
Algorithm Synthesis through

Michael IL Lowry
Stanford Artificial Intelligence Laboratory

Box 3350, Stanford CA 94305
And Kestrel Institute

1801 Page Mill Road, Palo Alto CA 94304

Abstract
AI has been successful in producing expert systems
for diagnosis, qualitative simulation, configuration
and tutoring-e.g. classification problem solving. It
has been less successful in producing expert systems
that design artifacts, including computer programs.
Deductive synthesis of a design from first principles
is combinatorially explosive, yet libraries of design
schemas do not have sufficient flexibility for applica-
tion to novel problems.
This paper proposes that the major factor in apply-
ing design knowledge is reformulating a problem in
terms of the parameters of generic designs. This pa-
per shows how to represent knowledge of generic de-
signs as parameterized theories. This facilitates prob-
lem reformulation, making it a well defined search for
appropriate parameter instantiations.
The representation of design knowledge with parame-
terized theories is illustrated with generic local search
algorithms. The utility of parameterized theories is
shown by deriving the simplex algorithm for linear
optimization from specification.

I. Introduction
This paper1 presents a theory of design and problem solv-
ing based upon problem reformulation. The key idea is
to reformulate a specific problem into an instantiation of
the parameters of a generic problem solving method. Its
companion IJCA187 paper [Lowry, 1987a] describes prob-
lem reformulation through abstraction by incorporating
important problem constraints. Together they describe the
methods that are being implemented in the STRATA au-
tomatic programming system.

A parameterized theory is a set of symbols which form
a language and a set of axioms which constrain the symbols
of the language. Some or all of these symbols are param-
eters which are instantiated by mapping them to terms in
another language. A mapping is valid if the axioms are
valid when the terms are substituted for the parameters.
Parameterized theories were originally developed as part of
a rigorous foundation for abstract data types. They have

‘This work was done at Stanford University under DARPA con-
tract N00039-84-C-0211, and at the Kestrel Institute under ONR
contract N0001484G0473.

subsequently been extended to abstract modules and spec-

ification languages [Goguen and Burstall, 19851 [Goguen
and Meseguer, 19821.

The advantage of using a formal framework is the uni-
fication and generalization of previous work, the identifi-
cation of the key search problems, and a declarative repre-
sentation. The advantage of using parameterized theories
over schemas or skeletal plans is that they can express
design knowledge without commitment to any implemen-
tation, and can be readily combined, composed, extended,
and specialized without destructive interference. A calcu-
lus for combining theories can be found in [Goguen and
Burstall, 19851. [Lowry, 1987b] gives an example of com-
bining the theory of local search and the theory of GPS to
yield selection sort.

The pioneering work of Amarel[Amarel, 1968120 years
ago showed the potential power of reformulation. Starting
about 1980, a number of people began investigating meth-
ods for searching the space of logically equivalent problem
reformulations. Most methods involved finding problem
reformulations targeted to a particular problem solving
schema such as Divide and Conquer[Smith, 19851, Heuris-
tic Search[Mostow, 19831, Depth First Backward Chain-
ing[Subramanian, 19861, and [Riddle, 19861. The work
presented in this paper generalizes the work cited above
by representing problem solving schemas as parameterized
theories. This paper also presents more general domain
independent methods of searching for good parameter in-
stantiations, which is the critical bottleneck for this kind
of problem reformulation.

The next section of this paper shows how to represent
design knowledge as a refinement hierarchy of parameter-
ized theories. The third section gives a brief overview of
the simplex algorithm, and the fourth section shows how
to design artifacts by choosing, refining, and instantiat-
ing parameterized theories. The derivation of the simplex
algorithm is used as an example.

ene
zed

The diagram below illustrates a hierarchical representation
space for algorithm design knowledge based upon param-
eterized theories. The case shown is generic design knowl-
edge for optimization problems, which will later be used

432 Knowledge Representation

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

in deriving the simplex algorithm. Each additional level is
a refinement of the design knowledge of the previous level.
Each level is represented as a parameterized theory which
is applied to a particular problem by instantiating the pa-
rameters such that the instantiated axioms are provably
correct. Each additional level is a specialization (more
parameterized axioms) and possibly an extension (more
parameters) of the previous level. Thus this hierarchical
representation naturally supports top-down refinement of
an evolving design without being overly committed to an
implementation language.

