
Allard and William F. Kaemmerer 
Artificial Intelligence Department 

Honeywell Corporate Systems Development Division 
1000 Boone Avenue North 

Golden Valley, Minnesota 55427 

Abstract 

We have developed and implemented a plan 
representation system which has been used as the 
knowledge representation for COOKER, a real-time 
process monitoring and operator advisory system for 
batch manufacturing processes. This representation 
(called “Goal/Subgoal” or “GSG”) associates two 
hierarchies of subgoals with each goal: a sequence 
of subgoals which need to be satisfied to satisfy the 
superior goal, and a set of requisite subgoals which 
must remain satisfied throughout the process of 
satisfying the superior goal. By explicitly 
representing correct process operating behavior 
instead of the infinite space of problem behaviors, a 
broad range of process operation anomalies can be 
recognized and diagnosed in terms of a single, 
simple description of the system. In this paper we 
compare GSG to our first approach at representation, 
describe the GSG representation, show how goals 
are used to monitor processes, and describe some 
results of our installation of COOKER in a 
manufacturing plant. 

I. Introducticbn 

A representation of batch manufacturing processes has 
been developed, implemented, and installed in a factory as part 
of a system which uses a goal and subgoal representation to 
monitor the plant in real-time and provide the plant’s operator 
with advice about its operation. This “Goal/Subgoal”, or 
“GSG” representation uses two hierarchies of subgoals attached 
to each goal to represent both the sequence of subgoals which 
need to be satisfied in order to satisfy a superior goal (i.e., the 
“phases” of a process), and those subgoals which need to 
remain satisfied throughout the process of satisfying a superior 
goal (i.e., the “requisites” of a process). The hierarchy of 
sequenced subgoals is used to represent the “batch” nature of a 
manufacturing process, and the hierarchy of sets of requisite 
subgoals is used to represent the “continuous” nature of a 
process. This representation was adopted from representations 
in the planning literature. 

The GSG approach has several advantages over a 
knowledge representation scheme we initially used in the 
project. The initial approach used a set of rules for recognizing 
phase transitions within the batch manufacturing process, 
expectations for conditions and events, a set of rules for 
recognizing problems within phases, a set of diagnostic rules 
describing problem/cause trees, and another set of rules 

lThis report describes work performed at Honeywell. Mr. Allard’s current 
address is Gensym Corporation, 125 Cambridge Park Drive, Cambridge, 
MA 02 140. Please address correspondence to Dr. Kaemmerer. 

describing fixes for verified problem/cause tree leaves. In this 
approach, the primary objects were problems. Conversely, 
GSG describes the space of behaviors in which the process is 
working correctly. By focusing explicitly on this space, the 
system can recognize behaviors falling outside of the process 
description as problem behaviors. This is an improvement over 
approaches which try to explicitly describe the infinite space of 
problem behaviors. 

While both approaches are capable of recognizing and 
diagnosing the same sets of problems, GSG promotes an 
iterative knowledge engineering approach which first results in a 
simple knowledge base that recognizes the presence of all 
problems which affect monitored variables, but diagnoses very 
few of these problems. Further knowledge base work can then 
focus on the ability to diagnose a broader range of problem 
causes. On the other hand, a problem/cause tree approach 
promotes the generation of a forest of these trees. The resulting 
knowledge base permits diagnosis of all problems it contains, 
but it may never reach the point where it covers the full set of 
problems. The GSG representation also unifies all 
representation of the manufacturing process into one structure, 
eliminating the redundancy within the distinct rule sets of the 
problem/cause tree approach. Another advantage of GSG is that 
it helps split the representation of process information away 
from the methodology being used to utilize that information. 
Splitting these two was especially advantageous for us, since we 
were concurrently developing the knowledge base and the 
methodology for applying that knowledge. 

The GSG representation is a part of COOKER, an 
implemented expert system which monitors a batch 
manufacturing process and provides real-time advice to the 
operator. COOKER has several functions: It provides process 
operators with a continuous identification of the current phase of 
the process. It assists the operator in avoiding and/or recovering 
from undesirable process conditions by detecting unexpected 
changes in process variables and informing the operator of them 
via a textual description. Then, it advises the operator of actions 
that should be taken to avoid or recover from the problem, 
indicates the degree of urgency of the advised actions, and 
provides the operator with a notification when the undesirable 
process conditions are corrected. On request, the system 
provides explanations of the rationale behind its suggestions. 
Finally, if COOKER’s resources are insufficient to recommend a 
safe, appropriate response, it refers the operator to his or her 
shift coordinator. 

