
Complexity in Classificatory Reasoning

Ashok Gael, N. Soundararajan, and B. Chandrasekaran

Department of Computer and Information Science
The Ohio State University

Columbus. Ohio 43210

Abstract
Classificatory reasoning involves the tasks of

concept evaluation and classification, which may be
performed with use of the strategies of concept
matching and concept activation, respectively.
Different implementations of the strategies of concept
matching and concept activation are possible, where an
implementation is characterized by the organization of
knowledge and the control of information processing it
uses. In this paper we define the tasks of concept
evaluation and classification, and describe the
strategies of concept matching and concept activation.
We then derive the computational complexity of the
tasks using different implementations of the
task-specific strategies. We show that the complexity
of performing a task is determined by the organization
.of knowledge used in performing it. Further, we
suggest that the implementation that is
computationally the most efficient for performing a
task may be cognitively the most plausible as well.

I. Introduction
Classificatory reasoning is a type of knowledge-using

reasoning that deals with performance of the
classification task, and has received significant
attention in research on knowledge-using
problem-solving systems [Clancey, 1985; Gomez and
Chandrasekaran, 1984i. Given a taxonomy of concepts
in a domain, and a set of data describing a situation
in the domain, the classification task is to determine
which concepts are present in the situation. In
diagnosing a device in some situation for instance, the
classification task is to determine which device
malfunctions are present in the situation, while in
assessing an event in some situation the classification
task may be to find which threats to some system are
present in the situation. A task may be performed
with use of a knowledge-using strategy appropriate for
the task. The classification task may be performed
with-use of the strategy of concept activation, which is
to activate concepts in the taxonomy for evaluation of
their presence in a given situation.

Concept evaluation is a task by itself since it may
“occur” not only in classificatory reasoning but also in
other types of knowledge-using reasoning such as plan
selection. Given a concept in a domain and a set of

data describing a situation in the domain, the task of
concept evaluation is to determine whether the concept
is appropriate for the situation. The sense in which a
concept is appropriate for a situation depends on the
type of the concept; if the concept is a device
malfunction for instance, then the concept is
appropriate for the situation if it is present in it, and
if the concept is a plan to thwart a threat then the
concept is appropriate for the situation if it is
applicable to it. Concept evaluation may be performed
with use of the strategy of concept matching, which is
to match a knowledge structure for the concept with
the description of the situation, and determine a
likelihood that the concept is appropriate for the
situation by the degree of the match [Berliner and
Ackley, 1982; Bylander and Johnson, 19871. A
strategy might be implemented in more than one way,
where an implementation may be characterized by the
organization of knowledge and the control of
information processing it uses.

An important issue in classificatory reasoning is the
computational complexity of performing the tasks of
classification and concept evaluation. The complexity
of performing a task depends on the implementation of
the strategy used to perform it. In this paper we
derive the computational complexity of concept
evaluation and classification for different
implementations of concept matching and concept
activation, respectively. We show that the complexity
of performing a task is determined by the organization
of knowledge used in performing it. Further, we
suggest that the implementation that is
computationally the most efficient for performing a
task may be cognitively the most plausible as well.

2. Complexity of Concept Evaluation

2.1. Definitions
Let c be a concept in a given domain. Let ci be

a set of p discrete values, where p is some small
integer. A value u E U represents the likelihood that
the concept c is appropriate for a specific situation in
the domain. A high likelihood value implies that c is
appropriate for the situation; a low value implies that
c is not appropriate for the situation; and
middle-range values imply various levels of uncertainty.

Goel, Soundararajan, and Chandrasekaran 421

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Let D be a finite set of n data d,, i=I,2 ,..., n in
the domain of c. Let Q be a set of q truth values.
Let 21 be a map, v : D --+ Q, which assigns a value
from Q to each d E D. A datum d E D corresponds
to an assertion about some feature in a specific
situation in the domain, and v(d) is the truth value of
the assertion in a q-valued truth system Q. If some
d E D asserts that feature z has a discrete value y in
some situation for example, then in the case q is
three, v(d) may be True, False, or Unknown
depending on whether the assertion is known to be
true, false, or it is not known whether the assertion is
true or false.

