per- 
spective we obtain a rather natural theory of default rea- 
soning in which priorities in interpretation of predicates 
are the source of nonmonotonicity in reasoning. We also 
prove that our theory shares a number of desirable prop- 
erties (completeness, soundness etc.) with the theory of 
normal defaults of R. Reiter. 

We limit our discussion to logical properties of the 
proposed system and prove some theorems about it. 
Modal operators or second order formulas do not appear 
in our formalization. Instead, we augment the usual, 
two-part logical structures consisting of a metale& and 
an object level, with a third level - a referential level. llxe 
referential level is a partially ordered collection of de- 
faults; it contains a more permanent part of a knowledge 
base. Current situations are described on the object level. 

e metalevel is a place for rules that can eliminate some 
the models permitted by the object level and the refer- 

ential level. 

We begin by introducing and justifying a list of five 
postulates we believe a theory of default reasoning 
should satisfy. 
-nIElE POSTuLATES : 

(Dl) A theory of default reasoning should take into 
account the fact that predicates have different inter- 
pretations in different situations. The number of such 
interpretations is potentially infinite, but not all of 
them are equally plausible. 
(D2) The structure of defaults should be compatible 

with a hierarchical organization of a knowledge base. 
Jn particular, it should admit inheritance of properties 
and exception handling. 
(D3) The structure of defaults should allow existence 

of coarse and subtle versions of the same problem; 
the passage from coarse to subtle versions should be 

possible by effectively computable rules. 
(D4) The theory should distinguish between local 

and global consistency of a knowledge base. This 
means it should postulate a structure of defaults such 
that an inconsistency does not imply any formula. 

(D5) Interpretations of data should be effectively 
computable. 

These postulates are natural. We argue briefly for Dl-D4, 
and then discuss effective computability (DS). 

We take an interpretation (or a meaning) of a fact to 
be a set of its logical consequences in a certain context. 
Since we want to investigate logical properties of default 
reasoning, we naturally assume a context to be given as a 
collection of formulae (i.e. a theory). Then Dl should 
be assumed since defaults, which are supposed to express 
what is normal in a given situation, are not all equally 
plausible. (Cf. also the arguments of D.Marr, 1977; and 
Reiter,1980 p.130). 

D2: A hierarchical organization and inheritance of 
properties make knowledge representation systems more 
efficient. It is also recognized that any general rule must 
have exceptions. Since standard logic does not provide 
means of expressing exceptions efficiently, nonmonotonic 
mechanisms have been proposed to deal with this prob- 
lem. 

D.Marr (1977, and 1982 pp.335 - 361) argued for D3. 
We believe that the coarse and subtle versions of the same 
problem should depend not only on syntactic or efficiency 
considerations like number of resolution steps or depth 
of search, but also on semantic properties, like 
plausibility or importance. That is, a coarse version 
should have less facts than a subtle one, but it should have 
important facts. 

Effective uxmzputability 

A nrinimal formal assumption assuring effective comput- 
ability of default conclusions is 
A ciplle of Finitism : All considered theories have finite 

models. 

This is not a radical postulate, because 
(a) it is possible to base a semantics of a large fragment 

of natural language on finite Herbrand models, (cf. 
Kamp, 198 1). 
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(b) Ehrenfeucht et al. (1972) prove that if a first order 
sentence is classically consistent, then it has a *-model 
whose domain is finite. Also, the theory FIN of Mycielski 
( 198 1) is strong enough to develop mathematical analy- 
sis, yet each finite part of it has finite models. 
(c) R.N. Johnsoqg-Laird’s (1980,1983) mental models 

are finite structures. 

Finiteness of the universes makes the default 
provability decidable. Intractability of classical impli- 
cation means that finding an interpretation of a fact can- 
not depend on the all facts and all defaults. Hence further 
restrictions on default theories are needed if we want to 
have a practicable theory of reasoning. We believe that 
two ideas may prove useful: the “vivid representations” 
of Levesque (1986), and the restrictions on expressive 
power of the language in which defaults and object theo- 
ries are formulated, (cf. Levesque, 1984; Levesque and 
Bra&man ,1985 ; Frisch ,1985 ; Patel-Schneider,l985). 

