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Abstract 
Current approaches to formalizing non-monotonic 
reasoning using logics of belief require new metalog- 
ical properties over sets of sentences to be defined. 
This research attempts to show how some of these 
patterns of reasoning can be captured using only the 
classical notions of logic (satisfiability, validity, im- 
plication). This is done by extending a logic of be- 
lief so that it is possible to say that only a certain 
proposition (or finite set of them) is believed. This 
research also extends previous approaches to handle 
quantifiers and equality, provides a semantic account 
of certain types of non-monotonicity, and through a 
simple proof theory, allows formal derivations to be 
generated. 

I. Introduction 
A great deal of attention has been devoted recently to for- 
malisms dealing with various aspects of non-monotonic 
reasoning [Reiter, to appear, 19881. Broadly speaking, 
these can be divided into two camps: those, like the log- 
its of [McDermott and Doyle, 19801 and [Reiter, 19801, 
which are consistency-based, and those, deriving from [Mc- 
Carthy, 19801 and [McCarthy, 19841, which are based on 
minimal models. In the former case, non-monotonic as- 
sumptions are made on the basis of certain hypotheses be- 
ing consistent with a current theory; in the latter case, 
non-monotonic assumptions are made on the basis of their 
being true in all minimal (or otherwise preferred) models 
of a current theory. For better or for worse, the latter ap- 
proach seems to be winning, in part, no doubt, because 
it can be given a compelling model-theoretic account, in 
addition to its more proof-theoretic formulation. 

However, one development that may begin shifting the 
balance towards consistency-based approaches is the ap- 
plication of logics of knowledge and belief [Halpern and 
Moses, 19851 and [McArthur, to appear, 1987].3 Although 
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these have been used in non-monotonic contexts for some 
time (see [Levesque, 19811, [Konolige, 19821, and [Halpern 
and Moses, 1984]), only recently have clear and precise 
connections been established between these logics and the 
non-monotonic ones [Moore, 19831 and [Konolige, 19871. 

What do logics of belief have to do with consistency- 
based non-monotonicity ? The idea, roughly, is this: A 
“current theory” is no more than a set of beliefs. If these 
beliefs are closed under logical consequence, then a hy- 
pothesis is consistent with a current theory precisely when 
its negation is not believed. So under this account, non- 
monotonic assumptions are made based on failing to be- 
lieve certain other propositions. For example, one might 
be willing to believe that any bird that is not believed to 
be flightless can fly. Or perhaps this belief is restricted to 
certain birds, like those that are currently known. Either 
way, without claiming that this is the same thing as be- 
lieving that “Birds generally fly” or anything like that, it 
does appear that under the right circumstances, the belief 
leads to the same assumptions as the consistency-based 
approaches. Moreover, the expectation here is that the 
model-theoretic accounts of belief deriving from the (rea- 
sonably well established) logics of belief can then be used to 
semantically rationalize these consistency-based systems. 

II. Only knowing 

This is not to say that logics of belief can be used as is 
to account for non-monotonic reasoning. To see why not, 
consider how one might explain using belief, why the ever- 
popular Tweety flies. Assume we take as premises that 

1. Tweety is a bird. 

2. If a bird can be consistently believed to fly, it flies. 

There surely is something missing before we are entitled 
to write down our favourite non-monotonic conclusion: 

3. Tweety flies. 

At the very least, we would have to know that our second 
premise applied to Tweety: 

1.5 It is consistent with my beliefs that Tweety flies. 

But what justifies this assertion? Clearly not (1) by itself. 
Rather, it is the fact that, except for (2), (1) is by itself. 
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That is, the understood (non-monotonic) assumption is 
that there are no other relevant beliefs about Tweety:4 

1.2 This is all I know (about Tweety). 

Now (1.5) does seem to follow from (1) and (1.2), so that 
we are indeed justified in concluding that Tweety flies from 

Cl), W), and (2). 
The problem here is that although logics of belief al- 

low us to express and reason with (l), (1.5), (2) and (3), 
assumption (1.2) cannot be expressed. The approach to 
this issue taken by Moore and Konolige is to not even try 
to express it, but instead to characterize (outside the logic 
itself) sets of beliefs where (1.2) intuitively might be said 
to hold, and then to examine the properties of such sets, 
called stable expunsions.5 As expected, (1) and (2) have a 
single stable expansion, and it does indeed contain (3). 