We assume that for a given c, specification of D
and v for any situation in a class of situations is a
necessary and sufficient condition to determine u E U
for c. We define concept evaluation as a five-tuple
(c, u, D, v, fee>, where c, U, D, and v are as defined
above, and fee is a function that takes D and v as
inputs, and outputs a u E U.

Concept evaluation may be performed with use of
the strategy of concept matching, which is to match a
conceptual structure with the description of the
situation, and determine a likelihood that the concept
is appropriate for the situation by the degree of the
match. Concept matching may be viewed as an
instantiation of fee. We now describe different
implementations of concept matching, and derive the
computational complexity of concept evaluation using
these implementations. We assume an oracle for
testing the value of one datum. We express the time
complexity as the number of calls to the oracle, and
the space complexity as the number of tests which
have to be encoded in the knowledge-base.

2.2. Table Look-up
A first implementation of concept matching is table

look-up. Knowledge is organized as a qn x 2 table.
The first column of each row in the table contains a
different entry from the qn possible combinations of
v(dJ, i=l,2,..., n, and the second column contains the
corresponding value of u. The control of information
processing is row by row. Starting with the first row
in the table, the entry in the first column of the row
is matched with the input; if the match succeeds then
the entry in the second column of the row is the
output, else the entry in the first column of the next
row is matched with the input, and so on. The time
and space complexities Tcel and Scel respectively, are
given by

T ccl = O(n. qn)

S ccl = Oh. 47

2.3. Tree Traversal
A second implementation of concept matching is

tree traversal. Knowledge is organized as nodes in a
discrimination tree. The top node in the tree
corresponds to d, and has q branches coming out of
it, one for each of the q possible values that d, may
take. The branches lead to q different nodes, each of
which corresponds to d, and has q branches coming
out of it. This organization of knowledge is repeated
until di, i=I,2 ,..., n have been represented on the tree.
Thus, there is one node at the first level, q nodes at
the second, q2 nodes at the third level, and so on.
There are q 72 branches coming out of the qnml nodes at
the nth level, each of which leads to a value of u.
The control of information processing is top-down.
Starting with the root node the branch that matches
v(d,) in the input is taken, and the next node is
reached, where the branch that matches v(dJ in the
input is taken, and so on until v(dJ, i=I,2,..,n in the
input have been matched. The match of v(d,J leads to
the value of 21 which is the output. The time and
space complexities TCeg and Scee respectively, are given
by

T ce2 = O(n)

S ce2 = WP)

The space complexity is the sum of the geometric
series of q2 from i=O to i=n-1.

2.4. Structured Matching
We may view D and c as characterizing two

different levels of abstraction in a given domain. Let
us introduce l-2 intermediate levels of abstraction
Gy j=l,2,..., l-2 between the D and c levels. Let us
consider nI features at the G, level, ne features at the
G, level, and so on, with n1 M n/k, ne z nJk, and
so on, where n is the number of data in D, and k is
some small constant greater than one. The number of
intermediate levels of abstraction depends on k;
1 x logk(n). Let us assume that it is possible to form
nI disjoint subsets of values v(dJ, i=1,2,...n, with no
more than k values in any subset, such that each such
subset may be used to abstract the value of some
feature at G,. Let us assume also that it is possible
to form ne disjoint subsets of the values of features at
G,, with no more than k features in any subset, such
that each such subset may be used to abstract the
value of some feature at G, This process may be
repeated until the value u for c is abstracted from the
values of features at the G/-, level. We may call the
hierarchy thus formed a feature hierarchy. The idea
of hierarchical feature abstractions was first developed
by Samuel in his work on game playing programs
[Samuel, 19671.

We now describe a third implementation of concept
matching called structured matching IBylander and

422 Knowledge Representation

Johnson, 19871. Knowledge is organized in a feature
hierarchy as above. At any level in the hierarchy a
small number of strongly interrelated features are
grouped, evaluated, and abstracted together to a
higher level feature, and weakly interrelated features
are evaluated and abstracted in different groups. The
interactions between two groups of features at some
level are taken into account at a higher level in the
hierarchy. k represents the upper bound on the
number of features that may be grouped together at
any level in the hierarchy. The task of abstracting
the value of a feature at some level from the values of
features at the lower level in the hierarchy may be
performed by a simple matcher that uses table
look-up. Notice that in going from one level of
abstraction to another it is not important if the range
of likelihood values p, does not equal q. In the case q
is three for instance, if the likelihood value for a
feature is high then the truth value of the feature
may be taken as True, if the likelihood value for the
feature is low then the truth value may be False, and
if the likelihood value is in middle range then the
truth value of the feature may be Unknown.