Optimization

Domain

Stee
Asc

Si
of Set Function Convergence

rder
Convergence

is optimization over a domain D. The axioms specify the
constraints between the parameters, i.e. the Co&Relation
is a total order upto equivalence - that is all the domain
elements are comparable. The Value function is a map

from a state to an element of the domain. The VuZue
function is usually implemented as a program variable, but
other implementations are possible. An advantage of pa-
rameterized theories is the flexibility of having no a priori
commitment to a particular implementation. For an op-
timization problem, the Value in the begin state is some
element of the domain, and the Value in the end state is an
optimal element of the domain. Optimality is determined
by CostRelation.
Applicability Conclitions:
Local Odinmums E Global Chtimums
Neighbor : D x D

s

Axioms
Vx, y E D TrunsitiveCZosure(Neighbor)(x, y)
Vx E D (Vy Neighbor(x,y) + CostReZution(x, y)}
H {Vy E D CostReZation(x, y)}

An applicability condition specifies the additional
problem structure which is exploited by a general prob-
lem solving method. There can be many problem solving
methods which exploit the same problem structure, for ex-
ample both steepest ascent and simple hill climbing exploit
the equivalence of local optimums and global optimums.
Instantiating the applicability conditions before commit-
ting to a particular control and data flow structure is a
stepwise refinement reformulation strategy which is read-
ily supported with parameterized theory representations.

The applicability conditions in this example specify

The parameterized theories which will be used in de-
locality in terms of a neighbor parameter. There are two

riving the simplex algorithm are given below. They cor-
constraints on this neigborhood parameter. First, when

respond to the left hand side of the diagram above, i.e. a
the neighbor relation is viewed as a graph, all domain ele-

generic optimization problem, the applicability conditions
ments are connected. This ensures that an optimal value is

of local optimums being global optimums, local search al-
reachable from any initial value. The second constraint is

gorithm, and finally a performance guaranteed to be no
that if a domain element is optimal over its neighborhood,

worse than the size of the domain if no looping occurs.
then it is also globally optimal.

Each theory begins with parameters for sorts, relations,
Algorithm Structure: Local Search

and functions, which are followed by a set of axioms. Each
Next : S + S

successive layer is represented by the additional parame-
Axioms

ters and axioms which are added to its parent theory.
Vx E S Neighbor(VaZue(x), VaZue(Next(x))

Global Input/Output Bebavior:Optimization Problems
Vx E S CostReZution(VuZue(Next(x)), Value(x))

Domain D States S
The algorithm structure for local search introduces the

Begin, End :+ S
Next parameter, which maps states to states. Next spec-

Value : S + D
ifies large-grained state transitions, usually corresponding

CostRelation : D x D
to the outer loop of a program. The axioms which are

Axioms
given here specify that the Value in the Next state is a

better neighbor of the current Value.
VuZue(Begin) E D PerformLLce Structure: No Looping
Vx E S x = END c) Vy E D CostReZution(VuZue(x), y)
Vx, y E D CostReZution(x, y) V CostReZution(y, x)
Vx, y, z E D CostReZution(x, y) A CostReZation(y, z) +
CostReZation(x, z)

The global input/output behavior consists of the sort,
relation, and function parameters which are used to specify
the generic problem. In this example the generic problem

Size(Domain) 2 End - Begin
Vx, y E Sx # y 3 Value(x) # Value(y)

The final layer of the representation of local search
design is that of performance. The theory given here is
a weak upper bound on the number of state transitions.
It states that the number of high-level state transitions
from the beginning state to the end state is bounded by

Lowry 433

the cardinality of the optimization domain if there is no

looping.
This section has shown how to represent a gen-

eral problem solving method as a refinement hierarchy
of parameterized theories. Each additional layer intro-

duces more constraints and possibly additional parame-
ters. The significant decision points for problem reformu-
lation are choosing refinements and instantiating param-
eters. Choosing a refinement is a classification problem-
that is, a choice between a small number of alternatives.
Often, different refinements lead to equally viable algo-
rithms. Parameter instantiation is a much more difficult
search problem, and is the main focus of section 4.

Linear optimization is finding the optimum value of a lin-
ear cost function given a set of linear constraints. From the
abstract viewpoint of Euclidean geometry, the linear con-
straints describe a convex polyhedron (possibly unbounded
or null), and the cost function describes a direction. The
desired output is the point(s) on the polyhedron which is
furthest along the direction vector.