Currently, COOKER runs on a Symbolics 3640 Eisp 
machine connected via an IBM AT microcomputer to a 
Honeywell TDC 2000 Process Control System and a 
programmable logic controller. COOKER has four main 
subsystems: the data frames, data gatherer, operator interface, 
and inference engine. The latter three subsystems run as 
concurrent processes. The data gatherer sends data requests to, 
and buffers replies from the AT. The operator interface manages 
all windows, displaying advice and questions to the operator, 

394 Knowledge Representation 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



and receiving replies. The inference engine handles unbuffering 
data from the data gatherer into data frames, receives replies 
from the operator, runs the monitoring and problem recognition 
mechanism on the goals, and runs any problem solving required 
by the goals. 

The balance of this paper provides an overview of 
COOKER’s capabilities, our initial Problem/Cause Tree 
approach to knowledge representation, the GSG slots and 
methods for process monitoring and problem recognition, and 
some conclusions about our system 

II. Initial Approac 

A. Domain Features 

Upon the initial investigation of the domain of real-time 
process control advisory systems, several different approaches 
to knowledge representation seemed attractive to us. Some of 
our initial explorations are documented in [Maemmerer and 
Mawby, 19861. The representation was built around the 
concepts of process phases and operator expectations. Since we 
were dealing with a batch process, there were several different 
phases of the process, each of which required very different 
operator actions. Say, for example, we are representing a 
process for making baked beans. In one phase the operator 
would fill a pressure cooker with beans, and in the next phase, 
he or she would heat and pressurize the vessel to cooking levels. 
During each of those phases, operators have expectations about 
conditions which should hold over the process variables, and 
expectations about events which should occur within some time 
frame. If an operator’s expectation about some condition or 
event was not met, he or she would recognize that as a problem, 
or a precursor to a problem, and take action. An example of a 
condition expectation being violated could be the pressure in a 
pressure cooker rising to a level which could pop open one of its 
safety valves. An example of an event expectation being 
violated is the temperature of a cooker not rising above some 
threshold by a certain time during product heatup, showing that 
the process was behind schedule. We surmised that better and 
more experienced operators would have more expectations and 
better recognition of the status of those expectations than novice 
operators. We held that the following were necessary 
components for a real-time process monitoring system: phase 
tracking, condition expectation monitoring, and event 
expectation monitoring. 

B. Problem/Cause Trees 

Based on this analysis, we developed a knowledge 
representation which we called the Problem/Cause Tree 
approach. It included a set of phase transition rules and 
expectations as data objects within the system. In support of 
those mechanisms we had rules which would recognize when an 
expectation had been violated and would start a problem solving 
session. Other rules generated and confirmed or rejected 
possible causes for the problem, and rules associated with each 
problem/cause tree leaf generated operator advice. Using KEE, 
a commercial expert system development environment, as a 
rapid prototyping tool, we made an initial implementation of this 
system. 

As knowledge acquisition and encoding of the received 
information continued, several problems became apparent. The 
first was that much of the information we received had to be 
represented more than once in the knowledge base. This 
presented itself most notably in the cases of phase transition 
rules and problem/cause tree rules. Each phase was supposed to 
take a certain amount of time, and if that time limit was exceeded 
there was a problem. To represent and identify these problems 

we wrote event expectations which mirrored most of our phase 
transition rules, resulting in double representation of a large 
body of information. Also, since our problem solving method 
required explicit rejection of causes as possible problem culprits, 
we needed a positive and negative statement of each 
problem/cause rule, again resulting in a double representation. 
More redundancies occurred in the problem/cause trees, since it 
was difficult to use the information within one tree as branches 
in different problem trees which shared similar causes. A 
second problem was the extent to which our methodologies for 
handling information and doing problem solving were 
influencing the way our rules were written. We recognized that 
a change in our methodology would force us to rewrite most of 
our rules. A third problem surfaced as we tried to extend our 
coverage of the possible problems in the plant. Using the 
Problem/Cause Tree approach, it was not easy to see, by 
inspection of the knowledge base, whether or not a given 
problem type was completely handled, nor how thorough the 
coverage was across the range of possible problems. 

