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Abstract 
Many system building efforts in artificial intelligence 
intentionally begin with expressively rich and flex- 
ible declarative structures for the control of prob- 
lem solving-especially when the best problem solv- 
ing strategies are not known. However, as experience 
with a system increases, it sometimes becomes desir- 
able to compile declarative knowledge into procedures 
for purposes of efficiency. We present a paradigm 
for compilation which begins with declarative oppor- 
tunism, moves to a phase of heuristic implementation 
of a partial plan and finally evolves into a fully elab- 
orated procedure. We use the PROTEAN geometric 
constraint satisfaction system as an example. Using 
results from a purely declarative structure, we were 
able to compile strategic knowledge into a procedure 
for planning a solution. The problem 
ior of the new system is reported. 

solving behav- 

Knowledge compilation offers an engineering solution to the 
problem of combining the flexibility of a declarative represen- 
tation of knowledge with the efficiency of a more procedural 
representation. For applications in which knowledge is chang- 
ing frequently, the benefits of declarative representations may 
outweigh considerations of efficiency (especially during devel- 
opment). For others, in which run-time efficiency is more im- 
portant, the use of declarative representations for initial de- 
velopment must be followed by compilation of knowledge. As 
knowledge-based systems become larger, there is increasing use 
of separate meta-level knowledge structures (sometimes called 
strategic or control knowledge) to reduce the complexity and 
increase the understandability of these systems [Davis, 1980, 
Clancey, 1985, Hayes-Roth, 1985, Hewitt, 1972, McDermott, 
19781. In this paper we show the results of compiling parts of 
this strategic knowledge, represented declaratively, into a par- 
tial plan that instantiates major control decisions. 

It is useful to have a rational method by which 
tion from declarative to procedural forms of strategic 
can be made gracefully. In this paper, we argue: 

the transi- 
knowledge 
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1. That the separation between strategic knowledge and do- 
main knowledge (as in the PROTEAN/BBl blackboard 
system) is useful in the development of efficient problem 
solving strategies. We suggest a three stage paradigm with 
which this development can usefully be viewed. 

2. That if strategic knowledge is represented declaratively 
and separated from domain problem solving knowledge, 
then compilation of strategic knowledge can be performed 
and integrated within domain problem solving knowledge. 

3. That the compilation of parts (but not all) of the problem 
-solving knowledge yields plans in which flexibility is sacri- 
ficed for efficiency. These plans embody a set of decisions 
that may anticipate global problem solving strategy better 
than more locally focussed strategy knowledge. 

We substantiate these claims with examples from the 
PROTEAN system for the determination of protein structure 
[Altman and Jardetzky, 1986, Brinkley et al., 1986, Hayes-Roth 
et al., 1986131. PROTEAN is a geometric constraint satisfaction 
system described in section II. In one version of this system, 
Hayes-Roth and coworkers have shown that declarative control 
structures can be used to control reasoning about constraint 
satisfaction in spatial assembly problems [Hayes-Roth et al., 
1986a]. We have compiled elements of this strategic knowl- 
edge and have been able to implement plans to guide problem 
solving without any modification of the basic domain problem 
solving actions. The plans prescribe partial sequences of ac- 
tions. Portions of the problem solving for which there is no 
plan prescription are controlled opportunistically with heuris- 
tics. 

A. Three Phases of evelspment for 
Procedures 

The development of a computational procedure for the solution 
of difficult problems can be usefully divided into three phases. 
The first phase, which we calf the opportunistic phase, is char- 
acterized by the use of architectural frameworks in which there 
is considerable freedom for a designer to experiment with dif- 
ferent formulations of the search and different strategies for 
controlling it. 

Having gained experience from work within the oppor- 
tunistic phase of development, we can enter the partial plan 
phase. A partial plan provides an incomplete specification of 
the actions required for a solution. In this phase a designer 
draws upon the heuristics and experience gained during ex- 
perimentation to increase efficiency with a more rigid problem 
solving control plan. These plans are not fully prescriptive for 
problem solving, however, and some of the declarative strate- 
gic knowledge may remain when the plan prescribes nothing. 
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Figure 1: Three suggested stages in the development of 
strategies. The transition from declared strategies to 
more procedurally defined ones involves the compilation 
of strategic knowledge. 

