
Representing Databases in ames 

Ey-Chih Chow 

Hewlet t-Packard Laboratories 
1501 Page Mill Road, Palo Alto, California 94304 

Abstract 

Three methods for representing data in a relational storage 
system with an in-core frame-based system are experimented 
with and reported upon. Tradeoffs among these three repre- 
sentational methods are sizes of databases, times for loading 
data, and performance of queries. Essentially, these methods 
differ in ways of capturing relationships among frames. The 
three different ways of capturing such relationships are via links 
(pointers), symbolic names (keys), or both. Results of the ex- 
periments shed light on efficient interfacing of databases with 
frame-based systems. 

1 Introduction 

Frame-based systems have become popular in building expert systems 
[Fikes and Kehler, 19851. A current research topic along these lines is 
how to efficiently hook disk-based database systems together with in- 
core frame-based systems to extend the capabilities of both systems 
[Abarbnel and Williams, 19861. As a step toward this outcome, this 
paper discusses the performance aspects of ways of representing data 
in relational storage systems using frames. 

By allowing slots to be pointers to other frames and to be multiple- 
valued [Stefik, 19791, frames are able to capture relationships among 
objects (frames) effectively. However, because putting pointers like 
these on disk leads to too many disk accesses, relationships among 
objects (tuples) in relational database systems are expressed instead 
via keys or other symbolic identifiers [Chamberlin et al., 19811. 

To investigate the tradeoffs between using pointers or keys with in- 
core databases, a conventional relational database benchmark, Fast- 
track [Chow, 19861 and [Chow and Cate, 19861, was adopted to com- 
pare three in-core frame-based alternatives used to represent the 
benchmark database. Experiments involving this comparison were 
conducted in terms of HP-RL [Rosenberg, 19831 and [1986b], an in- 
house frame-based expert-system toolkit running at Hewlett-Packard 
Laboratories. Results show that representing databases via pointers 
can improve the performance of queries involving joins. However, 
sizes of databases with such pointers are larger than those with only 
keys or other symbolic names. Obviously, the larger the databases, 
the longer the loading time needed. Additional findings were that 
evaluating database queries using the very general query-handling 
mechanism in HP-RL, under the environment of NMODE on top of 
HP-9000/300 UNIX1 workstation [1986a], suffered from low hit ra- 
tios. Furthermore, with the same environment, evaluating complex 
database queries, i.e. queries involving large amounts of relational 
data and joins, it is easy to incur garbage collection. An integrated 
system, combining HP-RL and Iris [Fishman et al., 19871, a next- 
generation database system with underlying relational storage and 
processing being developed at Hewlett-Packard Laboratories, is then 
proposed and is being further investigated to take advantage of Iris’ 
ability to efficiently handle data of disk-based d&abases. 

Section 2 describes three different HP-RL database designs for 
Fasttrack. In Section 3, we discuss the performance tradeoffs of 

‘UNIX is a trademark of AT&T Bell Laboratories. 

(new-instance <dealers> 
: name DO 
: slots ((dlrid :v 1000) 

(name :v “eddie”) 
(phone :v “408726811 I”) 
(mist :v “Mist Data”) 
(daddr :v “19420 Homestead Ave. “1 
(has :vs (couo~~oul3~ou2>)) 
(receive :vs ((OROH.ORiHOR23)) 
\\ I/ 

(a> An instance of dealers 

(new-instance Coutlets) 
: name ouo 
:slots ((oaddr :v “1180 Lochinvear Ave. *I> 

(zip-code :v 0) 
(owned-by :v (DO)) 
(competed-for :vs ~CO)(Cl6Oi)(C3001)) 
1) 

(b) An instance of outlets 

Figure 1: Instances of classes dealers and outlets in schema #I 

these three designs. Section 4 suggests a way to use both the Iris 
database management system and HP-RL to take advantage of their 
strengths. Finally, we give a brief summary of our observations in 
Section 5. 