These problems with the Problem/Cause Tree approach led 
us to develop GSG as a method for representing process 
information. The GSG representation is implemented as a 
defined flavor in Symbolics Zetalisp. In this object oriented 
programming scheme, state is retained in slots on each instance 
of a flavor and operations on instances are provided by methods. 
Various goal slots contain pointers to other goals, compiled 
functional objects which implement conditions associated with 
the goal, or strings describing the goal. Several methods have 
been defined on goals which implement condition checking, 
phase transitions, and problem solving. (See [Kaemmerer and 
Allard, 19871 for a description of the method for monitoring 
progress in problem solving.) The central mechanism for 
process monitoring is implemented in the method SATISFIEDP. 
A plant process is represented by a lattice of goals and subgoals. 
Each goal represents a plan to be carried out and its subgoals are 
a decomposition of it into subplans. Goals may also have a set 
of subgoals which represent conditions which must remain 
satisfied during the attempt to accomplish the superior goal. The 
current phase of a process is represented via a goal’s progress 
through its sequence subgoals. Each subgoal can have its own 
subgoals, and record its own progress through them. 

A. Goal/Subgoal Slots 

The following slots are used to build GSG objects. 

Sequence: An ordered list of goals which represents the 
substeps involved in satisfying this goal. Before a goal 
can test its success-criterion or preventers to declare itself 
as satisfied, the goal must determine that each of the 
subgoals in its sequence list, in turn, have been satisfied. 
This slot fills the requirement for phase tracking. 

reventers: A set of goals which must be satisfied 
simultaneously to satisfy a parent goal, after the sequence 
goals are satisfied. If there is a success-criterion it will be 
tested instead the preventer goals, but the preventers may 
still be present and can be used in problem solving, as they 
represent potential causes of failing to satisfy the goal, if 
they themselves aren’t satisfied. 

Success-criterion: A compiled condition which is tested after 
all sequence goals have been satisfied to see if this goal is 
now satisfied. 

equisites: A set of goals which represents conditions which 
are expected to hold throughout the attempt to satisfy this 
goal. These goals fill the requirement for condition 

Allard and Kaemmerer 395 



expectations. If a requisite is not satisfied, then the parent 
goal has a problem. Requisites are checked only if the 
parent goal itself is not satisfied. 

Problem-yet: A compiled condition which is tested if a goal is 
sent a SATISFIEDP message, and was found to be not 
satisfied. If this condition returns TRUE, then this goal 
has a problem. If it returns FALSE, then the lack of 
satisfaction of this goal is a normal event as we wait for 
some process to complete. This condition fills the 
requirement for event expectations. 

Text: An English description of the problem that exists if this 
goal is not satisfied. It is used in status messages to the 
plant operator. 

The subgoals which need to be satisfied to satisfy a 
superior goal are the sequence subgoals and the set of 
preventers. These represent the batch nature of a process. The 
relationship between preventers and the success-criterion is as 
follows: When both are present, it is intended that the success- 
criterion should follow from a conjunction of the conditions 
represented by the preventer goals. Problem solving works by 
inspecting the set of subgoals of a problem goal which are 
blocking satisfaction of the superior goal. Thus, the presence of 
a success-criterion and a set of preventers provides the ability to 
encode Beth an absolute test for satisfaction of the superior goal 
and a set of diagnostic avenues to follow if there is a problem. 

An example of a situation where this is useful is a goal for 
opening some valve A, which has interlocks on its controller 
requiring valves B and C to be closed, and D to be open. In a 
goal such as this, the success-criterion would check the limit 
switch which indicates if valve A is truly open, and preventers 
of this goal would be made with success criteria that check that 
valves B and C are closed, and D is open. With this 
representation, the goal for A will only satisfy if A actually is 
opened. If any of the valves B, C, or D are in the wrong 
position, and are preventing A from opening through interlocks, 
it can be found in the problem solving process by isolating any 
preventer goals which are not satisfied. Also, if there is a case 
where B, C, and D are all in their correct positions, yet valve A 
still does not open, GSG operates correctly by not allowing the 
goal for A to satisfy, as well as rejecting valves B, C, and D as 
possible causes of the problem. 