The insight of the simplex algorithm is that the output
will include a vertex of this polyhedron. The skeleton of the
simplex algorithm is local search between adjacent vertices
until a local optimum is reached. Because of convexity, a
local optimum is guaranteed to be a global optimum.

The standard form of a linear optimization problem is
to minimize c - z such that Ax = b and x; 2 0. The input
is a row vector c, a column vector b, and an m x n matrix
A. The output is a row vector x. In the standard form, a
vertex is represented by m linearly independent columns
of the matrix A, where m is the number of rows and n
is the number of columns, n being strictly greater than
m. Thus there are m choose n possible representations
of vertices(a vertex might have multiple representations).
Adjacent vertices share m - 1 columns. The co-ordinates
of a vertex can be explicitly determined by solving the
m x m submatrix of column vectors for b using gaussian
elimination. A vertex has m non-zero co-ordinates.

The significant design choices in deriving the simplex
algorithm are first the parameterized theory refinements
which lead to the choice of a local search algorithm and
more importantly the parameter instantiations:

Instantiation of the domain of optimization to be just
the vertices, which makes the search space finite.

Instantiation of the neighbor relation to be vertices
which share m- 1 columns, thus minimizing the search
at each step.

Specifying a total order on subsets of m columns to
avoid looping. The CostRelation only gives a partial
order.

Instantiating the first phase of the algorithm, which
yields a valid starting point for the optimization.

Algorithm
This section discusses the use of parameterized theories in
designing an algorithm. The full derivation can be found
in [Lowry, 1987b], this overview focuses on the methods
used in instantiating the parameters (step 3 of the basic
method). Heuristics for instantiating the paTameteTs are
themselves represented as parameterized theories and map-
pings between parameterized theories.
The basic design method is:

1. Choose a parameterized theory, or refinement.

2. Propagate constraints.

3. Generate problem specific instantiations of free pa-
rameters which satisfy the propagated constraints.

4. Iterate until the Next parameter is fully constrained,
i.e. the algorithm is complete.

Constraints are accumulated on the sequence of state
changes, represented by the Next parameter. These con-
straints are then transformed to a set of state transforma-
tion rules, which are then compiled by the REFINETM
compiler into lisp code. The input to STRATA is the prob-
lem definition, domain knowledge such as theorems of lin-
ear algebra, and a library of design knowledge expressed
as parameterized theorems. The output of STRATA is the
set of constraints on the Next parameter.
Input: Broblern Definition for Linear Optimization

VaZuel(Begin) = (A, b, c)
Value2(END) = xoUt
Axout = b,xfut 2 0
Vx E {x 1 Ax = b A xi 2 0) c - xoUt 5 c - x
Partial Output: Constraints on the Next parameter

(These constraints are derived by propagating the
neighbor instantiation to the local search refinement, as
explained later.)
Vs E States s = END t+
{Vv E vertices Adjacent(VaZue2(s), v)
* c - VaZue2(s) 5 c - v}
Vs E States Adjacent(VaZue2(s), VaZue2(Next(s))
Vs E Statesc - VaZue2(Next(s)) 5 c - VaZue2(s)

434 Knowledge Representation

The first axiom states that if the current value of xoUt instantiating the Neighbor parameter of local search yields
is locally optimal, then the algorithm should terminate. small neighborhoods so that the local search of each neigh-

borhood is efficient. This heuristic defines the neighbor The following two axioms state that the next value of xoUt
should be a better neighbor of the current value of xout.

-
relation in terms of the parameterized theory of a distance
metric. in particular the minimal distance such that local
optimums are global optimums:

Neighbor(x, y) H Dist(x, y) < K
K H Minimize(U I Vx E D (Vy E D CostRelation(x, y)}
@ {Vy Dist(x, y) < U + CostRelation(x, y)}
Dist(x,x) = 0
x#y=~Dist(x,y)>O
Dist(x, y) = Dist(y, x)

The first step in the derivation is to instantiate a
generic input/output behavior to the linear optimization
problem. The generic optimization problem is partially
instantiated with the following representation map:
D H {x 1 Ax = b A xi 10) ab.2 poly
CostRelation H (X(a, b) c.a>c-b)ab. LAMBDA
Value H Value2
VaZue(End) H xoUt
VaZue(Begin) UNINSTANTIATED

The instantiated axioms for generic optimization are
provably true in the problem domain theory of linear al-
gebra. The uninstantiated parameter is constrained as fol-
lows, it is the postcondition for the first phase of the sim-
plex algorithm:
VaZue2(Begin) E poly