The plans provide more direction and purpose to the problem 
solving than strategies with a shorter horizon. Thus, a plan 
imposes a particular detailed set of steps on problem solving 
and so reduces the amount of computational effort spent on 
choosing among different choices. 

Experimentation with a system in the partial plan stage 
may lead to refinement of the plan details. We believe, but have 
not shown, that compilation of strategy knowledge can be auto- 
mated when the syntax of both the declarative strategy knowl- 
edge and the domain knowledge structures is known. When the 
plan becomes fully elaborated it can be called a heuristic pro- 
cedure for solving the problem. The procedure phase requires 
little computational effort in choosing control alternatives-all 
decision points are predefined and the criteria for selection are 
predetermined. We have found that this computational saving 
comes at the cost of problem solving flexibility. 

B. Compilation of Knowled 
In a changing, experimental setting it is useful to represent 
strategy heuristics with declarative data structures in order 
to provide an environment for experimentation with different 
strategies. However, when there is evidence that certain strate- 
gies are superior to others, it may become desirable to incor- 
porate these strategies more directly,into the solution for effi- 
ciency. 

Compilation of declarative strategic knowledge is char- 
acterized by a move from a description of desirable actions 
to prescriptions for action. Systems which allow descrip- 
tive strategic statements are faced with the task of interpreting 
these statements and matching them with feasible actions in 
order to identify desirable actions [Hayes-Roth et al., 1986a]. 
Davis [Davis, 19801 f re erred to the interpretation of such meta- 
level strategic statements as content-directed invocation. How- 
ever, the cost of using generic control statement interpreters 
and action-matchers may not be warranted if there is a proce- 
dure which can identify the most desirable actions using spe- 
cific domain knowledge. Such a procedure bypasses the use 
of all-purpose interpreters and matchers, and thereby improves 
efficiency. 

We have manually constructed special-purpose, domain- 
dependent procedures for making strategic decisions in situa- 
tions for which criteria have become clear from experimenta- 
tion. These procedures eliminate the need for interpretation of 
control strategies and the overhead of matching these strate- 

gies with potential domain actions. They gain problem solving 
leverage by using knowledge of the application domain, and as 
such can be considered domain problem solving actions. The 
key step in compilation is creation of a partial plan, an abstract 
sketch of how to solve the whole problem which is stylized 
enough to allow straightforward translation into procedures. 
We do not assume that the plan is complete, however, and thus 
must abe able to solve problems with partially compiled, par- 
tially interpreted control strategies. Our procedures, therefore, 
produce a partial plan for the solution of the problem. Sec- 
tion II shows how the ideas apply to PROTEAN. Section III 
illustrates how this plan interacts with data driven control for 
a particular problem. 

A. The PROTEAN System 
PROTEAN is a system for determining the structure of protein 
molecules from experimental data. The system and motivations 
are described in detail in [Altman and Jardetzky, 1986, Brinkley 
et oI., 1986, Hayes-Roth et al., 1986131, but are summarized for 
present purposes. PROTEAN begins with a number of abstract 
or elementary objects (atoms or groups of atoms with fixed 
physical relationships) and constraints among the objects. A 
constraint typically specifies a range of distances between two 
points. 

PROTEAN makes “partial arrangements” of subsets of 
the objects in three dimensions, and then combines partial ar- 
rangements into a final solution space. In a single partial ar- 
rangement, a coordinate system is defined around a single ob- 
ject (called the anchor), and positions of other objects (ala- 

chorees) relative to the anchor are defined (see Figure 2). Ex- 
cept for the anchor, an object may have more than one “legal 
location” in which its positional constraints are satisfied. A 
“coherent instance” is a list of single locations for each object 
such that all constraints are satisfied. The set of all coherent 
instances represents the set of all structures of the protein that 
are consistent with the experimental constraints. 

PROTEAN has a basic set of actions that have been pro- 
cedurally defined within domain problem solving knowledge 
sources. They include: 

ANCHOR [B to A]: finds all locations for anchoree B rel- 
ative to anchor A (in a partial arrangement) which are 
consistent with the constraints between A an B. Figure 2 
shows the accessible volume of two anchorees relative to a 
fixed anchor (HELIX-5). 

YOKE [B and C with respect to A]: reduces the list of 
locations of anchorees (B and C) in the space of an- 
chor A by pruning locations that are incompatible with 
the constraints between B and C. Figure 3 shows Helix-3 
and Helix-l after YOKING. Their accessible volumes have 
been reduced by consideration of the constraints between 
them (cf. Figure 2). 