. Goalhbgoal Methods 

There are three methods associated with the goal flavor 
which perform the operations required to monitor processes 
representing by goal trees. These methods are ACTIVATE, 
SATISFIEDP, and DEACTIVATE. ACTIVATE and 
DEACTIVATE perform initialization and other bookkeeping 
functions for goals and their subgoals, and SATISFIEDP is 
used to check if a goal has become satisfied. When a goal 
receives the ACTIVATE message, it stores the time at which it is 
being activated, sends the ACTIVATE message to all of its 
requisite goals, and sets its current position in the list of 
sequence subgoals to be the head of the list. If the sequence list 
is not empty, it also sends the ACTIVATE message to the goal at 
the head of that list. If there are no sequence goals, it sends the 
ACTIVATE message to all its preventer goals. When a goal 
receives the DEACTIVATE message, it sends DEACTIVATE to 
its requisite goals and to a current sequence goal, if any, which 
is trying to be satisfied. If there is no sequence left, 
DEACTIVATE is sent to any and all preventer goals. The 
SATISFIEDP method is described in detail below. 

COOKER’s inference engine co-process handles GSG 
objects in the following way. For every manufacturing line to 
be monitored there is a top level goal. The ACTIVATE message 
is sent to the top level goal when starting a batch. After the goal 
representing the process is activated, the inference engine enters 

a loop in which it unbuffers any data received from the AT into 
the data frames subsystem, sends each top level goal the 
SATISFIEDP message, spends time doing any problem solving 
required, and then waits if it has arrived at the end of the loop 
before the minimum top level loop time has elapsed. The wait 
state is entered so that the other processes running on the 
machine, such as the user interface, the data I/O process, and the 
garbage collector, will be able to get enough processing time. If 
the call to SATISFIEDP on the top level goal returns TRUE, 
then the goal is sent DEACTIVATE and ACTIVATE again to 
start a new batch. 

The SATISFIEDP message is used to ask a goal if its 
conditions for success have been met, to allow that goal to 
advance itself through its phases, and to allow it to check any 
conditions it monitors, possibly declaring that it has a problem. 
There are three phases to the SATISFIEDP method: advancing, 
success checking, and condition checking. 

I. Advancing 

Upon receiving a SATISFIEDP message, a goal advances 
itself through any remaining sequence subgoals which have not 
yet been satisfied. If there are none left it goes directly to the 
success checking phase. If there are some left it advances by 
sending its next sequence goal a SATISFIEDP message. If the 
subgoal returns TRUE, the subgoal is sent a DEACTIVATE 
message, and the current sequence position is set to the next goal 
down the sequence list, or to NIL if there are no goals left. 
When there are no subgoals left on the sequence list, this goal 
proceeds to the success checking phase. If there is another goal 
on the list, it is sent an ACTIVATE message, and then the 
superior goal loops back to the top of the advance procedure 
again and sends the newly activated subgoal a SATISFIEDP 
message. If any sequence subgoal replies FALSE to a 
SATISFIEDP message, then the goal will not satisfy, and it 
enters the condition checking phase. 

2. Success Checking 

If a goal has succeeded in sequentially satisfying its 
sequence subgoals, or if there were none to start with, the goal 
enters the success checking phase in which it checks its success 
criterion or preventers to see if it can satisfy. In this phase, if a 
goal has a success-criterion condition, that condition is run and 
if it returns TRUE then (Hurrah!) the goal will immediately 
return TRUE in response to its SATISFIEDP message. If the 
condition returns FALSE, then the goal will not satisfy and it 
goes to the condition checking phase. If there is no success- 
criterion, then the goal will check its preventers. If there are 
some preventer subgoals, each is sent a :SATISFIEDP message. 
If all return TRUE then this goal is satisfied and returns TRUE. 
However, if there are no preventers or if one of them returns 
FALSE, then this goal will not satisfy and will enter the 
condition checking phase. 