Heuristic knowledge for instantiating the parameters
can be encoded in parametric form. This knowledge ex-
presses additional constraints on a parameter and/or spec-
ifies how to instantiate a parameter in terms of other pa-
rameters. The additional constraints serve to focus the
generation of problem specific instantiations of free param-
eters in step 3. Specifying the instantiation of a parameter
in terms of other parameters which are syntactically closer
to the domain represent ation can reduce the ‘reformulation
distance’ that needs to be spanned by equivalence preserv-
ing transformations and general purpose theorem proving
methods. As an example, one heuristic for instantiating
the DOMAIN of optimization is to find a predicate which
restricts the domain to a subset which includes at least one
optimal solution:
3xP(x) A Vy E D CostReZation(x, y)
D’ H {x E D 1 P(x)}

This heuristic can be invoked as a demon when instan-
tiating the domain parameter of an optimization problem.
This heuristic essentially encodes a parameterized proof
that restricting the domain of optimization yields a valid
algorithm. Given the representation map derived above,
and the following theorem found in textbooks on linear
programming, this heuristic derives an instantiation for D’
which restricts the domain of optimization to vertices, i.e.
vectors with only m non-zero co-ordinates:
Thm: 3x E poly size{i 1 xi # 0) = m
/\{Vy E poly Lambda(x, Y)}~
D’ I+ {x E poly I size{i I xi # 0) = m) ‘ab. vertices.

The next step (step 1 of the basic method) in the
derivation is to choose the applicability conditions and in-
stantiate the parameters with appropriate domain func-
tions and relations. A heuristic which is activated when

2 ab. abbreviates abbreviated

31n this derivation
timal solution.

it is assumed that there exists a bounded W-

Dist(x,z) < Dist(x, y) + Dist(y, z)

To instantiate this heuristic, STRATA first generates
a distance metric on D (the domain of optimization), at-
tern&s to find a minimal K and if successful instantiates
the i\reiqhbor parameter. After searching various possibil-
ities, a successful instantiation is found that uses a com-
posite distance function, i.e. Dist(x,z) H G(H(x,z)). G
is instantiated first to the primitive function Setsize, and
some distance metric axioms are back-propagated to con-
straints on the function H (H has arity setof non-zero co-

ordinates x setof non-zero co-ordinates + setof non-zero
co-ordinates):

Vx E verticesH(x,x) = q5
Vx, y E vertices x # y + H(x, y) # 4
Vx, y E verticesH(x, y) = H(y, x)

H is instantiated to SymmetricSetDif f erence, the
Dist parameter is instantiated, and the triangle inequality
is verified:
Dist(x, y) I--) SetSize(SymmetricSetDif f erence(x, y))

A similar derivation also works in deriving local search

algorithms for Minimal Spanning Trees, and approxima-
tion algorithms for the Traveling Salesman Problem [Pa-
padimitriou and Steiglitz, 19821. This suggests that a
fruitful line of research is to apply ExpZanation Based
GeneraZizationlWinston et al., 19831 to derive new pa-
rameterized theories as heuristics for instantiating pa-
rameterized designs. For this particular example, the

generalization would instantiate the distance metric to
SetSize(SymmetricSetDif f erence(x, y)) when the do-
main of optimization can be formulated as subsets of an-
other set:
IF D H {s I s c E}
THEN
Dist(x, y) I+ SetSize(SymmetricSetDifference(x, y))

The instantiated Dist parameter is then used to in-
stantiate the Neighbor relation by finding the minimal K
such that local-global optimality is satisfied:
Neighbor(x, y)
H SetSize(SymmetricSetDif f erence(x, y) < 2

This instantiation states that 2 vertices are neighbors -
if they differ by 2 non-zero co-ordinates, i.e. they share
m - 1 column vectors. This instantiation is abbreviated
Adjacent. When this instantiation is propagated to the
local search parameterized theory refinement, it yields the

Lowry 435

constraints on the Next parameter given at the beginning
of this section.

The rest of the derivation uses the same techniques of
choosing an incremental parameterized theory to refine the
evolving design, propagating constraints, and then instan-
tiating free parameters. The search for parameter instan-
tiations uses the same methods described above, including
constraint propagation and heuristics expressed as param-
eterized theories and representation maps.