APPEND [C to B with respect to A]: finds all locations of 
object C relative to an anchoree B in the space of anchor 
A. This involves finding all locations of C relative to B and 
B relative to A and then producing the cross product to 
get all locations of C relative to A. Figure 3 shows Helix- 
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2 positioned with an APPEND action by considering its 
constraints to Helix-3. 

CD CONSOLIDATE [ bj t o ec s with respect to A]: finds the set 
of locations (one from each object’s accessible volume) that 
constitute a “coherent instance.” 

Anchor 

Figure 2: PROTEAN’s basic problem solving action, AN- 
CHOR. Legal locations are shown as accessible volumes - 
around each anchoree. 

Figure 3: PROTEAN’s b asic problem solving actions, 
YOKE and APPEND. 

A partial arrangement can be considered a constraint sat- 
isfaction network in which each node is an object with a list 
of locations and each arc between nodes represents constraints 
on the relationships between pairs of locations taken from the 
nodes. We have shown elsewhere [Brinkley et al., 19861 that 
the anchor action corresponds to creating a constraint network 
that is node consistent in the terminology of Mackworth [Mack- - 
worth, 19771. Yoking corresponds to checking for consistency 
of the arcs. Consolidation is equivalent to a backtrack search 
for solutions to the constraint-network. Backtrack search is 
computationally prohibitive, and it can be made tractable by 
pruning the set of initial locations with anchor and yoke oper- 
ations. PROTEAN’s problem solving repertoire of four primi- 
tive actions has been implemented as a set of domain knowledge 
sources in the BBl blackboard environment [Hayes-Roth, 19851. 
Each action is represented as a domain Knowledge Source (KS) 

which is triggered when a relevant change is made to the prob- 
lem solving (“domain”) blackboard. A triggered KS is instan- 
tiated as a Knowledge Source Activation Record (KSAR) for 
each context in which the action becomes feasible, and is placed 
on the agenda. Domain Knowledge Sources are generally pro- 
cedural statements of how to perform calculations and make 
appropriate changes on the problem solving blackboard. A sep- 
arate control facility is then used to rate feasible actions and 
determine which actions should be performed. 

0 Con&rolling 

The problem of arranging objects in three dimensional space 
under constraints is known as bin packing, and is NP-complete. 
PROTEAN is able to solve such a combinatorially explosive 
problem partly because it can make reasoned choices about the 
best objects and best actions on which to focus at each stage 
of problem solving. The strategic choices that must be made 
by PROTEAN include: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

How many partial arrangements should be created? 

Which objects should be included in the partial arrange- 
ments? 

Which objects should be designated the anchors of the 
partial arrangements? 

Should an ANCHOR or APPEND actions be used to po- 
sition a particular object within an arrangement? 

In what order should YOKE actions be applied to most 
quickly reduce the size of the accessible volumes? 

When are two partial arrangements ready to be merged 
toget her? 

When should a partial arrangement be CONSOLIDATED 
(because pruning techiques have reaced a point of dimin- 
ishing returns)? 

In addition to our continued development of an explicit, 
declarative version of the strategy, there is a need for a system- 
atic compilation of the method. Thus, part of our research fo- 
cuses on the development of a straightforward procedural state- 
ment of how to make these choices, which in BBl are called 
“control problems.” 

The key characteristic of this implementation of PRO- 
TEAN in BBl is that there is a separation of the mechanism 
which generates feasible actions from that which selects actions 
for execution. When a control problem arises, the system can 
look to the agenda of feasible actions for a complete set of alter- 
natives, and choose among them. The process of compilation of 
strategic decisions reduces the frequency at which the complete 
agenda must be examined. 

The ACCORD language has been developed to define high level 
“control sentences” which declaratively and indirectly specify 
problem solving actions [Hayes-Roth, 19851. For example, in 
choosing the best anchor for a partial arrangement, one cqntrol 
sentence reads: 

ORIENT a PARTIAL-ARRANGEMENT about a 
LONG, RIGID, CONSTRAINING SECONDARY- 
STRUCTURE. 
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This sentence is interpreted and matched with each task on 
the agenda (called a KSAR) in order to determine an overall 
rating for the task. The “action-type” of the KSAR is com- 
pared and scored relative to the action-type ORIENT, the 
potential anchor is checked and scored with respect to being 
a SECONDARY-STRUCTURE as well as being LONG, 
RIGID and CONSTRAINING. The definitions of these 
modifiers are stored in a knowledge base as quantitative rating 
functions. The KSAR action that best matches this declaration 
is chosen for execution. 