3. Condition Checking 

If a goal enters the condition checking phase it has already 
been determined that it will be returning FALSE to the 
SATISFIEDP message. In this phase it is checking that its 
expectations, in the form of a requisites list and a problem-yet 
criterion, are still being met. It begins by sending any and all of 
its requisite goals a SATISFIEDP message. If any of them 
return FALSE to the message, then this goal declares that it has a 
problem, since requisites represent condition expectations which 
should hold true throughout an attempt to satisfy this goal. 
Next, if the goal has a problem-yet condition, it tests that 
condition and if TRUE is returned, then this goal is declared to 
have a problem. If the problem-yet condition returns FALSE, 

396 Knowledge Representation 



then it is a normal, acceptable situation that this goal has not yet 
satisfied, and no problem will be declared. After the goal has or 
has not been declared a problem, the goal returns FALSE as a 
response to its SATISFIEDP message. 

Summing up, to become satisfied a goal must first 
sequentially satisfy each of its sequence subgoals. Note that 
progress made in one response to SATISFIEDP persists to the 
next response. Next the goal must receive a TRUE response 
from a success-criterion condition, or if the goal has no success- 
criteriqn, it must have at least one preventer, and all its 
preventers must all be simultaneously satisfied. If a goal is not 
satisfied, then it will be declared to have a problem if any of its 
requisite subgoals is not satisfied, or if it has a problem-yet 
condition and that condition returns TRUE. 

Also note that a goal may return TRUE to one call to 
SATISFIEDP, and FALSE to the next without any intervening 
calls to DEACTIVATE and ACTIVATE. This feature is needed 
for goals which are used as requisites. A requisite may be 
satisfied, not satisfied, and then satisfied again during the course 
of satisfying its superior goal. 

C. An Example 

Figure 1 shows a Goal/Subgoal hierarchy which could be 
used to represent a baked bean cooking process. In the diagram, 
the very thick arrows represent sequence subgoal links, such as 
that between Cook A Batch and Load Beans; the thick arrows 
represent preventer subgoal links, such as that between Loader 
Locked and Relief Locked; and the thin arrows off the side of a 
goal box represent requisite subgoal links. 

Figure 1: Goal Hierarchy for cooking beans 

The following example illustrates the operation of the 
SATISFIEDP method. Suppose that the cooker has just 
finished being loaded with beans, its cap has been shut and 
pressurized, but it has not yet been heated up. The top level 
loop of COOKER’s inference engine has just finished 
unbuffering data from the data gatherer, and sends the 
SATISFIEDP message to Cook A Batch. Cook A Batch enters 
its advancing phase and sends SATISFIEDP to Load Beans. 
Load Beans goes into its advancing phase, finds that there are no 
sequence goals, and enters its success checking phase. This 
goal has a success-criteria which checks a level sensor switch in 
the cooker which turns off when the beans reach the right level. 
Load Beans checks its success criterion, the switch is off, the 
success criterion returns TRUE, and Load Beans immediately 
returns TRUE. Note that it does not go into its condition 
checking phase. Its Loader Locked requisite is probably already 

violated by now, but even if it is violated, it doesn’t matter since 
Load Beans is satisfied. Cook A Batch receives TRUE from 
Load Beans, sends DEACTIVATE to Load Beans, advances its 
sequence list, and sends ACTIVATE and SATISFIEDP to Cook 
Beans. Cook Beans finds it has no sequence list, goes to 
success checking, finds a success-criterion and calls it. The 
criterion finds that the beans have not yet been cooking for 2 
hours, and returns FALSE. Cook Beans enters its condition 
checking phase and sends SATISFIEDP to Cap Locked, 
Pressure=225, and Temp=220, and all but Temp=220 return 
TRUE. Cook Beans responds by declaring itself a problem, and 
then returns FALSE to Cook A Batch. Cook A Batch leaves its 
advancing phase and enters its condition checking phase It 
sends SATISFIEDP to Steam Press=40, which returns TRUE. 
It checks its problem-yet slot which checks if more than 4 hours 
have passed since this cook was started, and it returns FALSE. 
So, Cook A Batch is not satisfied, but it is not a problem, and it 
returns FALSE to the top level loop. When problem solving, 
the system notifies the operator that there is a problem in Cook 
Beans, and that the cooker is not yet up to temperature. 