The control of information processing is top-down.
The information processing starts by invocation of the
simple matcher corresponding to the concept c which
is at the top node in the feature hierarchy. Since the
simple matcher requires the values of the features
input to it, it invokes the simple matchers at the next
lower level in the hierarchy. The invocations of the
simple matchers proceed downwards through the
hierarchy, until the level of abstraction just above D
level is reached. Since the values of input features at
this level are known, the feature abstractions may
begin. The feature abstractions flow upwards in the
hierarchy until u is computed at the top node. Since
each simple matcher in the hierarchy uses the strategy
of table look-up with no more than k values the time
and space complexities for each simple matcher are
both O(k. qk), which is a constant. There is one
simple matcher on the top level, k simple matchers on
the second level, k’ on the third level, and so on for
the 1 levels. The time and space complexities are the
sum of the geometric series of ka from i=l to i=l-1,
where 1 x5 logk(n). Thus, the time and space
complexities of concept matching using the strategy of
structured matching Tees, and SceS respectively, are
given by

T - O(n) c&9 -

S ce3 = O(n)

3. Complexity of Classification

3.1. Definitions
Let C be a finite set of m concepts, ci, j=1,2,..,m

in a given domain. C is a taxonomy of m concepts in
the domain. Let U3, j=1,2 ,..., m be m finite sets of p

discrete values each. Let U be a set composed of sets
U, j=1,2 ,... m. A value u3
likelihood that the concept c

E li represents the
E C t”,r j=1,2 ,..., m, is

present in a specific situation’ in the domain. Let D,
Q, q, and v be defined as for concept evaluation. We
note that the number of data d E D for classification
would typically be much larger than for concept
evaluation.

We assume that for a given C, specification of D
and v for any situation in a class of situations is a
necessary and sufficient condition to determine u3 E uj
for ci E C, j=1,2 ,..., m. The m concepts in C are
equivalence classes of different subsets of D. We
assume that the concepts in C are independent of one
another; if cl1 and cl2 are two concepts in C, then the
subset of D that may be classified into c 1 and Cam, is
the union of the two subsets of D t at i-l may be
classified into c and c separately. We define
classification as $‘five-tupli’(C, U, D, v, fc) where C,
U, D, and v are as defined above, and fc is a function
that takes D and v as the input, and outputs
uJ E U3, j=l,2 ,..., m.

The classification task may be performed with use
of the strategy of concept activation, which is to
activate concepts in the taxonomy for evaluation.
Concept activation may be viewed as an instantiation
of fc. We now describe different implementations of
concept activation, and derive the computational
complexity of classification for these implementations.
We assume an oracle for concept evaluation. We
express the time complexity of classification as the
number of calls to the oracle for concept evaluation,
and the space complexity as the number of concepts
in the knowledge-base.

3.2. Direct Activation
One implementation of concept activation is direct

activation. Knowledge is distributed among the m
conceptual structures, and the control of
problem-solving is activation of concepts for evaluation,
one by one. Concept evaluation is performed with a
call to the oracle. The time and space complexities
T, and SC respectively, are given by

T, = O(m)

SC = O(m)

3.3. Hierarchical Activation
Let C, U, D, and v be as before. Let C’ be a

finite set of m’ concepts, c >, j=1,2 ,..., m ‘. Let
Uit j=l,.Z,...,m’ be m’ finite sets of p discrete values
each. Let U’ be a set composed of sets
U., j=l,2,...m’. A value u1 E UJ represents ?the
likelihood that the concept c E
specific situation in the doma!in.

C’ is present in a
Let D’ be a finite

set of n’ data, d,, i=l,2 ,..., n’. Let m’ > m, and
12’ 2 72. C’, U’, and D’, are supersets of C, U, and

Coel, Soundararajan, and Chandrasekaran 423

D, respectively. We redefine the task of classification
as a five-tuple (C’, U’, D’, V, f’,), where C’, U’, and
D’, are as defined above: v is as defined earlier, and

f’c is a function that takes D’ and v as inputs, and
outputs U. E Ui, j=1,2 ,...) m’.
U’, and d’,

Notice that since C’,
are supersets of C, . U, and D, respectively,

f ‘c entails fc.