This control mechanism is flexible since it can handle a 
wide variety of problems, and be used for explaining its selec- 
tion [Schulman and Hayes-Roth, 19871. It also allows different 
modifiers to be easily tested and results to be compared [Gar- 
vey et al., 19871. I n short, it is convenient for experimenting 
to find specific rules for solving classes of problems. It is ex- 
pensive, however, since each potential anchor must be rated 
with respect to a number of different modifiers. In addition, 
it takes a best-first approach to control, and assumes that op- 
timal decisions locally will produce good global performance. 
Each control sentence is meant to choose the next step in the 
solution. A control sentence can not decide that a sequence 
of steps should be pursued, but can only select a single step. 
Therefore, this approach ties the program down to an extremely 
“deliberate” control process. 

A second method of control that we have implemented 
for PROTEAN incorporates experimental results with control 
sentences and imposes more structure on the problem solving 
sequence. The results in [Garvey et al., 19871 showed that cer- 
tain modifiers in the control sentence were more important than 
others, and usually led to better performance. For instance, in 
the case of selecting an anchor, the number and distribution 
of constraints to other objects is the most important variable 
(as captured by the modifier CONSTRAINING). We com- 
piled this rule into a new knowledge source which procedurally 
defined the criteria for choosing an anchor by examining prop- 
erties of the initial constraint network. We used similar results 
from our own studies to compile a procedure for deciding which 
objects should be introduced into a partial arrangement with 
the ANCHOR action versus the APPEND action. We added 
this information to the new knowledge source and were left with 
a domain problem solving KS which chooses the best global 
anchor, the best anchorees to introduce into the global partial 
arrangement as well as other “secondary” partial arrangements 
with which to define local geometries. 

This KS, therefore, produces a partial plan for solution 
of the problem (shown in Figure 4). As a result of compil- 
ing PROTEAN’s declarative control sentences, Helix-5 can be 
uniquely identified without further search to be the anchor. In 
addition, Helices 1,3,8,9 and 10 are designated as anchorees. 
Other objects are to be introduced into the space of Helix-5 
with an APPEND action. In order to implement this plan, we 
also added a single control statement that favors KSARs men- 
tioned in the plan. This control statement simply checks to 
see if the KSAR appears in the plan or not, and replaces other 
control declarations (like the ORIENT control sentence shown 
previously) that require interpretation and matching. Our plan 
allows us to remove control sentences that address control is- 
sues 1,2,3 and 4 as listed in section II-B. Three points should 
be emphasized: 

1. Our method for compilation has two steps: 

Helix-3 Helix-8 Mix-9 Helix-lo othsr-i -Bnchoree~ 

Figure 4: A graphical depiction of the partial plan for 
solution of T4 Lysozyme. 

(a) Manual Static Compilation 
Reformulate declarative strategic knowledge (de- 
rived from experimentation) into domain proce- 
dures for solving a problem. These procedures are 
contained in new domain knowledge sources and 
specify the compiled criteria for choosing objects 
and actions during problem solving. 
Replace all reformulated declarative strategic 
knowledge with a single strategic statement that 
chooses domain actions mentioned in the plan 
whenever they become executable. 

(b) Dynamic Compilation in Context Execute the 
procedure in the context of a problem statement in 
order to actually select objects and actions that con- 
stitute a partial plan for solution. The instantiated 
plan is used to guide control decision making. 

2. By compiling strategic knowledge, we have decided to 
make some control decisions in advance. The “compiled” 
decisions are based on evaluation of the static properties of 
the objects in the problem and the domain problem solv- 
ing actions. They should not depend critically on dynamic 
properties of the problem. If unanticipated problems occur 
in implementation of the plan, this decision may prove to 
be extremely expensive. It is therefore important to have 
confidence in the declarative strategic sentences that are 
compiled. In our compilation of knowledge we have not 
altered any of the other knowledge sources for problem 
solving; we have just added one domain KS for planning, 
and a control declaration that requires KSARs that im- 
plement the plan to be executed before others. Thus, the 
compilation step is modular, relatively non-destructive to 
system integrity, and decreases the number of declarative 
sentences that must be interpreted and matched. 