However, what is lost by this use of logics of belief 
is precisely what might have been expected to be gained, 
namely a precise model-theoretic account of consistency- 
based non-monotonicity. The concept of a stable expan- 
sion (and clearly the key one in the non-monotonic aspect 
of the inference) is not defined in terms of the semantics 
of belief, but is a new metalogical property of certain sets 
of sentences. Because of this, the derivation from only 
knowing (1) and (2) to knowing (3) must be carried out 
completely outside the logic, as in McDermott and Doyle’s 
logic or in Reiter’s (in their case with appropriate meta- 
logical arguments about fixed points or extensions). 

In this paper, we present research that attempts to 
remedy this situation by augmenting a logic of belief so 
that propositions similar to (1.2) can be expressed directly 
within the language. There will be two modal operators, 
B and 0, where Bo is read (as usual) as “Q is believed” 
and 00 is read as “o is all that is believed,” or perhaps, 
“onby Q is believed.” It turns out that this latter concept 
can be given fairly intuitive truth conditions that are re- 
markably similar to those for belief. We will then establish 
correspondences to Moore’s stable expansions, generaliz- 
ing them in the process to the quantificational case. The 
existence of (sometimes multiple) stable expansions will 
emerge within the logic as valid sentences. Finally, we will 
exhibit a reasonably standard (though not recursive) proof 
theory for the logic (that is, with axioms and rules of in- 
ference) and show, perhaps for the very first time, a formal 
derivation of the belief that Tweety flies. 

It should be noted that this approach to logic uses it 
as a specification tool to describe a reasoner rather than 
as a calculus to be used by one. Thus, there is no notion 
of an agent “having” a theory in this language, except as 
stated explicitly using a B operator. While the patterns 
of reasoning to be described may be non-monotonic, the 
logic itself is perfectly monotonic [Israel, 19801. 

*Although obviously important, we do not attempt 
with relevance, or which beliefs are about what. 

here to deal 

5To a first app roximation, these can be thought of as the fixed- 
points of McDermott and Doyle’s logic, or the extensions of Reiter’s. 

Because of space limitations, the formal presentation 
of the logic below will be somewhat terse, and most proofs 
will be deferred to [Levesque, in preparation]. 

e language an 
sernant ies 

The language we consider is called fZ, and its propositional 
part is built up in the usual way from propositional let- 
ters and the logical connectives 1, A (the others will also 
be used freely as syntactic abbreviations), and two spe- 
cial unary connectives B and 0. For the quantificational 
part, we include in addition an infinite stock of predicate 
symbols of every arity, an infinite collection of (individ- 
ual) variables, an existential quantifier, and a special two- 
place equality symbol. For simplicity, we omit function and 
constant symbols. However, we include a countably infi- 
nite set of standard names (called parameters in [Levesque, 
1984a]), that are considered (like the equality symbol) to 
be logical symbols. Sentences are formed in the obvious 
way; in particular, there is no restriction on the relative 
scope of quantifiers and modal operators. The objective 
sentences are those without any B or 0 operators; the 
subjective sentences are those where all non-logical symbols 
occur within the scope of a B or 0. Sentences without 0 
operators are called basic. We will use CI! and p to range 

over sentences, cr to range over the subjective sentences 
only, and 4 and 1c, to range over the objective sentences 
only. Finally, cr: is used to name the formula consisting 
of Q with all occurrences of free variable x replaced by 
standard name n. 

Before presenting the semantics of f., a few comments 
are in order. First, we will be interested in characterizing a 
system with full logical capabilities and perfect introspec- 
tion. In other words, beliefs will be closed under logical 
consequence, anything believed will be known to be be- 
lieved, and anything not believed will be known not to 
be believed. This means our notion of belief will satisfy 
at least the postulates of the modal system weak S5 (see 
[Halpern and Moses, 19851 or [McArthur, to appear, 19871 
for why). However, it will be convenient to give a non- 
standard semantic account of L that avoids explicit use of 
possible worlds. Instead we will take a coarser-grained ap- 
proach and deal with the truth and falsity of sentences di- 
rectly. A possible world, then, is modelled by any function 
w from sentences to {O,l} satisfying certain constraints 
having to do with the interpretation of the logical sym- 
bols. We will call such functions valuations. 