Current theories of default reasoning 

The nonmonotonicity of default reasoning is usually cap- 
tured by extending the set of inference rules of classical 
logic. This is true for the standard formalizations of de- 
fault reasoning : the nonmonotonic logic of J.Doyle and 
D.McDermott(l980), (cf. also McDermott, 1982 ) , the 
logic of default reasoning of R.Reiter (1980), and the 
circumscription of J.McCarthy (1980,1986). To differ- 
ent degrees postulates Dl, and D2 are satisfied in all these 
systems. Circumscription, for instance, makes it possible 
to represent exceptions by declaring them abnormal; 
minimizing abnormality has the effect of saying “the 
general rule is correct, except for these special cases”. 
Touretzky (1984) argues that the default logic of Reiter 
cannot handle exceptions in a proper way. Etherington 
(1987) argues in the other direction. 

Effective computability (D5) could be adressed in 
these systems by restricting the classes of formulae dealt 
with, e.g. to universal, function-free sentences. It would 
be difficult however to express in any of these systems the 
fact that one default is more plausible than another one 
(Dl) . Similarly, we do not see any natural extensions of 
these systems which would allow distinction between lo- 
cal and global inconsistency (postulate D4). Neither do 
we see how semantic distinctions between coarse and 
subtle versions (D3) could be incorporated into them. 

In effect, we conclude that there is no clear way of ex- 
tending the discussed default logics to satisfy Dl-D5. 

eories 
We plan now to derive a model theoretical structure of 
defaults from the postulates Dl - D5 . We do this ex- 
plicitly in a series of observations and conclusions. The 
&nclusions make Dl - D5 more precise. We don’t main- 
tain however that they are the only ones possible to draw. 

The arguments for D4 (cf. Levesque, 1984) imply that 
a large knowledge base cannot be considered as a col- 
lection of facts and rules. An intuitively appealing alter- 
native is then to treat large bodies of knowledge as 
collections of theories . Each theory should be consistent, 
but they may contradict each other. 

Conclusion 
ries. 

1. Knowledge bases are collections of theo- 

In other words, instead of KB c Sent we have 
KB c @( Sent ) ; KB means ‘a knowledge base’ , 
Sent stands for all sentences in a given formal language, 
ZP is the standard powerset operator . After this change 
a knowledge base KB may be only locally consistent, i.e. 
all its elements (the subtheories) are consistent, and it 
doesn’t have to be consistent as a whole. But the diffi- 
culty is now in deciding when a theory should apply to a 
situation. Moreover we need a definition of derivability, 
i.e. of the meaning of KB C 9. Butweknow 
already that such a provability relation must be 
nonmonotonic. 

Let’s make an analysis of defaults then. Whatever they 
are, (by Dl) they are not equally plausible. But, if a de- 
fault dl is more plausible than d2 then d2 is not as plau- 
sible as dl. Also, plausibility is transitive. Thus 

A plausibility relation on defaults is a Par- Conclusion 2. 
tial ordering. 

We argued that knowledge bases should be considered 
sets of theories. But a description of a situation is a the- 
ory. This difference in set theoretical types is one of log- 
ical reasons to separate the level of object theory from the 
level of reference, which is a collection of theories that 
constitute a more permanent part of an agent’s body of 
knowledge. Then the only place for defaults can be on 
the referential level. Notice that defaults should not be 
a part of a metalevel, since the metalevel formalizes 
knowledge about knowledge - autoepistemic knowledge, 
for instance. Defaults work not because they are about 
what is known, but because predicates expressing know- 
ledge about a current situation actually refer to them as 
to a background information and use them to eliminate 
logically possible but implausible interpretations (cf. 
Doyle, 1985). 

Conchdsion 3. There exists a separate logical level - & 
referential level - which contains a relatively permanent 
part of knowledge in the form of a partially ordered col- 
lection of theories. Defaults constitute this level. 

We are now in a position to give a technical definition 
of defaults. The function of a default is to provide addi- 
tional, but often only conjectural information. We express 
this function by assuming that, for a formula 4, a default 
is a theory T+ , which can be added to a logical de- 
scription of a current situation whenever 9 appears. 
This is expressed as 9 + T+ - From this and Con- 
clusions 1 - 3 we get: 
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DEFINITION. A referentiai level (or - a referential 
ode2 ) is a structure 

= f ( , < + ) : $ f Formulae ) 

where, for each 1c, , <+ is a partially ordered ( by 
a relation of plausibility) collection of defaults (i.e. of 
$ + T+ ‘s ) for $ . We assume also that all sentences 

have the least preferred empty inteyetation 0 . 

