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Abstract 
Classificatory reasoning involves the tasks of 

concept evaluation and classification, which may be 
performed with use of the strategies of concept 
matching and concept activation, respectively. 
Different implementations of the strategies of concept 
matching and concept activation are possible, where an 
implementation is characterized by the organization of 
knowledge and the control of information processing it 
uses. In this paper we define the tasks of concept 
evaluation and classification, and describe the 
strategies of concept matching and concept activation. 
We then derive the computational complexity of the 
tasks using different implementations of the 
task-specific strategies. We show that the complexity 
of performing a task is determined by the organization 
.of knowledge used in performing it. Further, we 
suggest that the implementation that is 
computationally the most efficient for performing a 
task may be cognitively the most plausible as well. 

I. Introduction 
Classificatory reasoning is a type of knowledge-using 

reasoning that deals with performance of the 
classification task, and has received significant 
attention in research on knowledge-using 
problem-solving systems [Clancey, 1985; Gomez and 
Chandrasekaran, 1984i. Given a taxonomy of concepts 
in a domain, and a set of data describing a situation 
in the domain, the classification task is to determine 
which concepts are present in the situation. In 
diagnosing a device in some situation for instance, the 
classification task is to determine which device 
malfunctions are present in the situation, while in 
assessing an event in some situation the classification 
task may be to find which threats to some system are 
present in the situation. A task may be performed 
with use of a knowledge-using strategy appropriate for 
the task. The classification task may be performed 
with-use of the strategy of concept activation, which is 
to activate concepts in the taxonomy for evaluation of 
their presence in a given situation. 

Concept evaluation is a task by itself since it may 
“occur” not only in classificatory reasoning but also in 
other types of knowledge-using reasoning such as plan 
selection. Given a concept in a domain and a set of 

data describing a situation in the domain, the task of 
concept evaluation is to determine whether the concept 
is appropriate for the situation. The sense in which a 
concept is appropriate for a situation depends on the 
type of the concept; if the concept is a device 
malfunction for instance, then the concept is 
appropriate for the situation if it is present in it, and 
if the concept is a plan to thwart a threat then the 
concept is appropriate for the situation if it is 
applicable to it. Concept evaluation may be performed 
with use of the strategy of concept matching, which is 
to match a knowledge structure for the concept with 
the description of the situation, and determine a 
likelihood that the concept is appropriate for the 
situation by the degree of the match [Berliner and 
Ackley, 1982; Bylander and Johnson, 19871. A 
strategy might be implemented in more than one way, 
where an implementation may be characterized by the 
organization of knowledge and the control of 
information processing it uses. 

An important issue in classificatory reasoning is the 
computational complexity of performing the tasks of 
classification and concept evaluation. The complexity 
of performing a task depends on the implementation of 
the strategy used to perform it. In this paper we 
derive the computational complexity of concept 
evaluation and classification for different 
implementations of concept matching and concept 
activation, respectively. We show that the complexity 
of performing a task is determined by the organization 
of knowledge used in performing it. Further, we 
suggest that the implementation that is 
computationally the most efficient for performing a 
task may be cognitively the most plausible as well. 

2. Complexity of Concept Evaluation 

2.1. Definitions 
Let c be a concept in a given domain. Let ci be 

a set of p discrete values, where p is some small 
integer. A value u E U represents the likelihood that 
the concept c is appropriate for a specific situation in 
the domain. A high likelihood value implies that c is 
appropriate for the situation; a low value implies that 
c is not appropriate for the situation; and 
middle-range values imply various levels of uncertainty. 
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Let D be a finite set of n data d,, i=I,2 ,..., n in 
the domain of c. Let Q be a set of q truth values. 
Let 21 be a map, v : D --+ Q, which assigns a value 
from Q to each d E D. A datum d E D corresponds 
to an assertion about some feature in a specific 
situation in the domain, and v(d) is the truth value of 
the assertion in a q-valued truth system Q. If some 
d E D asserts that feature z has a discrete value y in 
some situation for example, then in the case q is 
three, v(d) may be True, False, or Unknown 
depending on whether the assertion is known to be 
true, false, or it is not known whether the assertion is 
true or false. 