2 Fasttrack atabase in 

The conventional database benchmark, Fasttraclp, basically includes 
a simple sales-record system and some test queries. The system con- 
sists of dealers that may operate several outlets. Outlets have com- 
petitors, determined by matching zip code. Customers order products 
from dealers. A typical execution .creates 500 dealers, 100 products, 
1500 orders, and 1000 outlets, and contains information about 4500 
competitors. The relational schema [Date, 19861 of this database is 
as follows: 

dealers (dlrid, name, phone, misc. daddr) 

outlets (dlrid, zip, oaddr) 

orders (dlrid, prod, qty, date) 

products (prod, price, desc) 

competitors (zip, corapid, cratio, prodtyp) 

where dlrid, prod, and zip are primary keys of relations dealers, 
products, and outlets respectively. Note that, in the above schema, 
relationships among entities are represented via keys. For example, 
relationships between dealers and outlets are represented via dlrids 

Chow 405 

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved. 



d 
measurement measurement 

Figure 3: CPU and disk usages in processing an HP-RL query 

former frame. 

This section discusses performance tradeoffs among the above three 
schemata. The discussions are divided into three parts: performance 
of queries, database sizes, and loading. 

Figure 2: Pointers vs. keys in the Fasttrack database 

3.1 Performance of Queries I 
We used six queries to test the above three schemata. In terms ofJSQL 
[Date86], these six queries against the relational schema mentiOned 
in section 2 are as follows: 

in relations outlets and dealers respectively, where 
eign (primary) key of relation outlets (dealers.) 

dlrid is a for- 

In terms of frames, the above database can be represented by three 
alternative schemata. Each of these three schemata has the same five 
classes of frames (or objects): dealers, orders, outlets, products, and 
competitors. However, schema#l defines relationships among frames 
with pointers only. With this schema, a pair of instances of classes 
dealers and outlets respectively are shown in Figure la and lb. In 
this figure, instances of frames OUn, n = 0,1,2, are frames of outlets, 
ORn, n = 0,1,2, are frames of orders, DO is a frame of dealear, and 
Cn, n = 0,1501,3001 are frames of competitors. Curely brackets of 
frames denote pointers to the frames. Finally, facet value (values) 
of a slot is denoted by v (vs). 

In this way, relationships between dealers and outlets, for example, 
are represented via pointers of slots has and owned-by in instances 
of classes dealers and outlets respectively. Note that slot has is 
multiple-valued. Schema#2 defines relationships among frames with 
only keys as the above relational representation. With this schema, 
relationships between dealers and outlets are represented via keys of 
slots dlrids in both classes outlets and dealers, where both dlrids 
are single-valued. Schema#3 defines relationships among frames with 
redundant information, using both key; and pointers. This schema 
is used to investigate the possible performance improvement due to 
such redundant information. Note that the notion of keys adopted in 
schema #2 and schema #3 are borrowed from disk-based databases. 
Scheme #l is a more typical representation for a knowledge repre- 
sentation language such as HP-RL. The three schemata are shown in 
Appendix I. 

Frames which use foreign keys to relate to other frames can be 
deemed to have some implicit pointers among these frames. Namely, 
foreign keys can be viewed as a kind of (slightly indirect) pointer. 
With this viewpoint, schema #2, i.e. frames with keys only, can be 
conceptually shown in Figure 2a, where pointers are implicit. 

Frames which with pointers to other frames, on the other hand, 
can be viewed as extended semantic networks [Rich, 19831 whose 
nodes are frames themselves and whose arcs are pointers to other 
frames. Schemata #l, i.e. frames with pointers to other frames, can, 
therefore, be shown in Figure 2b, where pointers are explicit. The 
meaning of pointers in Fig. 2b is that dealers have outlets and re- 
ceive orders, orders are sent-to dealers and order-for products, 
outlets are owned4y dealers and are competed-for by competitors, 
and competitors compete-for outlets. Note that each pointer of a 
frame pointing to another frame can be represented as a slot of the 