D. Discussion 

Using the information in goal slots and the operations 
provided by flavor methods, GSG provides the necessary 
abilities we identified for real-time process monitoring: phase 
tracking, condition expectation monitoring, and event 
expectation monitoring. The information needed for phase 
tracking is stored as a pointer to the current position in a goal’s 
sequence subgoals slot. This information is needed to represent 
progress through a batch process. The information needed to 
monitor condition expectations is stored as a set of subgoals in 
the requisites slot. We think of each phase of a batch process as 
a continuous process, and this information is needed to 
recognize problems in continuous processes. The informatmn 
needed to monitor event expectations is stored as a pointer to a 
condition in a goal’s problem yet slot. This information is used 
to recognize problems when progressing through a batch 
process. 

GSG’s positive statement of the desired behavior of a 
process makes it easy to recognize a broad range of problem 
situations. Furthermore, even if a GSG knowledge base is not 
complete enough to provide a diagnosis of the cause of a 
problem, it will nevertheless enable the expert system to 
recognize when a problem exists and alert the operator. This 
feature aids the quick initial representation of new manufacturing 
plants and processes for problem recognition, with the ability to 
incrementally add further diagnostic information at a later date. 

GSG’s hierarchy of goals stems from plan representations 
in the literature, such as the one in Chapman’s TWEAK 
[Chapman, 19851. In TWEAK, steps represent actions, and 
each step has associated with it a set of preconditions and 
postconditions. Plans are generated by starting with a goal, 
which is a desired condition. A temporal ordering on steps is 
then established such that the postconditions of a preceding step 
will assert propositions which satisfy the preconditions of the 
following step, and the step at the top of this hierarchy asserts a 
proposition which satisfies the initial goal. This hierarchy 
imposes a total order on steps within one temporal chain, but 
only a partial order across the full step set. Since the 
preconditions of the step which asserts the initial goal are 
achieved in the same way as the initial goal, these preconditions 
(or the steps themselves) are called subgoals of the initial goal. 

We have adopted this representation for GSG with some 
modifications. Preventer goals are most like the original sets of 
subgoals in plan representations. We have added subgoal 
sequences to somewhat collapse the deep hierarchy that results 
from temporal chains, and to allow a straightforward way to 
selectively activate only the goals which are currently being acted 

Allard and Kaemmerer 397 



upon. The run-time information environment of our system 
does not need access to preconditions and postconditions of 
steps to generate step ordering information. Instead, it needs a 
set of co-conditions to monitor those preconditions which must 
remain satisfied until an action’s postconditions have been 
achieved. This interpretation of preconditions matches well with 
the condition expectations we identified in our initial domain 
explorations. These have become our requisite goals. Also, 
instead of asserting postconditions, our system needs to monitor 
the real process and recognize when the postconditions that an 
action was intended to produce have been accomplished. 
Postconditions have been replaced with the success-criterion 
condition, and a problem-yet condition has been added to 
monitor the system and ensure that this happens in a timely 
fashion. Thus, in GSG, event expectations have taken the form 
of expectations about goal satisfaction. 

Another approach, called Goal Tree/Success Tree 
modeling has recently been presented in [Modarres, et al., 19851 
and [Kim and Modarres, 19861. It uses goal representations 
very similar to typical planning representation to encode 
information about goals for continuous processes and 
hierarchies of equipment combinations to provide real time 
advice to nuclear power plant operators. 

We believe that GSG is capable of representing any batch 
or continuous process which consistently follows a standard 
operating procedure. All batch manufacturing processes are 
analogous to continuous processes during the completion of 
individual phases, and all continuous processes have a batch 
component to them in start-up and shut-down operations. The 
requirement for a standard operating procedure must be imposed 
since this system has no planning capabilities of its own. 