We also suppose that interpretations are additionally 
ranked according to the canonical partial ordering on 
subformulas. This provides a natural method of dealing 
with exceptions, like in the case of finding an interpreta- 
tion of a&P&P with R containing 

b--Y), wd+--Y) where -y would be 
preferred to y - if both are consistent, and both de- 
faults are equally preferred. 

ing set of theories may be a part of a referential 
It is easily seen that R is only ZocaZ& consistent. 

We will use this example later to explain the notions of a 
default proof and a default model. 

9 * T+ 

adult(x) 9 employed(x) & married(x) 

adult(x) & VempZoyed(x) -* dropout(x) 

adult(x) & -,empZoyed(x) + student(x) 

adult(x) & yempZoyed(x) -+ ,has(x,car) 

empZoyed(x) -, adult(x) & has(x,car) 

employed(x) -* taxpayer(x) 

dropout(x) + T studen t(x) 

student(x) * -employed(x) & 
2% adult(x) & -married(x) & -dropout(x) 

student(x) -) employed(x) & 
& married(x) & -, dropout(x) 

(al) 

(a 
(a3 
WI 

W) 
(e2) 

W) 

W) 

WI 

The partial ordering is given by the figure below ; one 
should also remember that we have supposed that special 
cases are preferred to general rules. 

al a2 a4 
I I I 

el sl s2 
I 1 / 7’ 

0 
F3/’ 

e2 0 0 
I 

0 0 

and proofs 
In this section we continue the development of a theory 
of default reasoning that satisfies postulates Dl - D5. 
We define the notion of a model (extension), and proof 

procedures for deciding whether a formula is a conse- 
quence of a system of defaults. 

We have already discussed the structure and ontology 
of defaults. In effect we have decided to augment the 
usual, two-part logical structures consisting of a metalevel 
and ~II object level, with a third level - a referential level. 
The referential level is a collection of defaults. Thus in- 
stead of formal structures of the form 
( , T, I- 1 , where is a metarule (e.g. 
= “formula circumscription” T is an object theory 
to which is applicable, ( some “simple abnormality 
theory” - for instance ) , and I- is a provability 

ssibly extends classical provability by us- 

We follow the exposition of Reiter (1980) since there are 
some similar features in both systems, and from now on, 
we will abbreviate his logic as RDE . 

To define a semantics of default models we need some 
logical notions : 

DEFINITION. 

0 A theory is a finite conjunction (or - equivalently - a 
finite set ) of formulae. 

e A deductive closure operator is a function 
Th : @‘(Sent) 4 B(Sent) 

(a) T c Th(T) , for any T 
(W TWWN = TNT) 
(c) Th(T) is finite, for finite T. 

0 A theory T is consistent if there is no formula + such 
that both # and -+ belong to nt(n . 

We do not require Th(T) to be closed under 
modus ponens and substitution instances of tautologies. 
This allows us to consider deductive closures with respect 
to nonstandard logics, (cf. Levesque,l984; Frisch,1985; 
Batel-Schneider, 1985). Moreover, since we are interested 
only in theories which have finite models, the deductive 
closure of a first order theory can be identified with 
ground disjunctions which are provable in this theory; and 
up to subsumption there are only finitely many of these. 

DEmON. Let T be an object theory, R a set of 
partially ordered defaults. A consistent theory M is an 
extension of T if 

1. TcM 

2. If$cM, reR, r=($, <,) ,and 
J/ + T+ is a most preferred, consistent with M el- 
ement of <+ , then +-bT+ EM. 

( In other words, if a most preferred piece of infor- 
mation about a formula JI is consistent with M , then 
it must have been already assumed. ) 

3. M is deductively closed. 
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4. No subtheory of M satisfies 1 - 3 . 

( This assumption isn’t really necessary, but it allows 
us to eliminate complicated, and interesting, situ- 
ations in which some default information cannot be 
used because of a method of representing facts in T 
orR. ) 

]it is easily seen &at the definition is similar to this one of 
Reiter, except that in our case defaults have to be chosen 
according to the partial orderings. Also, a default is not 
applied if it leads to an inconsistency. This allows us to 
obtain as a direct consequence of the definition : 

PROPOSITION 3.1. ( Soundness) Any consistent ob- 
ject theory has an extension. 

Proof procedure and basic Lqyical rem&s 

We present now a construction of partial models PM,(T) 
of an object theory T which, as we prove, converge to a 
default model (a set of extensions) DM(T) . The method 
of constructing the models PM, and DM is similar to this 
of RDL, except that the partial orderings on associated 
theories are taken into account. This new structure 
changes the mechanism of default reasoning. 