We assume that for a given c, specification of D 
and v for any situation in a class of situations is a 
necessary and sufficient condition to determine u E U 
for c. We define concept evaluation as a five-tuple 
(c, u, D, v, fee>, where c, U, D, and v are as defined 
above, and fee is a function that takes D and v as 
inputs, and outputs a u E U. 

Concept evaluation may be performed with use of 
the strategy of concept matching, which is to match a 
conceptual structure with the description of the 
situation, and determine a likelihood that the concept 
is appropriate for the situation by the degree of the 
match. Concept matching may be viewed as an 
instantiation of fee. We now describe different 
implementations of concept matching, and derive the 
computational complexity of concept evaluation using 
these implementations. We assume an oracle for 
testing the value of one datum. We express the time 
complexity as the number of calls to the oracle, and 
the space complexity as the number of tests which 
have to be encoded in the knowledge-base. 

2.2. Table Look-up 
A first implementation of concept matching is table 

look-up. Knowledge is organized as a qn x 2 table. 
The first column of each row in the table contains a 
different entry from the qn possible combinations of 
v(dJ, i=l,2,..., n, and the second column contains the 
corresponding value of u. The control of information 
processing is row by row. Starting with the first row 
in the table, the entry in the first column of the row 
is matched with the input; if the match succeeds then 
the entry in the second column of the row is the 
output, else the entry in the first column of the next 
row is matched with the input, and so on. The time 
and space complexities Tcel and Scel respectively, are 
given by 

T ccl = O(n. qn) 

S ccl = Oh. 47 

2.3. Tree Traversal 
A second implementation of concept matching is 

tree traversal. Knowledge is organized as nodes in a 
discrimination tree. The top node in the tree 
corresponds to d, and has q branches coming out of 
it, one for each of the q possible values that d, may 
take. The branches lead to q different nodes, each of 
which corresponds to d, and has q branches coming 
out of it. This organization of knowledge is repeated 
until di, i=I,2 ,..., n have been represented on the tree. 
Thus, there is one node at the first level, q nodes at 
the second, q2 nodes at the third level, and so on. 
There are q 72 branches coming out of the qnml nodes at 
the nth level, each of which leads to a value of u. 
The control of information processing is top-down. 
Starting with the root node the branch that matches 
v(d,) in the input is taken, and the next node is 
reached, where the branch that matches v(dJ in the 
input is taken, and so on until v(dJ, i=I,2,..,n in the 
input have been matched. The match of v(d,J leads to 
the value of 21 which is the output. The time and 
space complexities TCeg and Scee respectively, are given 
by 

T ce2 = O(n) 

S ce2 = WP) 

The space complexity is the sum of the geometric 
series of q2 from i=O to i=n-1. 

2.4. Structured Matching 
We may view D and c as characterizing two 

different levels of abstraction in a given domain. Let 
us introduce l-2 intermediate levels of abstraction 
Gy j=l,2,..., l-2 between the D and c levels. Let us 
consider nI features at the G, level, ne features at the 
G, level, and so on, with n1 M n/k, ne z nJk, and 
so on, where n is the number of data in D, and k is 
some small constant greater than one. The number of 
intermediate levels of abstraction depends on k; 
1 x logk(n). Let us assume that it is possible to form 
nI disjoint subsets of values v(dJ, i=1,2,...n, with no 
more than k values in any subset, such that each such 
subset may be used to abstract the value of some 
feature at G,. Let us assume also that it is possible 
to form ne disjoint subsets of the values of features at 
G,, with no more than k features in any subset, such 
that each such subset may be used to abstract the 
value of some feature at G, This process may be 
repeated until the value u for c is abstracted from the 
values of features at the G/-, level. We may call the 
hierarchy thus formed a feature hierarchy. The idea 
of hierarchical feature abstractions was first developed 
by Samuel in his work on game playing programs 
[Samuel, 19671. 