406 Knowledge Representation 

ql- select phone from dealers where dlrid = 1260 
92. select dlrid from outlets where zip = 1260 
s3- select oaddr,zip from outlets where dlrid = 1370 
s4. select cratio,compid from outlets,competitors 

where outlets.dlrid = 1150 and outlets.zip = 
competitors.zip 

qs- select dealers.name,products.desc from 
dealers,orders,products where 
orders.qty between 10 and 20 and 
dealers.dlrid = orders .dlrid and 
products.prod = orders.prod 

se. select prod,price,desc from products 

Queries qi, q2 and q3 include selections and projections. Queries 
q4 and q5 are join queries. The selectivity factor of the join in q4 is 
0.07%. The selectivity factors of the two joins in q5 are 0.2% and 1% 
respectively. Query qe is a query to retrieve all the data in relation 
prod. 

As in Prolog warren, 19811, forms of queries in HP-RL affect 
their efficiency of retrieval tremendously. OpLimum ways to express 
the above six test queries in HP-RL have been designed based on 
our inspection of the underlying data statistics and structures of 
schemata. We avoid joins as much as possible in expressing queries. 
Optimum ordering of joins of queries are chosen according to the 
underlying data statistics and the nature of the query-evaluation al- 
gorithm in HP-RL. We also take advantage of possible pointers be- 
tween objects to express joins. The three groups of translated HP-RL 
test queries for the corresponding three schemata are shown in Ap- 
pendix II. 

Measurements were based on running queries two consecutive 
times and were made for each query right after garbage collection. 
An interesting feature of response times for simple queries is that 
after garbage collection, much useful code and data for query evalu- 
ation is not really in core and needs to be paged in. This incurs a 
very low hit ratio. Therefore, the elapsed time for a query at the first 
measurement is affected by the size of the underlying database and 
is much longer than that at the second measurement. For example, 
the elapsed time to process qi of schema #l at the first measurement 
is a factor of 30 slower than at the second measurement. Figure 3 
shows snapshots of usage of system resources in processing an HP-RL 
query. There is a big I/O peak the first time a query is processed and 
almost no I/O the second time. The hit ratio is not as low if a query 



1 HP-RL Schema#l 1 HP-RL Schema#2 1 HP-RL Schema#J 1 Iris 

¶l 

1st 2nd 1st 2nd 1st 2nd 

2.44 1 0.08 4.04 0.08 6.96 1 0.08 9 

q6 1 15.36 10.18 16.66 10.12 15.22 10.96 30 

Table 1: Response times of test queries (set) 

HP-RL schema #l HP-RL schema #2 HP-RL schema #3 
1st 2nd 1st 2nd 1st 2nd 

7.24 3.16 458.92 498.36 8.12 3.30 

Table 2: Response times of the 1st answer of q6 (set) 

L 

is not posed right after garbage collection. Very often, response times 
of ad hoc queries are 2 - 3 times that of the corresponding second 
measurements mentioned above. The above phenomenon will be hid- 
den when much garbage collection is involved in query evaluation, 
that is, when there are many joins and duplicate answers of a query. 
For example, processing q5 of schema #I the second time takes even 
longer than the first time by a factor of 1.13. This is because the first 
measurement is made right after garbage collection, which makes this 
measurement have less garbage collection than the second one. The 
HP-RI, command solve-all suffers from garbage collection in pro- 
cessing joins involving large amounts of data because it is likely to 
create many temporary frames in such processing. There is another 
relatively specialized command in HP-RL, fast-solve-all, which 
partly solvea the above problem but does not relieve it entirely. 

Table 1 shows response times for the six queries in HP-RL 
schemata, listing both the first and second measurements. Perfor- 
mance of the queries in Iris is also attached, where the numbers are 
measured without index. Queries q3,q4, and q6 take longer in schema 
#2 than in schema #l and #3. This shows that defining objects to 
link through pointers is faster than naming keys of objects. Time sav- 
ings of q5 in schema #l and #3 against schema #2 are only about 
26%. This is because most of the time spent in processing this query 
is used to eliminate duplicate answers. In q6, by replacing solve-all 
with solve to measure times spent in getting the first answer, we find 
that this query in schema #l or #3 is faster than in schema #2 by a 
factor of 60. This measurement is shown in Table 2. 