3. Having an overview of the global solution strategy also of- 
fers opportunities which are not available without a plan. 
For example, the plan produced by our procedure imme- 
diately suggests subtasks for parallel execution. Each of 
the secondary partial arrangements of Figure 4 represents 
an independent constraint network that can be brought to 
equilibrium in isolation from the others. 

When the plan is produced and instructions for follow- 
ing the plan are added, the nature of control changes signifi- 
cantly. The issue of choosing an anchor, for example, is not a 
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significant control issue any longer: it has been moved into the 
procedural detail of a problem solving knowledge source. How- 
ever, the exact order in which to perform YOKE operations 
still remains unresolved. Thus, the selection of feasible yoking 
actions has been left in a declarative, opportunistic framework. 
The plan thus leaves significant details (i.e., the order of yokes) 
unresolved until run-time interpretation of control knowledge 
sources, while fixing some details in the compiled steps. When 
all such strategy knowledge has been compiled into domain 
knowledge, then the strategy becomes procedurally defined by 
the sequence of these domain knowledge sources and there is 
little flexibility for testing alternative strategies. 

In order to illustrate the behavior of PROTEAN using a solu- 
tion plan, we present the results of the method when applied to 
the protein phage T4 Lysozyme. PROTEAN processes its input 
to define 37 superatoms into which the protein can be divided 
(as suggested by experimental data). In addition, PROTEAN 
creates a constraint set for each pair of objects between which 
there are distance constraints. Not all objects have constraints 
with other objects, so there is a total of 119 constraint sets (out 
of the total possible (372 - 37)/2 = 666). A graphical depiction 
of the constraint matrix is shown in Figure 5. 

bC000000 

0 13 0 0 0 0 0 0 0 0 
0000000000 

0800000000000000 8 8 0 0 0 0 13 0 Q 0 0 0 0 a 0 0 

T4 Lysozyme Constraint Network 

Figure 5: Matrix depiction of the constraint network in T4 
Lysozyme. 

The objects occur in chemically linked sequence and are 
numbered 1 to 37, from left to right and top down. The ap- 
proximate strength of the constraint set, Cij, is indicated by 
the size of the spot at matrix position ij (or ji). The con- 
straint rows for key subunits are labelled. The matrix shows 
two large clusters of constraints in this system. There are gen- 
erally strong constraints between neighboring subunits, but few 

objects have strong constraints to distant objects. It is clear 
that the strategy decisions outlined in section II-B are not ob- 
vious, and require reasoning and analysis of the network. 

A trace of the problem solving behavior of PROTEAN is 
useful in understanding how strategic reasoning and domain ac- 
tions combine to produce useful problem solving behavior. For 
any given cycle, BBl may follow a compiled decision to follow 
the plan (Dl), may reason out a strategic decision about the 
best action (D2), or may perform the domain actions specified 
by Dl or D2 (A). 
CYCLE TYPE OF REASONING DECISIONS/ACTIONS 
------_--------_------------------------------------------------------- 
0 CONTROL 

1 DOMAIN (A) 

(01) 

2 CONTROL (Dl) 

3-30 DOMAIN (A) 

31 CONTROL (D2) 

32-110 DOMAIN (A) 

111 CONTROL (Dl) 

112-200 DOMAIN (A) 

201 CONTROL (02) 

202-240 DOMAIN (A) 

241 CONTROL (Dl) 

241-250 DOMAIN (A) 

251 CONTROL (02) 

252-400 DOMAIN (A) 

Decides to Run the KS which examines the 
problem and produces a plan. 

Plan algorithm is run, HELIX5 is chosen as 
the anchor, 
anchorees. 

12 objects are designated 
and 14 objects are designated 

appendees (See Figure 4). 

Decides to implement the plan from cycle 1 
by automatically favoring KSARs which 
directly implement pieces of the plan. 

Partial Arrangement 1 (PAl) is established 
and oriented around HELIXI. Anchorees are 
introduced into PA1 and ANCHORed to HELIXB. 

Decides to YOKE accessible volumes determined 
in previous cycles. NOTE: there is no plan 
specification for this, so it is done 
opportunistically with declarative control. 