As to the constraints themselves (presented below), 
there is nothing new about the interpretation of conjunc- 
tion and negation. The interpretation of equality sentences 
is based on the convention that standard names are taken 
to designate distinctly and exhaustively (something one 
would certainly not want for ordinary constant symbols). 
This exhaustiveness property also means that quantifica- 
tion can be understood substitutionally. This substitu- 
tional interpretation imposes no real restrictions on what 
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sets of sentences will be satisfiable. For example, it will 
certainly be possible to believe %CV without believing any 
of its substitution instances and, as will become clear be- 
low, a distinction will remain between B3za and 3xBa. 
Thus, the first four constraints on a function w from the 
sentences of L to {O,l) are that for every cy and p, 

1. w(a! A p) = min[w(Or), w(p)], 

2. w(T2) = 1 - w(a), 

3. w(ni = nj) = 1 iff ni and nj are the same standard 
name, 

4. w(3xa) = 1 iff for some n, w(a~) = 1. 

We will call any function satisfying these constraints a first- 
order or f.o. valuation. Note that these valuations treat 
sentences of the form Brx or Ocu as atomic sentences. 

Turning now to the belief operator, B, the by now 
standard way to give its interpretation is in terms of an 
accessibility relation over worlds: Ba is considered true at 
some world w iff cy is true at every ws that is accessible 
from w. But what are these accessible worlds? In our case, 
there are two considerations: (l), an accessible world must 
make all the beliefs in the original world come out true; 
and (2), the accessibility relation must be an equivalence 
relation. So we begin by defining, for any f.o. valuation 
w, g(w) to be the set of all f.o. valuations w’ such that 
for every basic cv, if w(Ba) = 1, then w’(a) = 1. To get 
an equivalence relation, we must also ensure that the same 
subjective sentences are true in every accessible world. We 
say that w x w’ iff for every (subjective) Q, w(a) = w’(a). 
Intuitively then, the accessible worlds from w are those 
elements w’ of !I?( w) such that w e w’. Using these defini- 
tions, we can now state a constraint on the interpretation 
of the B operator: for every (Y,~ 

5. w(Ba) = 1 iff for every w’ x w, 
w’ E a?(w) * w’(a) = 1. 

We will call any function w satisfying the first five con- 
straints an autoepistemic or a.e. valuation. Not every 
f.o. valuation is an a.e. valuation (e.g., one that assigns 
different values to Ba and Bl-a). However, every valua- 
tion that is accessible from an a.e. valuation is itself one. 

Finally, with regards to the 0 operator, the idea is 
this: Beliefs are those sentences that are true in all acces- 
sible worlds. So to come to believe a new objective sen- 
tence means to reduce the set of accessible worlds, keeping 
only those where the new belief is true. Thus, the more 
known (in objective terms anyway), the smaller the set of 
accessible worlds, and vice-versa. Now to say that (Y is all 
that is known is to say that as little as possible is known 
compatible with believing CY. Thus, the set of accessible 
worlds is as large as possible consistent with believing a, 
since the larger the set, the less world knowledge repre- 
sented. Specifically, any valuation that satisfies the same 
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subjective sentences and also satisfies cu should be accessi- 
ble. This leads to our final constraint: for every Q, 

6. w(Oa) = 1 iff for every w’ z w, 
w’ E a(w) ++ w’(a) = 1.’ 

Any function w satisfying all six constraints is called a bogi- 
cal valuation. Note once again that not every a.e. valuation 
is a logical valuation, and that the accessibility relation 
takes logical valuations to only logical valuations. 

For each type of valuation, we say that a set of sen- 
tences is satisfiable iff some valuation of that type assigns 
1 to all its members. A set of sentences implies a sentence 
iff the set together with the negation of the sentence is not 
satisfiable. Finally, a sentence is valid iff it is implied by 
the empty set. We will usually leave out the “logical” qual- 
ifier, except to distinguish a logical valuation (or validity 
etc.) from the other types. 

It is easy to see that for objective sentences without 
equality or standard names, f.o. satisfiability (and thus, 
f.o. implication and f.o. validity) coincide with their clas- 
sical definitions. Not SC obvious (by a long shot), is this: 

Theorem 1 A set of basic sentences is a.e. satisfiable ifl 
there is a weak S5 Kripke structure and a world within it 
where all the sentences are true. 

Thus a.e. satisfiability is the same as weak S5 satisfiability. 
This theorem justifies our lack of explicit possible worlds 
and ensures that, for example, standard axiomatizations of 
weak S5 characterize precisely a.e. validity for basic sen- 
tences (and we will present one such below). 