We now describe a third implementation of concept 
matching called structured matching IBylander and 
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Johnson, 19871. Knowledge is organized in a feature 
hierarchy as above. At any level in the hierarchy a 
small number of strongly interrelated features are 
grouped, evaluated, and abstracted together to a 
higher level feature, and weakly interrelated features 
are evaluated and abstracted in different groups. The 
interactions between two groups of features at some 
level are taken into account at a higher level in the 
hierarchy. k represents the upper bound on the 
number of features that may be grouped together at 
any level in the hierarchy. The task of abstracting 
the value of a feature at some level from the values of 
features at the lower level in the hierarchy may be 
performed by a simple matcher that uses table 
look-up. Notice that in going from one level of 
abstraction to another it is not important if the range 
of likelihood values p, does not equal q. In the case q 
is three for instance, if the likelihood value for a 
feature is high then the truth value of the feature 
may be taken as True, if the likelihood value for the 
feature is low then the truth value may be False, and 
if the likelihood value is in middle range then the 
truth value of the feature may be Unknown. 

The control of information processing is top-down. 
The information processing starts by invocation of the 
simple matcher corresponding to the concept c which 
is at the top node in the feature hierarchy. Since the 
simple matcher requires the values of the features 
input to it, it invokes the simple matchers at the next 
lower level in the hierarchy. The invocations of the 
simple matchers proceed downwards through the 
hierarchy, until the level of abstraction just above D 
level is reached. Since the values of input features at 
this level are known, the feature abstractions may 
begin. The feature abstractions flow upwards in the 
hierarchy until u is computed at the top node. Since 
each simple matcher in the hierarchy uses the strategy 
of table look-up with no more than k values the time 
and space complexities for each simple matcher are 
both O(k. qk), which is a constant. There is one 
simple matcher on the top level, k simple matchers on 
the second level, k’ on the third level, and so on for 
the 1 levels. The time and space complexities are the 
sum of the geometric series of ka from i=l to i=l-1, 
where 1 x5 logk(n). Thus, the time and space 
complexities of concept matching using the strategy of 
structured matching Tees, and SceS respectively, are 
given by 

T - O(n) c&9 - 

S ce3 = O(n) 

3. Complexity of Classification 

3.1. Definitions 
Let C be a finite set of m concepts, ci, j=1,2,..,m 

in a given domain. C is a taxonomy of m concepts in 
the domain. Let U3, j=1,2 ,..., m be m finite sets of p 

discrete values each. Let U be a set composed of sets 
U, j=1,2 ,... m. A value u3 
likelihood that the concept c 

E li represents the 
E C t”,r j=1,2 ,..., m, is 

present in a specific situation’ in the domain. Let D, 
Q, q, and v be defined as for concept evaluation. We 
note that the number of data d E D for classification 
would typically be much larger than for concept 
evaluation. 

We assume that for a given C, specification of D 
and v for any situation in a class of situations is a 
necessary and sufficient condition to determine u3 E uj 
for ci E C, j=1,2 ,..., m. The m concepts in C are 
equivalence classes of different subsets of D. We 
assume that the concepts in C are independent of one 
another; if cl1 and cl2 are two concepts in C, then the 
subset of D that may be classified into c 1 and Cam, is 
the union of the two subsets of D t at i-l may be 
classified into c and c separately. We define 
classification as $‘five-tupli’(C, U, D, v, fc) where C, 
U, D, and v are as defined above, and fc is a function 
that takes D and v as the input, and outputs 
uJ E U3, j=l,2 ,..., m. 

The classification task may be performed with use 
of the strategy of concept activation, which is to 
activate concepts in the taxonomy for evaluation. 
Concept activation may be viewed as an instantiation 
of fc. We now describe different implementations of 
concept activation, and derive the computational 
complexity of classification for these implementations. 
We assume an oracle for concept evaluation. We 
express the time complexity of classification as the 
number of calls to the oracle for concept evaluation, 
and the space complexity as the number of concepts 
in the knowledge-base. 