YOKES are favored between objects that are 
LARGE, have STRONG constraint sets, and have 
GIG-RELATIVE-DIFFERENCE in the size of their 
location tables. They continue until the 
constraint network within the partial 
arrangement reaches equilibrium. 

Decides to establish the secondary anchor 
spaces. ORIENTed around the secondary anchors 
as specified by the plan, and ANCHOR the 
appendees as specified. 

Carries out plan for secondary partial 
arrangements by ANCHORing appendees to 
secondary anchors. 

Decides to YOKE objects in secondary PAS in 
order to reduce location table size. 

Opportunistically YOKES objects. 

Decides to APPEND appendees into main PA1 
as specified by the plan. 

APPENDS appendees into main PAl. 

Decides to continue YOKING new location 
tables in PA1 with previously yoked 
location tables from cycles 32-110. 

YOKES opportunistically until network 
equilibrium is reached and all location 
tables are at minimum. At this point, 
backtrack search CONSOLIDATION can be 
performed. .--------------------------------------------------------------------- 

About half of the control decisions are compiled in this 
example, and about half the resulting domain actions follow 
directly from them, rather than by interpreting and matching 
high level predicates. The plan shown in Figure 4 is partial be- 
cause there are significant numbers of reasoning cycles in which 
it makes no prescription for action (cycles 32-110, 202-240, and 
252-400), and “best first” strategies must be used. However, 
the structure imposed on problem solving by the initial plan is 
strong enough to provide a clear procedural outline. We can 
continue to use a purely declarative control structure for testing 
and improving the plan if weaknesses are discovered. 

Full descriptions of BBl, PROTEAN and our initial control 
strategies can be found in [Altman and Jardetzky, 1986, Brink- 
ley et al., 1986, Hayes-Roth, 1985, Hayes-Roth et al., 1986131. 
The theme of transformation from declarative to procedural 
specification arises in many artificial intelligence programming 
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efforts. Our work stresses the usefulness of the partial plan as 
an intermediate step. 

The EMYCIN system contains a rule compiler that maps 
domain rules into a decision tree [van Melle, 19801. The deci- 
sion tree is a fully elaborated plan for solution of the problem, 
and as such corresponds to the final stage or our three-phase 
paradigm. EMYCIN has a static view of how to control ev- 
idence gathering (goal-driven, backward chaining). We argue 
that an intermediate step of compiling control knowledge into 
domain rules before production of such a decision tree provides 
a greater flexibility in the development of procedures, since the 
control strategies used need not be static. HERACLES is an 
example of another system which uses declarative representa- 
tions of strategies, and thus could benefit from an intermediate 
stage of control compilation [Clancey, 19851. Similarly, meta- 
knowledge used by systems such as PLANNER’s rule filters 
[Hewitt, 19721 or NASL’s choice rules [McDermott, 19781 can 
be compiled into domain rules to gain efficiency at the expense 
of flexibility. 

Skeletal planning was characterized by Friedland in the 
MOLGEN work [Friedland, 19791. Our work uses many of the 
ideas of heuristic application of a global problem solving strat- 
egy. Our plans are partial with respect to the complete sequence 
of problem solving, but are not generalized to higher level con- 
cepts (i.e., they are expressed in the the low level vocabulary of 
domain actions). In that respect they are similar to Schank’s 
scrippts, but are part&Z scripts [Schank and Abelson, 19751. 

v. Conchsions 
The PROTEAN system for geometric constraint satisfaction 
in the domain of protein structure provides an excellent forum 
in which to experiment with different strategies. Others have 
formulated declarative strategies, and we have described here 
a compilation of parts of these strategies into domain prob- 
lem solving actions. The compilation of strategic knowledge 
has lead to a partial plan which focuses problem solving and 
requires less control deliberation. The plan has been used to 
determine the structure of T4 Lysozyme, and provides a frame- 
work for expansion of the procedural element of strategic rea- 
soning in the future. 

Our method works well in domains in which nearly in- 
dependent strategic decisions can be identified prospectively. 
Context dependent decisions can be made opportunistically at 
run time since we perform only partial compilation. This mix- 
ture of opportunistic and planned problem solving is especially 
powerful in domains such as PROTEAN’s in which a plan is 
useful for solving subproblems but opportunism is required to 
recombine or conjoin the solutions to the subproblems. 
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