This section has shown how design can be factored
into a classification problem of choosing a parameterized
theory and a reformulation problem of finding appropri-
ate domain terms to instantiate the parameters of generic
designs. A major contribution is the demonstration of
how domain independent inference techniques, domain in-
dependent heuristics, and domain knowledge expressed as
theorems can be combined to focus the search for compos-
ite terms to instantiate the parameters of parameterized
theorems.

V. Summary

This paper has presented a representation for design
knowledge based upon parameterized theories, which fac-
tors the design problem into a classification problem
(choose a generic design strategy) and a reformulation
problem (reformulate the problem into the parameters of
the generic design). The reformulation problem is combi-
natorially explosive and poorly understood. Previous work
has usually used either ad hoc domain specific techniques
or brute force generate and test combined with theorem
proving for verification. In contrast, parameterized theo-
ries naturally support techniques such as constraint prop-
agation, solving for an unknown parameter in terms of
known parameters and mutual constraints, and other in-
ference methods. They also provide a convenient matrix
for expressing heuristic knowledge for choosing good in-
stantiations of a parameter.

Parameterized theories offer significant advantages
over skeletal plans and program schemas. These advan-
tages are due to being able to combine parameterized the-
ories with a flexible and semantically well defined calculus
[Burstall and Goguen, 19771. In my research, this flexi-
bility is used to express design knowledge as a refinement
hierarchy of parameterized theories ranging from a generic
problem, applicability conditions, algorithm structure, and
finally performance calculations. Each additional layer is
a specialization (additional axioms) and/or an extension
(additional parameters) of the previous parameterized the-
ory.

VI. Acknowki

This research benefited from discussions with Professor
Thomas Binford, Dr. Yinyu Ye and Irvin Lustig(Stanford-
EES, Operations Research), Dr. Joseph .Goguen (SRI-
Theory of Abstract Data Types), Dr. George Stolfi

(Stanford-C om u a ional Geometry), Dr. Douglas Smith p t t
and Dr. Cordell Green (Kestrel Institute-knowledge based
automatic programming). This paper benefitted from the
comments of the referees and the editing help of Raul Du-
ran, Laura Jones, and Patricia Riddle.

References
[Amarel, 19681 Saul Amarel. On representations of prob-

lems of reasoning about actions. Machine Intelligence
3, 1968.

[Burstall and Goguen, 19771 Rod M. Burstall and Joseph
Goguen. Putting theories together to make specifica-
tions. In IJCAI 5, pages 1045-1058,1977.

[Goguen and Meseguer, 19821 Joseph Goguen and Jose
Meseguer. Universal realization, persistent intercon-
nection and implementation of abstract modules. In
ICALP, Springer Verlag, 1982.

[Goguen and Burstall, 19851 Joseph A. Goguen and
Rod M. Burstall. Institutions: Abstract ModeE Theory
foT Computer Science. Technical Report CSLI-85-30,
CSLI, 1985.

[Lowry, 1987a] Michael R. Lowry. The abstrac-
tion/implementation model of problem reformulation.
In IJCAI-87, August 1987.

[Lowry, 1987b] Michael R. Lowry. Akgorithm Synthesis
through ProbZem Reformulation. PhD thesis, Stan-
ford University, 1987.

[Mostow, 19831 Jack Mostow. Machine transformation of
advice into a heuristic search procedure. In Machine
Learning, An ArtijkiaZ Intelligence Approach, chap-
ter 12, Tioga Press, 1983.

[Papadimitriou and Steiglitz, 19821 Christos H. Papadim-
itriou and Kenneth Steiglitz. CombinatoriaZ Opti-
mization: Akgorithms and Complexity. Prentice-Hall,
1982.

[Riddle, 19861 P a ricia Riddle. An overview of problem t
reduction: a shift of representation. In Workshop on
Knowledge Compilation, pages 91-112, 1986.

[Smith, 19851 Douglas R. Smith. Top-down synthesis
of divide-and-conquer algorithms. Artificial Intelli-
gence, 27(l), September 1985.

[Subramanian, 19861 Devika Subramanian. Reformula-
tion. In Workshop on Knowledge CompiZation,
pages 119-121, 1986.

[Winston et al., 19831 Patrick Winston, Thomas Binford,
Boris Katz, and Michael R. Lowry. Learning physi-
cal descriptions from functional definitions, examples,
and precedents. In AAAI-83, August 1983.

436 Knowledge Representation