We now describe another implementation of
concept ac vation, h hierarchical activation. In
hierarchical activation the m’ concepts in C’ are
organized in a concept hierarchy such that the m leaf
concepts in the hierarchy correspond to the m
concepts in C. The value. of m’ depends on the
branching factor, b, of the hierarchy; m’ is directly
proportional to m. The number of levels, 1, is given
by 1 x logb(m’). Knowledge is organized in the
concept hierarchy, and distributed among the m’
conceptual structures. The control of problem solving
is top-down. Starting with the concept at the root of
the hierarchy, each concept when activated is
evaluated with a call to the oracle; if the match
succeeds then the concept is established as present in
the situation, and its subconcepts are activated, else
the concept is rejected as present in the situation, and
its subconcepts are rejected as well. This may result
in the pruning of the tree.

The space complexity S’(c) is given by

S’(c) = O(m)) = O(m)

In the worst case, each concept in the hierarchy may
be activated. The time complexity in the worst case
T’(c1) is given by

T’(c1) = O(m)) = O(m)

In the best case only 1 concepts may be activated for
evaluation. The time complexity for the best case
T’(cZ) is given by

T’(c2) = O(logb(m’)) = O(logb(m))

4. Cognitive Issues in Classificatory Reasoning
In our framework for classificatory reasoning, the

data that describe a situation in a given domain are
allowed to take on only qualitative values, and the
likelihood that a concept in the domain is appropriate
for the situation is expressed as a discrete value.
However, the use of numerical values and continuous
functions might yield more precise results in some
domains. Nevertheless, we use only discrete values
and functions because intuitively they appear
cognitively more plausible. For the construction of
knowledge-using systems, in domains in which data
appears in numerical form, the data values may be
converted to qualitative form by preprocessing.

Further, in our framework, uncertainty in the data

values and the likelihood values for concepts is
handled locally rather than through a global
uncertainty calculus. In performing the task of
classification with use of hierarchical activation for
instance, a high likelihood value for the
appropriateness of a concept for a given situation is
interpreted as presence of the concept in the situation,
and the uncertainty is not propagated to the
subconcep ts. Again, the use of a global uncertainty
calculus might yield more precise results in some
domains; nevertheless, we handle uncertainty locally
because intuitively that appears cognitively more
plausible.

It appears obvious that the computational efficiency
of performing a task is a precondition for the cognitive
plausibility of the implementation of the strategy used
to perform the task. We comment below on the
cognitive plausibility of structured matching and
hierarchical activation.

4.1. Structured Matching
Concept evaluation in general is computationally

most efficiently performed with use of structured
matching. However, in structured matching we had
assumed that it was possible to form disjoint subsets
of a set of features at some level in the feature
hierarchy, such that each such subset may be used to
abstract the value of a feature at the next higher
level. This assumption is valid only in problem
domains that Simon has called nearly decomposable
[Simon, 811. If such a decomposition was not possible
then the feature hierarchy would be tangled. A
tangled feature hierarchy may be untangled by
including the same feature(s) in different feature
groups.

For nearly decomposable domains the efficiency of
performing concept evaluation using structured
matching is due to two interrelated reasons. Firstly,
a small number of interrelated features are grouped,
evaluated and abstracted together at each level of
abstraction in the feature hierarchy. This grouping
together of a small number of interrelated features is
analogous to the phenomenon of “chunking” in
cognitive psychology. Secondly, an upper bound is
imposed on the number of features allowed in a
group. The imposition of a such an upper bound on
the number of features is reminiscent of the notion of
“short-term memory” in cognitive psychology.

4.2. Hierarchical Activation
For performing the classification task in general the

use of hierarchical activation in the worst case is as
efficient as, and in the best case is more efficient
than, the use of direct activation. However, in
describing hierarchical activation we had implicitly
assumed that building of a non-trivial untangled
concept hierarchy with m leaf concepts was indeed
possible. Again, this assumption may be valid only in
nearly decomposable domains. Branches in the concept

424 Knowledge Representation

hierarchy that are tangled at some concept c may be
untangled by including a copy of c in each tangled
branch.