3.2. Direct Activation 
One implementation of concept activation is direct 

activation. Knowledge is distributed among the m 
conceptual structures, and the control of 
problem-solving is activation of concepts for evaluation, 
one by one. Concept evaluation is performed with a 
call to the oracle. The time and space complexities 
T, and SC respectively, are given by 

T, = O(m) 

SC = O(m) 

3.3. Hierarchical Activation 
Let C, U, D, and v be as before. Let C’ be a 

finite set of m’ concepts, c >, j=1,2 ,..., m ‘. Let 
Uit j=l,.Z,...,m’ be m’ finite sets of p discrete values 
each. Let U’ be a set composed of sets 
U., j=l,2,...m’. A value u1 E UJ represents ?the 
likelihood that the concept c E 
specific situation in the doma!in. 

C’ is present in a 
Let D’ be a finite 

set of n’ data, d,, i=l,2 ,..., n’. Let m’ > m, and 
12’ 2 72. C’, U’, and D’, are supersets of C, U, and 
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D, respectively. We redefine the task of classification 
as a five-tuple (C’, U’, D’, V, f’,), where C’, U’, and 
D’, are as defined above: v is as defined earlier, and 

f’c is a function that takes D’ and v as inputs, and 
outputs U. E Ui, j=1,2 ,...) m’. 
U’, and d’, 

Notice that since C’, 
are supersets of C, . U, and D, respectively, 

f ‘c entails fc. 

We now describe another implementation of 
concept ac vation, h hierarchical activation. In 
hierarchical activation the m’ concepts in C’ are 
organized in a concept hierarchy such that the m leaf 
concepts in the hierarchy correspond to the m 
concepts in C. The value. of m’ depends on the 
branching factor, b, of the hierarchy; m’ is directly 
proportional to m. The number of levels, 1, is given 
by 1 x logb(m’). Knowledge is organized in the 
concept hierarchy, and distributed among the m’ 
conceptual structures. The control of problem solving 
is top-down. Starting with the concept at the root of 
the hierarchy, each concept when activated is 
evaluated with a call to the oracle; if the match 
succeeds then the concept is established as present in 
the situation, and its subconcepts are activated, else 
the concept is rejected as present in the situation, and 
its subconcepts are rejected as well. This may result 
in the pruning of the tree. 

The space complexity S’(c) is given by 

S’(c) = O(m)) = O(m) 

In the worst case, each concept in the hierarchy may 
be activated. The time complexity in the worst case 
T’(c1) is given by 

T’(c1) = O(m)) = O(m) 

In the best case only 1 concepts may be activated for 
evaluation. The time complexity for the best case 
T’(cZ) is given by 

T’(c2) = O(logb(m’)) = O(logb(m)) 

4. Cognitive Issues in Classificatory Reasoning 
In our framework for classificatory reasoning, the 

data that describe a situation in a given domain are 
allowed to take on only qualitative values, and the 
likelihood that a concept in the domain is appropriate 
for the situation is expressed as a discrete value. 
However, the use of numerical values and continuous 
functions might yield more precise results in some 
domains. Nevertheless, we use only discrete values 
and functions because intuitively they appear 
cognitively more plausible. For the construction of 
knowledge-using systems, in domains in which data 
appears in numerical form, the data values may be 
converted to qualitative form by preprocessing. 

Further, in our framework, uncertainty in the data 

values and the likelihood values for concepts is 
handled locally rather than through a global 
uncertainty calculus. In performing the task of 
classification with use of hierarchical activation for 
instance, a high likelihood value for the 
appropriateness of a concept for a given situation is 
interpreted as presence of the concept in the situation, 
and the uncertainty is not propagated to the 
subconcep ts. Again, the use of a global uncertainty 
calculus might yield more precise results in some 
domains; nevertheless, we handle uncertainty locally 
because intuitively that appears cognitively more 
plausible. 