IV. Stable sets an expansions 
But our primary interest is the notion of only knowing. 
To justify our interpretation of 0, we will relate it to the 
concept of stable expansions. Before doing so, it is useful 
to consider the properties of the sets of sentences that can 
be simultaneously believed. We will call a set of basic 
sentences a belief set if there is a logical valuation for which 
these sentences are precisely the ones believed. In other 
words, I? is a belief set iff for some logical valuation w, I’ = 
{ ,f3 ] ,0 is basic and w(BP) = 1). One important property 
we can show is that this definition of belief set is the correct 
quantificational generalization of what Moore calls [Moore, 
19831 (following Stalnaker) a stable theory: 

Theorem 2 Restricting our attention to basic sentences,’ 
a set of sentences I’ is a belief set iff I’ is stable that is, -, 
satisfies the following conditions: 

1. If I’ f.o. implies a!, then Q E I’.O 

2. IfoH’, then&EI’. 

7Note that this condition differs from 
one place: an “if’ becomes an “iff’. 

8This theorem can be strengthened to handle arbitrary sentences 
(given a generalized notion of belief set) by extending the first con- 
dition below to closure under full logical implication. 

the one for belief in exactly 

consequence, ‘Moore required I? to be closed under tautological 
since he only dealt with a propositional language. 



3. If or @ I?, then ~Bo! E I?. 

For the propositional version of the language, this theo- 
rem was proved as Proposition 3 of [Halpern and Moses, 
19841 (and app arently independently by R. Moore, M. Fit- 
ting, and J. van Benthem). Unfortunately, a new proof 
was needed because their proof fails for a quantificational 
language, as it depends on the following: 

Proposition 1 [Halpern and Moses, 19841 Stable sets 
(in the non-quantificational sublanguage) are uniquely de- 
termined by their objective subsets. 

With quantifiers, 
plicated: 

however, the situation is much more com- 

Theorem 3 Stable sets (in the quantified language) are 
not uniquely determined by their objective subsets (and 
thus neither are belief sets). 

This theorem is proved by showing that there is a difference 
between believing 

{d(m), 4(723), (b(n5h.. 4, 
on the one hand, and believing 

M-d4(n3), 4(n5>, . -. , W+(x) A +d(x:))l, 
on the other, even though both sets involve exactly the 
same objective sentences. In the latter case, there is the 
additional information that there is a 4 apart from the 
known ones, information that simply cannot be expressed 
in objective terms. lo Thus, it is possible to agree on all the 
objective sentences without yet agreeing on all sentences. 

The main result here is the following: 

Theorem 4 Restricting our attention to basic sentences 
only,ll for any logical valuation w, w(Ocr) = 1 ifl the belief 
set of w is a stable expansion of cy, that is, the belief set I’ 
satisfies the fixed-point equation: 

I? is the set of f.o. implications of 

w u w I p E r) u {-BP I p 5i n. 

So only knowing a sentence means that what is known is 
a stable expansion of &hat sentence (or, more intuitively, 
what is known is derivable from that sentence using logic 

and introspection alone). This theorem provides for the 
first time a semantic account (closely related to that of 
possible worlds) for the notion of a stable expansion which 
Moore used to rationally reconstruct the non-monotonic 
logic of [McDermott and Doyle, 19801. In a subsequent 
paper [Moore, 19841, M oore provided a possible-world se- 
mantics for his autoepistemic logic, but not for the non- 
monotonic part concerned with stable expansions. In addi- 
tion, we have generalized the notion of a stable expansion 
to deal with a quantificational language with equality. 

loIt could be expressed if we allowed infinite disjunctions ranging 
over any set of standard names. 

l1 Again this restriction can be removed using logical implication 
in the definition. 

V. roof theory 
The fact that the semantic characterization of Ocu uses 
an “iff” where Ba uses an “if” suggests that it might be 
worthwhile to look at another operator that uses the “only 
if” condition alone. The proof theory we are about to 
present is most conveniently expressed using a new modal 
operator N for this only-if condition: 

w(Na) = 1 iff for every w’ M w, 

W’(Q) = 0 ==s w’ E R(w). 

Ocu cafl now be defined as the conjunction of Ba and N~cu. 
Taking Ba as saying “at least a! is believed to be true,” 
Na can be read as “at most cy is believed to be false,” from 
which Oa! is read as “exactly o is believed.” 

The remarkable fact about the N operator is that it 
behaves exactly like a belief operator, but with respect to 
the complement of the 8 relation: 

w(Na) = 1 iff for every w’ x w, 
w’ E B(w) * w’(a) = 1. 