DEPINTTION. A partial model of a formula consisting 
of a sequence of subformulas (possibly one element) is a 
conjunction of their most preferable interpretations. It 
must be however consistent. 

More formally, let $I be a formula and +i, 
llilm, its subformulas. For each i, let <i 

be a partially ordered collection of theories of J/i : 
<i. = ((pi * Tb, pi* T’,,..., Jli -P T: ), <i). Let 

wd4 = <i 
ilrn 

= ( f : f(i) = #i * T; , where 
i 2 m and I 5 ni ) , 

fk+) = IfEw@): A f(i) is 
i<m 

consistent with + I. 

Let < be the partial order induced on fi(+) by the 
orderings of associated defaults and the canonical order- 
ing of subformulas. We define then the partial models 

PM(+) of a formula #B as the most likely theories of 

9 given by bk#), < ) : 

PM(+) = ( (P &@ : @ = A f(i) and f is a 
&m 

minimal element of (fi(+), < ) 1. 

The partial models pick up from the referential level the 
most obvious, or - perhaps - most important, information 
about + . This immediate information may be insuffi- 
cient to decide the truth of the formulae of (9 . For in- 

stance, if cp = bird(Tweety) ,md 

PM(+) = (bird(x) + has(x,wings) ) u ( $ ) , 

but only PM ( I’M ( + 1 1 contains the formula 
has(x,wings) + flies(x) , then iteration of the PM op- 

eration is needed to decide whether Tweety flies. 

DEFINITION. Let t , t, , . . . , tk be theories. Then 

PM,(t) = PM(t) 
PM(( tl , . . . , tk 1) = PM(t,) u . . . u PM(t,) 

PMn+,W = PM 1 Th(m) : m E PMn(t) )) 

Pv&) = U (PM,(t) : n < 00 ) . 

PMJt) is a set of many models that interpret t . It will 
be infinite even if all the PM”(t) are one element sets. 
Clearly, we are interested in those elements of PM,(t) 
which contain maximum of information. 

DEFlINITION. We define the default models of t 

DM(t) = (m E PM,(t) : m is maximal under c ) . 

It is easy to check that 
PROPOSITION 3.2. DM(t) is a collection of least 
fixpoints of PM. 

We are now in a position to define two notions of 
provability : a weak provability corresponding to 
provability isl RDL, and strong provability, which is more 
like the classical one. 

The notion of a default proof of a formula cy from 
T and is defined similarly to Reiter( 1980). The 
difference is that the set of prerequisites of D is defined 
for most preferred sets of defaults D ,only. Also we re- 
quire that all available information be used. Notice that, 
under the definition below, given 

(4) + 4 <* (G * 8) 9 with a preferred as a de- 
fault for cp, /3 doesn’t have a default proof unless cy 
is inconsistent with default consequences of the object 
theory. 

DEFINITION. (weak provability) 

T *hp- + iff there exists a sequence 
m, , . . . + n., and a sequence DO, . . . , Dk such 

that 

1. + E Th(T u DJ 

2. -OPT , m, 6 PM(T) 

3. Di+l = mi , mi+l E PM@0 
Results parallel to these of RDL can be proven. The 

proofs extend Reiter’s techniques by taking into account 
our new definitions. 

We use I= to denote the classical satisfaction in 
Hintikka or Herbrand models. Then m b q, iff 

d-m , when m is deductively closed. 
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PROPOSEITON 3.3 (completeness of weak provability) 

T *IT-- + iff there exists m E D&f(T) 
such that m j= $ . 

THEOREM 3.4. (cf. Theorem 2.1. of RDL). 

Let E be a set of sentences. Let EO = T, 

E. r+l = Th(Ei) U U ( w : (a, O)E 

the most preferred element of <a , 
aEEi , and o is consistent with E 1. 

Then, E is an extension of T iff E is the union of 
Ei’s . 

OREM 3.5. 

E is an extension of T iff E is one of default models 
DIM(T) of T. 

As a corollary to Theorem 3.5. we obtain : 

OREM 3.6. (default completeness) 

AZ1 facts in an extension are weakZy provable. 

The class of provable formulas, as defined above or in 
RDL, corresponds to a set of beliefs an agent may en- 
tertain about a situation T given defaults R . These 
beliefs may be inconsistent. But it is possible to define a 
stronger notion of provability, according to which no two 
inconsistent formulae are provable. Since all our models 
are finite and there are only finitely many of them for fi- 
nite R’s , we can express the strong provability as follows: 

DE ON. (strong provability ) 

T I- 9 iff there exists a k such that 
for QnY sequence m, , . . . , mk-, , where 

m, E PM(T) and mi+r E PWmJ , there exists a 
sequence DO, . . . , Dk such that Do=T , 

Di+l c mi ,and (seTh(TuDk) . 