Note that, unlike schema #l, in schema #3 q2 avoids a join be- 
cause each instance of outlets has the key of its dealer. But q2 
takes about the same time in schema #l and #3. Therefore, it is not 
necessary to keep redundant information the way schema #3 does. 

Now, we compare the performance of the HP-RL queries with that 
of the corresponding Iris queries. For a reasonably high hit ratio, HP- 
RL is superior to Iris in processing simple database queries such as q2 
(HP-RL: at most 0.80s vs. Iris: with index 3.8s.) For an exceptional 
low hit ratio, however, Iris performs better than HP-RL in processing 
database queries (for q2, HP-RL: at least 5.74s vs. Iris: no index 4s.) 

In addition, with pointers as in schema #1, HP-RL is able to 
handle simple relational joins, i.e., joins not involving too many du- 
plicates and data, better than Iris does (for 94, HP-RL: 0.86s vs. Iris: 
with index 5s.) Iris, however, is much better than HP-RL at handling 
complex relational joins, i.e., joins involving.many duplicates as well 
as large amounts of data (for q6, HP-RL: = 600s vs. Iris: no in- 
dex 57s.) Essentially, this is because HP-RL retrieval commands like 
solve-all and fast-solve-all are intended to handle much more 
general kinds of data than Iris does. Therefore, in the specific envi- 
ronment of databases, HP-RL suffers from garbage collection during 
relational joins and eliminating duplicates. 

3.2 atabase Sizes 

Sizes of the three HP-RL databases with the schemata mentioned 

Table 3: Loading times of schema #l (elapsed time) 

in section 2 depend on how the slot is implemented. For HP-RL 
default slot declarations, slots have three facets: daemon, value, and 
comment. In this case, sizes of the database are 2.73 Mbytes for 
schema #l, 2.31 Mbytes for schema #2, and 3.15 Mbytes for schema 
#3. However, for database-oriented frames like those of Fasttrack, 
only one facet, i.e. value, for each slot is enough. This can be 
achieved with an HP-RL command to override the default declaration. 
With this kind of slot implementation, sizes of database are I.57 
Mbytes for schema #l, 1.31 Mbytes for schema #2, and 1.70 Mbytes 
for schema #3. 

The database of schema #l is bigger than that of schema #2 be- 
cause, although keys of objects are not used to represent relationships 
among objects in schema #l, information associated with such keys 
still needs to be kept. For example, key zip-code of class outlets of 
schema #l cannot be ignored without losing information. Schema #3 
uses redundant information of both pointers and keys in representing 
relationships. Therefore, the associated database is the biggest of the 
three HP-RL databases. 

3.3 Loading 
Due to frequent garbage collection, loading times of HP-RL databases 
depend on sizes of free dynamic heap spaces where the Fasttrack 
database is stored. The size of the dynamic heap of the HP-RL 
configuration used in these measurements is 5.82 mbytes with 4.56 
mbytes free. In addition, to make the database smaller, each slot of 
each frame to be loaded in this measurement allows only one facet, 
i.e., value. 

There is a problem in loading frames with pointers. As a frame 
is loaded with reference to nonexistent frames, some partial frames, 
i.e., frames with only headers but no bodies, are created and echoed 
to the screen. Due to the expense of such ethos, sequences that load 
objects with minimal numbers of ethos require minimal time. The 
following two sequences of loading objects were tested: 

sequence #I. products, orders, dealers, competitors, 
outlets. 

sequence t2. products, orders, outlets, dealers, 
competitors. 

Loading times of sequence #l and #2 for schema #l are shown in 
Table 3. Loading via sequence #2 is slower than sequence #l because 
of the following reason. During the loading of outlets with sequence 
#2, instances of competitors are nonexistent. Accordingly, partial 
frames are created and are echoed to the screen. Since instances of 
competitors are much more numerous than those of the other four 
classes. Ethos on loading via sequence #2 are more than those via 
sequence # 1. 