We have considered adding a planning component to 
COOKER. Occasionally a problem will occur in the plant which 
undoes an affect which had been achieved by an earlier goal, and 
the plant needs to go through the process of re-satisfying that 
earlier goal. A planning component could be made which could 
schedule the earlier goal to be satisfied again. However, we 
have found that the plant engineers with whom we have worked 
have extensive standard operating procedures for handling these 
situations, and they do not need nor want our system to 
synthesize novel problem resolution strategies on the fly. 

We have also found that GSG does not represent 
diagnostic procedures in a clean way. Operators will 
occasionally violate their usual condition expectations in order to 
test a component, and GSG identifies these violations as 
problems. Also, we are looking at a different representation for 
requisites since, for example, it makes little sense to have a goal 
with a sequence as a requisite. At Honeywell we are continuing 
to explore GSG and other representations for manufacturing 
processes. 

IV. Conclusion 

The GSG system which we have described here is 
somewhat simpler than the current implementation. Since our 
initial design, we’ve added support for three-valued logic, lattice 
interconnections between goals, conditional goal activation, 
automatic goal synchronization with processes in progress, 
assumption fields, an incremental, dynamic problem solving 
mechanism, and we’ve defined a GSG Language which is 
translated into Zetalisp code through a goal compiler. Despite 
these further developments, the basic representation and 
methodology has remained constant. All process information is 
stored in goal objects which traverse their sequences of 
subgoals, and monitor their conditions. This approach has 
proven to be computationally efficient, taking an average of 477 
milliseconds (elapsed time with the operator interface and data 

gatherer running) for top level loop SATISFIEDP processing 
across a set of goal lattices totaling approximately 800 goals. 

The GSG representation has worked well, allowing us to 
implement and quickly install an initial knowledge base which 
could recognize problems in all phases of the plant’s process, 
and then later add to that knowledge base to diagnose more 
problems and give more detailed advice about particular 
problems. We’ve been able to reuse many portions of our initial 
goal trees within subsequently developed branches, speeding up 
the process of encoding detail about further phases. The 
approach of positively representing what should happen within 
the process has allowed us to use a single representation to serve 
the two functions of process monitoring and problem diagnosis. 

We’d like to recognize the rest of the COOKER project 
team for their contributions to this work. They are Emilio 
Bertolotti, Arch Butler, Paul Christopherson, Kim Hermanson, 
Anne M. Hossfeld, Ron Mawby, John Nomura, John 
Seder-berg, and Alan Wolff. Thanks to Camille Bodley, Steve 
Harp, Anne M. Hossfeld, Ron Joy, Carol Kaemmerer, Kurt 
Krebsbach, John Nomura, Jim Richardson, and Alan Wolff for 
their comments on this report. 

eferences 

[Chapman, 19851 D. Chapman, Planning for Conjmctive 
Goals. Technical Report AI-TR-802, Artificial Intelligence 
Laboratory, Massachusetts Institute of Technology. 

[Kaemmerer and Mawby, 19861 W. F. Kaemmerer and R. 
Mawby, Representing Knowledge About Expectations in a 
Real-time Expert Advisor for Process Control. In 
Proceedings ISA-86, pages 809-820, Houston, Texas, 
Instrument Society of America International Conference, 
October, 1986. 

[Kaemmerer and Allard, 19861 W. F. Kaemmerer, J. R. Allard, 
An Automated Reasoning Technique for Providing 
Moment-by-Moment Advice Concerning the Operation of a 
Process. In Proceedings m-87, Seattle, Washington, 
American Association for Artificial Intelligence, July, 
1987. 

[Kim and Modarres, 19861 S. Kim, M. Modarres, Application 
of Goal Tree-Success Tree Model as the Knowledge-Base 
of Operator Advisory Systems, Submitted for Publication 
to Nuclear Engineering and Design Journal, October 1986. 
Correspondence to M. Modarres, Department of Chemical 
and Nuclear Engineering, University of Maryland, College 
Park, MD 20742. 

[Modarres, et al., 19851 M. Modarres, M. L. Roush, R. N. 
Hunt, Application of Goal Trees in Reliability Allocation 
for Systems and Components of Nuclear Power Plants, 
Proceedings of the Twelfth International Reliability 
Availability MaintainabiliPy Conference for the Electric 
Power Industry, Baltimore, MD, April, 1985. 

398 Knowledge Representation 