The computational efficiency of classification with
use of hierarchical activation is due to the
organization of knowledge in a hierarchy, which allows
for pruning of the tree. A concept is activated for
evaluation only if its parent concept has been
established as being present in the given situation.
Thus, a concept in general is evaluated in the context
of its ancestor concepts. This use of context is
cognitively appealing. Furthermore, if only an
incomplete description of a situation were available,
then direct concept activation might not lead to the
establishment of any concept in the taxonomy.
However, for the same incomplete description of the
situation hierarchical activation might lead to the
establishment of concepts at a level higher than the
leaf level. This too is cognitively appealing.

5. Conclusions
We have described different implementations of the

strategies of concept matching and concept activation
in terms of the organization of knowledge and control
of information processing that they use. We have
shown that structured matching and hierarchical
activation are computationally the most efficient
implementations for performing the tasks of concept
evaluation and classification, respectively. Further, we
have suggested that structured matching and
hierarchical activation may be cognitively the most
plausible implementations as well.

Hierarchical activation and structured matching are
computationally the most efficient implementations
because they use organizations of knowledge that are
most appropriate for the tasks of classification and
concept evaluation, respectively. Organization of
knowledge specific to its use is a central issue in
knowledge-using reasoning in general. It is the
organization of knowledge specific to its use from
which the computational power to perform a task
emerges. For each primitive type of knowledge-using
reasoning there exists an organization of knowledge
that is appropriate for it. Chandrasekaran has
identified classification and concept evaluation as
primitive types of knowledge-using reasoning
[Chandrasekaran, 19861 High-level knowledge
representation languages for classification using
hierarchical activation [Bylander and Mittal, 19861, and
concept evaluation using structured matching [Johnson
and Josephson, 19861 have been developed.

References
[Berliner and Ackley, 19821 Hans Berliner and David

Ackley. “The QBKG System: Generating Ex-
planations from a Non-Discrete Knowledge-
Representation”. In Proceedings AAAI-82, pages
213-216, 1982.

[Bylander and Johnson, 19871 Tom Bylander and Todd
Johnson. “S true tured Matching”. Technical
Report, Laboratory for Artificial Intelligence
Research, Department of Computer and Infor-
mation Science, The Ohio State University,
February 1987.

[Bylander and Mittal, 19861 Tom Bylander and Sanjay
Mittal. “CSRL: A Language for Classsificatory
Problem-Solving and Uncertainty Handling”. AI
Magazine, 7(3):66-77, August 1986.

[Chandrasekaran, 1986) B. Chandrasekaran. “Generic
Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design”.
IEEE Expert, 1(3):23-30, 1986.

[Clancey, 19851 William Clancey. “Heuristic
Classification”. Artificial Intelligence, 27(3):
289-350, 1985.

[Gomez and Chandrasekaran, 19841 Fernando Gomez
and B. Chandrasekaran. “Knowledge Organiza-
tion and Distribution for Medical Diagnosis”.
Readings in Medical Artificial Intelligence: The
First Decade, Chapter 13, pages 320-339, William
Clancey and Edward Shortliffe, editors, Addison-
Wesley, Reading, Massachusetts, 1984.

[Johnson and Josephson, 19861 Todd Johnson and
John Josephson. “HYPER: The Hypothesis
Matcher Tool”. Technical Report, Laboratory
for Artificial Intelligence Research, Department of
Computer and Information Science, The Ohio
State University, April 1986.

[Samuel, 67) Arthur Samuel. “Some Studies in
Machine Learning Using the Game of Checkers
II. Recent Progress”. IBM Journal of Research
and Development, 11(6):601-617, November 1967.

[Simon, 811 Herbert Simon. Sciences of the Artificial,
Second edition, MIT Press, Cambridge, Massa-
chusetts, 1981.

Acknowledgments
We are deeply grateful to Tom Bylander and Dean

Allemang for their many contributions to this paper.
This research was supported by research grants from
the Air Force Office of Scientific Research
(AFOSR-86-719026), and the Defense Advanced
Research Projects Agency, RADC (F30602-85-C-0010).

Gael, Soundararajan, and Chandrasekarin 425