In the following discussions, loading times of databases of schema 
#l and #3 were measured via loading sequence #l. Among the three 
HP-RL databases, the loading times increase (about 104 : 131 : 157 
mins for schema #2 : schema #l : schema #3) roughly in linear 
proportion to the increases of the corresponding database sizes (1.31 
: 1.57 : 1.70 mbytes), with a ratio about 1. In addition to the size 
of the database, another reason that the database of schema #2 had 
the shortest loading time is that no partial frames (and therefore no 

ChOW 407 



ethos) are created in loading this database. 
To summarize, of the three HP-RL schemata, schema #3 does not 

appear to have any advantage over schema #l. In contrast to schema 
#2, schema #l trades good performance of queries for some memory 
space and extra loading time. Finally, Iris is able to handle complex 
joins better than HP-RL, although HP-RL is faster for simple queries. 

4 Interffcing Databases with Frames 
. 

In this section, we propose a way to build high-performance knowledge 
base systems by combining Iris and HP-RL. 

Iris is designed to handle large amounts of data in wide ranges of 
applications. Expert systems built in HP-RL, however, deal with a 
limited domain in a particular session. To achieve high performance 
.using combined HP-RL and Iris, for a particular application domain, 
we retrieve and transform related Iris data of relational forms into 
frames and cache them in the HP-RL heap space during run time. 
Note that retrieval of data in a particular domain from Iris databases 
tends to involve complex joins. In addition, answers to queries from 
Iris often include duplicates. Such duplicates should be eliminated 
before cache. In the transformation of Iris data to frames, relation- 
ships among these frames should be represented by either keys, as 
in schema #2 mentioned in the previous sections or pointers, as in 
schema #l. Considerations involved in selecting one of these two al- 
ternatives are memory sizes, loading time and performance of queries. 
For example, if free space of HP-RL is sufficient and cached objects 
are dynamically preloaded to HP-RL, then performance of queries is 
the only consideration. In this case, using pointers to link objects 
(frames) is an appropriate way to gain efficiency. 

:i.nstance-slots 
((dlrid :declare (single-valued) ;key of dealer; 

:type number) 
blll0 :declare (single-valued) 

:type string) 
(phone :declare (single-valued) 

:type string) 
(mist :declare (single-valued) 

:type string) 
(daddr :declare (single-valued) 

:type string) 
(has :declare (multiple-valued) ;pointers to outlets 

:type Contletd) 
(receive :declare (multiple-valued) ;pointers to orders 

:type {orders)) 
1) 

(define-class outlets 0 
:instance-slots 
((oaddr :declare (single-valued) 

:type string) 
(zip-code :declare (single-valued) ;key of outlets 

Interfacing Iris with HP-RL in the above way tends to make Iris 
handle complex joins and HP-RL handle simple queries. This achieves 
high performance. The above discussion, however, does not address 
the issues of update and insert as data are cached back to Iris. This 
still needs to be investigated. 

5 Conclusions 

This paper uses some experimental results to describe the tradeoffs 
among three representations of databases in frames. Representing re- 
lationships among frames via pointers will get better performance on 
queries than will representation via keys or symbolic names. How- 
ever, pointers will make the corresponding databases larger than will 
keys or symbolic names. The same benchmarks are used to compare 
the frame-baaed system, HP-RL, with the Iris database system, a 
next-generation database system with underlying relational storage 
and processing. Results show that for simple database queries, at a 
reasonable hit ratio, HP-RL tends to be faster than Iris because data 
for Iris queries are on disk. Because of its sophisticated buffer man- 
agement strategy and relatively specialized code in handling data of 
conventional databases, however, Iris is able to handle queries involv- 
ing complex relational joins much better than HP-RL does. 