PROPOSITION 3.7 (completeness of strong provability) 

T I- C$ iff 9 is true in ail models m e DM(T). 

Changed preferences 
and metwdes 

9 

We need also a definition of provability with metarules. 

DE ON. We define 

T b- + iff m IT- d , for all models 
m E DM(T) . 
I.e. + is provable from R and T under the metarule 
M, if M applied to any default model yields cp . 

We have defined the basic notions of our theory. We 
explain them now using the example from Section 2. We 
show how changed preferences modify default theories 
and are a source of nonmonotonicity in our formalization 

of default reasoning. We will also see that the strong and 
the weak provability differ. Finally, we say a few words 
about the metalevel. 

EXAMPLE (continued) 

Consider the following two object theories: 
U. aduZt(John) & - employedJohn) 
S. student(John). 

Their partial models are described below 1 : 

(u) 
6) 

, where U, = (u, a2, el ) , 
and U. = (u,a4, el ). 

where Ui = U, u (HI) , 

and U;= U, u (dl,a4). 

where U.. = U2 u (a2) . 

PM( Ui) = (U3 ) , where Us = v,’ u (dl) = UF . 

PM,(u) = ( 47; u (sl), u; u {sl), u; u (s2), 

v: u WI, v, 1 - 

Also PM,(U) = PM,(U) , for k 2 4 . 

DM(U) = ( {u9a2,e1,d1,a4,s1) , 
(u, a2, el, dl, a4, ~2)) . 

DAY(S) = ((sl,dl,a3,a4,eP9s) , (s2,dB,al,el,s]). 

The following facts hold (assuming the standard Th ) : 

S I- has(John, car) & empZoyed(John) \/ 
V - has(John, car) & - empZoyed(John). 

S *}- has(John, car) and 

s *br -has(John, car) . 

It is possible to think of S as information complementing 
U. In this case: 

DM(U+ S) = ((s,s1,a3,e1,a4,u9d1) ) 

u+s I- - has(John, car) & -dropout(John) 

and U I- dropout(John) , while 

u+s I- -, dropout(John) . 

We observe then the no e of t theory : 
a theory ( U + S ) does not prove all theorems of its 
subtheory (U) , although the same set of preferences 
serves as a referential model. As expected, metarules like 
the generalized CWA (Minker, 1982) allow us to prove 
stronger results than a combination of an object theory 
with a referential level alone : it is not true that 
w7r Aas(John,car) , but we have 
w+L%~) I= - has(John,car) . 

1 Assuming that the theories (al) ..* (~2) constitute the 
whole referential level. 
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We have shown that it is possible to develop a natural 
theory of default reasoning based on the separation of the 
referential leve? from the object level and the metalevel; 
in this theory defaults are logical theories partially ordered 
by a relation of plausibility. We’ve demonstrated how 
priorities in interpretation of predicates on the level of 
reference can be the source of nonmonotonicity in rea- 
soning. ‘We’ve also proven that our theory shares a num- 
ber of desirable properties with the theory of normal 
defaults. But additionally it satisfies the five postulates 
D l-D5. Namely, in our approach, consistency of a 
knowledge base is checked quite often but only with re- 
spect to a small part of it; a knowledge base may contain 
incompatible information (global inconsistency), but 
contradictions shall not appear in the same default model 
(local consistency). Exception handling is particularly 
easy - an exception is just another theory; adding an ex- 
ception means adding a new theory to the referential 
level. The differences between coarse (PM) and subtle 
(DM) versions of a problem are semantically justifiable: 
one can expect that - due to the ordering of defaults - 
important information will appear in the very first iter- 
ations of PM. Moreover, existence of different theories 
of the same situation supports the principle of finitism. 

The existence of a referential level is a very natural 
postulate. Collections of relational databases can be 
“vivid” referential levels for knowledge based systems; 
natural language in the form of (on-line) dictionaries, 
grammars, etc. can be taken as the referential level for 
commonsense reasoning (Zadroiny,l987). The 
“ubiquity of preference rule systems” (Jackendoff , 1983; 
Rock, 1983 ) also gives psychological plausibility to the 
proposed model. 
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