It appears obvious that the computational efficiency 
of performing a task is a precondition for the cognitive 
plausibility of the implementation of the strategy used 
to perform the task. We comment below on the 
cognitive plausibility of structured matching and 
hierarchical activation. 

4.1. Structured Matching 
Concept evaluation in general is computationally 

most efficiently performed with use of structured 
matching. However, in structured matching we had 
assumed that it was possible to form disjoint subsets 
of a set of features at some level in the feature 
hierarchy, such that each such subset may be used to 
abstract the value of a feature at the next higher 
level. This assumption is valid only in problem 
domains that Simon has called nearly decomposable 
[Simon, 811. If such a decomposition was not possible 
then the feature hierarchy would be tangled. A 
tangled feature hierarchy may be untangled by 
including the same feature(s) in different feature 
groups. 

For nearly decomposable domains the efficiency of 
performing concept evaluation using structured 
matching is due to two interrelated reasons. Firstly, 
a small number of interrelated features are grouped, 
evaluated and abstracted together at each level of 
abstraction in the feature hierarchy. This grouping 
together of a small number of interrelated features is 
analogous to the phenomenon of “chunking” in 
cognitive psychology. Secondly, an upper bound is 
imposed on the number of features allowed in a 
group. The imposition of a such an upper bound on 
the number of features is reminiscent of the notion of 
“short-term memory” in cognitive psychology. 

4.2. Hierarchical Activation 
For performing the classification task in general the 

use of hierarchical activation in the worst case is as 
efficient as, and in the best case is more efficient 
than, the use of direct activation. However, in 
describing hierarchical activation we had implicitly 
assumed that building of a non-trivial untangled 
concept hierarchy with m leaf concepts was indeed 
possible. Again, this assumption may be valid only in 
nearly decomposable domains. Branches in the concept 
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hierarchy that are tangled at some concept c may be 
untangled by including a copy of c in each tangled 
branch. 

The computational efficiency of classification with 
use of hierarchical activation is due to the 
organization of knowledge in a hierarchy, which allows 
for pruning of the tree. A concept is activated for 
evaluation only if its parent concept has been 
established as being present in the given situation. 
Thus, a concept in general is evaluated in the context 
of its ancestor concepts. This use of context is 
cognitively appealing. Furthermore, if only an 
incomplete description of a situation were available, 
then direct concept activation might not lead to the 
establishment of any concept in the taxonomy. 
However, for the same incomplete description of the 
situation hierarchical activation might lead to the 
establishment of concepts at a level higher than the 
leaf level. This too is cognitively appealing. 

5. Conclusions 
We have described different implementations of the 

strategies of concept matching and concept activation 
in terms of the organization of knowledge and control 
of information processing that they use. We have 
shown that structured matching and hierarchical 
activation are computationally the most efficient 
implementations for performing the tasks of concept 
evaluation and classification, respectively. Further, we 
have suggested that structured matching and 
hierarchical activation may be cognitively the most 
plausible implementations as well. 

Hierarchical activation and structured matching are 
computationally the most efficient implementations 
because they use organizations of knowledge that are 
most appropriate for the tasks of classification and 
concept evaluation, respectively. Organization of 
knowledge specific to its use is a central issue in 
knowledge-using reasoning in general. It is the 
organization of knowledge specific to its use from 
which the computational power to perform a task 
emerges. For each primitive type of knowledge-using 
reasoning there exists an organization of knowledge 
that is appropriate for it. Chandrasekaran has 
identified classification and concept evaluation as 
primitive types of knowledge-using reasoning 
[ Chandrasekaran, 19861 High-level knowledge 
representation languages for classification using 
hierarchical activation [ Bylander and Mittal, 19861, and 
concept evaluation using structured matching [Johnson 
and Josephson, 19861 have been developed. 
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