Acknowlledgments 

The author is grateful to Dan Fishman, Steve Rosenberg, Henry 
Cate, Tom Ryan, Reed Letsinger, Bill Stanton, Pierre Huyn and Alan 
Shepherd for most inspiring discussions and comments of this work. 
Charles Hoch, Jim Davis, Wendell Fields, and Randy Splitter have 
provided excellent and responsive support of the experimental envi- 
ronments. The author also thanks the referees for suggesting several 
important improvements to the paper. 

Appendix I. Fasttrack database in HP-RE 

:type number) 
(owned-by :declare (single-valued) 

:type {dealers)) 
(competed-for :declare (multiple-valued) 

:type Icompetitors3) 
1) 

(define-class orders 0 
:instauce-slots 
(WJ :declare (single-valued) 

;pointers 

;poiuters 

to dealers 

to competito 

:type number) 
(date :declare (single-valued) 

: type string) 
bent,t.o :declare (single-valued) ;poiuters to dealers 

:type {dealers)) 
(order-for :declare (single-valued) ;pointers to products 

:type {products)) 
)) 
(define-class products <) 
:instance-slots 
((prod* :declare (single-valued) ;k.eg of products 

:type number) 
(price :declare (single-valued) 

:type number) 
(desc :declare (single-valued) 

:type string) 
1) 
(define-class competitors 0 
:instance-slots 
((coupid :declare Mugle-valued) 

:type number) 
(cratio :declare (single-valued) 

:type number) 
(prodtype :declare (single-valued) 

:type string) 
(compete-for :declare (single-valued) ;poiuters to outlets 

:type {outlets)) 
)) 

Schema #2 
(define-class dealers 0 
:iustence-slots 
((dlrid :declare (single-valued) ;key of dealers 

:type number) 
hme :declare Wugle-valued) 

:type string) 
(phone :declare (single-valued) 

:type string) 
(mist7 :declare (single-valued) 

:type string) 
(daddr :declare (single-valued) 

:type string) 
1) 
(defile-class outlets 0 
:instauce-slots 
((dlrid :declare Mugle-valued) ;key of dealers 

:type number) 
(zip-code :declare (single-valued) ;key of outlets 

:type number) 
(oaddr :declare (single-valued) 

:type string) 
)I 

rs 

Schema #I 
(define-class dealers 0 

(define-class orders 0 
:instance-slots 
((dlrid :declare <single-valued) ;key of dealers 

408 IKnowledge Representation 



:type number) 
:declare Kngle-valued) (prod 
:type number) 

WY :declare (single-valued) 
:type number) 

(date :declare (single-valued) 
:type string) 

)I 
(define-class products 0 
:instance-slots 
((prod? :declare (single-valued) 

:type number) 
(price :declare (single-valued) 

:type number) 
(desc :declare (single-valued) 

: type string) 
1) 
(define-class competitors 0 
:instance-slots 
((zip :declare (single-valued) 

:type number) 
(compid :declare (single-valued) 

:type number) 
Ccratio :declare (single-valued) 

:type number) 
(prodtype :declare (single-valued) 

:type string) 
1) 

Schema #3 

Slots of classes in this SChprma are combinations 
corresponding classes in schema 81 and t2. +++ 

;key of products 
query 5 
(solve-all '(and (?x qty ?z) (and -0= ?z 10) -(<= ?z 20)) 

(?x prod ?a) (?v prod6 ?a) (?x dlrid ?p) 
(?u dlrid ?y) (0~ name ?ol) (?v desc ?vl)) 

:type '((?x {orders)) (?v {products)) (?s fdealers))) 
:returrm '(?ol ?vl)) 

query 6 
(solve-al1 '(and (?I prods ?y) (?x price ?z) (?I desc 7111) 

:type '((?x {products))) 
:returns '(?J ?z ?a)) 

;key of products 

Schema #3 
et* Queries 1,3,4,5 and 6 in this schema are of the same forms as 

those in schema 81. query 2 in this schema, on the other 
hand, is of the same form as that in schema 62. *e+ 

;key of outlets 

of slots of the 

Appendix II. Test queries in HP-RL 

Schema #I 
query 1 
(solve-all y(CD260) phone ?x) 