This allows us to produce a proof theory for L that is 
very similar to what would be done for two separate be- 
lievers. The difference is that (1) the two “agents” are 
mutually introspective (i.e. know about each other’s be- 

liefs and non-beliefs), and (2) every world is an element of 
%oor%. Tohandle( we include not only the usual intro- 

spection axioms like (No 3 NNo), but cross-axioms like 
(Na > BNar). To handle (2), we simply stipulate that 
every falsifiable objective sentence that is true at every 
member of % must be false at some member of 8. Over- 
all then, the proof theory is formed by adjoining to any 
standard objective basis the following axioms: 

1. the remaining axioms for weak S5, for both B and N: 

(a) Lqi, where C$ is any f.o. valid objective sentence, 

(b) L(a > P) 1 (La 3 LP), 
(c) VXLO 3 LVZCU, 
(d) (a > La), where Q is subjective, 

where L is either B or N; 

2. N# > lBq5, where 4 is any objective sentence that is 
falsifiable;12 

3. Oa 5 (Ba A Nlcr), for any (Y. 

The notion of a theorem is defined in the usual way (note 
that no new rules of inference are introduced). 

The first result about this proof system is: 

Theorem 5 (Soundness) Every theo?m is valid. 

The proof is by induction on the length of the derivation: 
the axioms are all clearly valid and the objective rules of 
inference obviously preserve validity. However, the more 
substantial result about this simple axiomatization is that 
for the propositional case anyway, it is also compl&e: 

12Note that this set is not r.e. for the full quantificational objective 
language. Unfortunately, this is the price that must be payed for 
consistency-based reasoning. In its defense, however, the axiom only 
requires non-valid objective sentences, a relatively well-understood 
and manageable set. 

Levesque 429 



Theorem 6 (Propositional completeness) If Q! is in 
the propositional subset, then it is a theorem i$it is valid.13 

What this shows us is that with a minimum of extra ma- 
chinery over and above the (modal) axioms necessary for 
logics of belief, we can account for the semantics of L. 

VI. Some applications 
What is this logic good for ? One application is the formal 

specification of a Knowledge Representation service: given 
a certain KB, what are the sentences that are believed? To 
a ‘first approximation, it’s the logical implications of KB. 

However, if /? is some sentence that is not believed, then 
an introspective system also believes lB/? (i.e., it realizes 
that it does not believe /3). The problem is that KB does 
not imply lBP, nor does BKB imply BlB/3. So logical 
implication is not enough. In [Levesque, 1984a], this was 
handled by moving outside the logic and defining a special 
ASK operation. But given the 0 operator, we can stay 
within the logic: OKB does imply B-B/I. In general, the 
beliefs of an introspective system will be those sentences CY 
such that (OKB 1 Bcv) is a valid sentence of JZ. 

However, the main application of this logic is to give 
semantic and/or proof-theoretic arguments involving non- 
monotonic reasoning. Consider the above example involv- 
ing Tweety. First, we represent the default as 

Vz[Bird(z) A ~B~Fly(z) I Fly(x)].14 

Now believing this and that Tweety is a bird certainly 
does not imply believing that Tweety flies. But we can 
show that if this is all that is believed, then the belief that 
Tweety flies does follow: 

Theorem ‘7 Let /? = Vx(Bird(z) A lBlFly(z) > Fly(z)). 
Then, O[Bird(tweety) A p] > BFly(tweety) is a theorem. 

Proof: We present a formal derivation using natural de- 
duction. The numbers refer to the above proof theory. 

a. O[Bird(tweety) A p] Assumption. 
b. B[Bird(tweety) A /I] From a using (3). 
c. BFly(tweety) v BlFly(tweety) From b using (1). 
d. Nl[Bird(tweety) A j3] From a using (3). 
e. N[Bird(tweety) 1 3mFly(z)] From d using (1). 
f* -B[Bird(tweety) 1 3z~Fly(z)] From e using (2). 

9. YB-Fly(tweety) From f using (1). 
h. BFly(tweety) From c and g, by 

classical logic. 
Discharging the assumption gives the required result. q  

A propositional version of this argument can be made 
in terms of Moore’s stable expansions (that is, that there is 
a single expansion, and it contains the desired conclusion). 

131 believe the axiomatization is also complete for the full lan- 
guage, but I have yet to find a proof. My propositional proof fails 
for the general case in a subtle and interesting way. See [Levesque, 
in preparation] for details. 

140ther versions are possible, such as one where Bird is within the 
scope of a B. Also, in what follows, we will be using tweety and chilly 
as standard names. 