: returns '?x) 
query 2 
(solve-all '(and (?x zip-code 1260) (?x osned,by ?y) (?y dlrid ?z)) 

:type s((?x {outlets)) (?y {dealers))) 
:returns '?a) 

query 3 
(solve-all '(and (fD370) has ?x) (7x oaddr ?y) (?x zip-code ?z)) 

:type '((?x fontlets))) 
:returns '(?y ?z)) 

query 4 
(solve-all '(and (CD1501 has ?x) (?x competed,for ?y) 

(?y cratio ?z) (?y compid ?u)) 
:type '(C?x {outlets)) (?y Icompetitors))) 
:returns '(?z ?a)) 

query 5 
(solve-all '(and (snd (?y qty ?z) -(>= ?z 10) ̂ (<= ?z 20)) 

(?y order-for ?P) (?P desc ?u) (?y sent-to ?x) 
(?x nsme ?v)) 

:type '((?y iorders)) (?x {deders))) 
:returns '(Pv ?u)) 

query 6 
(solve-all '(and (?x prod6 ?y) (?I price ?z) (?x desc ?w)) 

:type J((?x <products))) 
:returns '(?y ?z ?u)) 

Schema #t2 
query 1 
(solve-all 

query 2 
(solve-all 

query 3 
(solve-all 

query 4 
(solve-all 

*({D260) phone 7x) 
:returns '?xL) 

'(and (?x zip-code 1260) (?x dlrid ?y)) 
:type J((?x {outlets))) 
:returns '?y) 

'(and (?x dlrid 1370) (?x oaddr ?y) (?x zip-code ?z)) 
:type '((?x Ioutlets))) 
:returns '(?y ?z)) 

'(and (fDl60) dlrid ?P) (?x dlrid ?s) (?x zip-code ?y) 
(?z zip ?y) (?z cratio ?a) (?z compid ?v)) 

:type '((?x {outlets)) (?z {competitors))) 
:returns '(?a ?v)) 

References 

[19SSa] HP 9000 S eries 900 NMODE User’s Guide. Hewlett Packard 
Company, 1986. 

[1986b] HP-RL R f e erence Manual. Hewlett Packard Laboratories, 
September 1986. 

[Chamberlin ed al., 19811 D. Chamberlin e2 al. A history and evalua- 
tion of system R. Communications of the ACM, 24( lo), October 
1981. 

[Fishman et al., 19871 D. Fishman et al. Iris: an object-oriented 
dbms. ACM ‘Transactions on Ofice Information Systems, 5(2), 
April 1987. 

[Abarbnel and W 11 i iams, 19861 R. Abarbnel and M. Williams. A re- 
lational representation for knowledge bases. In First Interna- 
tional Conference on Expert Database Systems, 1986. 

[Chow, 19861 E. Chow. Iris and HPRL. Technical Report STL-TM- 
86-13, Hewlett Packard Laboratories, October 1986. 

[Chow and Cate, 19861 E. Chow and H. Cate. Performance Evalu- 
ation for IRIS Version 1.0. Technical Report STL-TM-86-13, 
Hewlett Packard Laboratories, October 1986. 

[Date, 19861 C. Date. An Introduction to Database Systems. Vol- 
ume 1, Addison-Wesley, fourth edition, 1986. 

[Fikes and Kehler, 19851 R. Fikes and T. Kehler. The role of frame- 
based representation in reasoning. Communications of the ACM, 
28(9), September 1985. 

[Rich, 19831 E. Rich. Artifical Intelligence. McGraw-Hill, 1983. 

[Rosenberg, 19831 S. Rosenberg. HPRL: a language for building ex- 
pert systems. In Proc. IJCAI, 1983. 

[Stefik, 19791 M. Stefik. An examination of a frame-structured rep- 
resentation system. In Proc. IJCAI, 1979. 

[Warren, 19811 D. Warren. Efficient processing of interactive rela- 
tional database queries expressed in logic. In Proc. of 7th Int. 
Conf. on VLDB, 1981. 

Chow 409 