The significance of this derivation is that the argument 
only depends on the validity (or in this case, theoremhood) 
of a certain sentence of ,!Z, and so can be carried out com- 
pletely within the language itself in conventional logical 
terms. The only unusual step in the derivation is from e to 
f, where we infer on the basis of something being all that is 
believed, that a certain other sentence is not believed. This 
step depends on the fact that Bird(tweety) > Sc~Fly(z) is 
not f.o. valid. Indeed, if not flying was implied by being a 
bird, this proof would fail ( as it should), and B-Fly(tweety) 

would be the (correct) conclusion. 
This analysis also suggests what happens if we know 

in addition that Chilly is a bird that does not fly. The 
problem is that the step from e to f no longer works 
since the enlarged knowledge base now implies the exis- 
tence of a flightless bird. What happens, however, is that 
since BlFly(chilly) is true, so is NBlFly(chilly) by (1). 
The new version of step e now uses this to conclude that 
N[KB > 3x((a: # chilly) AlFly(z) where KB has the facts 
on Tweety and Chilly. Once again the argument to N is 
not f.o. valid, and so the derivation goes through as be- 
fore, ending with the belief that Tweety flies. Note that 
this conclusion depends (quite appropriately) on the fact 
that Chilly and Tweety are believed to be distinct, a logical 
property of our standard names. 

Although there is no really compelling reason to do so, 
we can define a non-monotonic logic easily enough using 0. 
For a finite set of sentences l?, define I-, by 

r b, a! iff (Oy > Bcr) is valid, 

where y is the conjunction of the elements of I’. Then, in 
the previous example, we have that 

Bird(tweety), p I-, Fly(tweety), 

but 

Bird(tweety), p, lFly(tweety) vn Fly(tweety), 

so this logic would be truly non-monotonic. 

VII. Determinate sentences 
The correspondence with stable expansions accounts for 
many of the properties of this logic. For example, the 
usual situation with multiple expansions also arises here. 
In our case, this is reflected in the language itself, with 
interesting consequences. Consider a typical sentence with 

two expansions, (~Bqb > $J) A (lB11, > 4). What happens 
here is that the sentence 

O[(+W 3 $,> A (-$ =J d)] = (04 V O$), 

which names the two expansions directly, ends up being 
va1id.l’ Thus, it is possible to only know the sentence in 
two distinct ways. The logic also specifies what is common 
to both, in that O[(lB4 > $J) A (lB$ > 4)] logically 
implies, for example, B($ V $). 

15Similarly, the validity of -O[-B4 > ~$1 tells us that (TB+ > 4) 
has no stable expansions. 
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While the cases of multiple or missing expansions may 
be interesting in their own right, for those of us interested 
in Knowledge Representation, sentences with a single sta- 
ble expansion play a very special role. Call a sentence o 
determinate iff there is a unique (up to M) ELI such that 
w(Oa) = 1. Then we have the following: 

Theorem 8 CY is determinate ifl for every p, one of 
(Oau> BP) or (Oax lB,B) is valid. 

Thus, determinate sentences tell us exactly what is and 
what is not known. l6 As such, they can be used as rep- 
resentations of knowledge, since they implicitly specify a 
complete epistemic state. Examples of these include all 
objective sentences, and all examples outside this section. 

One important property of this logic is that it is al- 
ways possible to represent knowledge in objective terms. 
Although believing does not reduce to believing objective 
sentences (Theorem 3), only believing does: 

Theorem 9 For every determinate CY, there 
tive sentence 4 such that (Oa! E 04) is valid. 

is an o bjec- 

Thus, to the extent that an epistemic state can be repre- 
sented at all, it can be represented in objective terms. In 
other words, whatever defaults might be used (or what- 
ever other uses of non-objective sentences), if there is a 
unique end result, it can be described without reference 
to the modal operators. This theorem offers perhaps some 
reassurance to those who have been suspicious about these 
operators all along. 

This research attempts to show that non-trivial non- 
monotonic behaviour can be formalized using only the clas- 
sical notions of logic. This is done by extending a logic of 
belief to include a second modality that can be given a 
reasonably natural semantic and proof-theoretic account. 

As for future research, there are the following topics: 
formalizing what it means to say that a is all that is known 
about something; developing the concepts for a logically 
limited notion of belief [Levesque, 1984b]; and the missing 
quantificational completeness proof. Finally, Konolige’s 
account of default logic [Konolige, 19871 depends on a cer- 
tain restricted kind of stable expansion, and it remains to 
be seen how this will fit into the current framework. 
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