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Abstract 
AI has been successful in producing expert systems 
for diagnosis, qualitative simulation, configuration 
and tutoring-e.g. classification problem solving. It 
has been less successful in producing expert systems 
that design artifacts, including computer programs. 
Deductive synthesis of a design from first principles 
is combinatorially explosive, yet libraries of design 
schemas do not have sufficient flexibility for applica- 
tion to novel problems. 
This paper proposes that the major factor in apply- 
ing design knowledge is reformulating a problem in 
terms of the parameters of generic designs. This pa- 
per shows how to represent knowledge of generic de- 
signs as parameterized theories. This facilitates prob- 
lem reformulation, making it a well defined search for 
appropriate parameter instantiations. 
The representation of design knowledge with parame- 
terized theories is illustrated with generic local search 
algorithms. The utility of parameterized theories is 
shown by deriving the simplex algorithm for linear 
optimization from specification. 

I. Introduction 
This paper1 presents a theory of design and problem solv- 
ing based upon problem reformulation. The key idea is 
to reformulate a specific problem into an instantiation of 
the parameters of a generic problem solving method. Its 
companion IJCA187 paper [Lowry, 1987a] describes prob- 
lem reformulation through abstraction by incorporating 
important problem constraints. Together they describe the 
methods that are being implemented in the STRATA au- 
tomatic programming system. 

A parameterized theory is a set of symbols which form 
a language and a set of axioms which constrain the symbols 
of the language. Some or all of these symbols are param- 
eters which are instantiated by mapping them to terms in 
another language. A mapping is valid if the axioms are 
valid when the terms are substituted for the parameters. 
Parameterized theories were originally developed as part of 
a rigorous foundation for abstract data types. They have 
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subsequently been extended to abstract modules and spec- 

ification languages [Goguen and Burstall, 19851 [Goguen 
and Meseguer, 19821. 

The advantage of using a formal framework is the uni- 
fication and generalization of previous work, the identifi- 
cation of the key search problems, and a declarative repre- 
sentation. The advantage of using parameterized theories 
over schemas or skeletal plans is that they can express 
design knowledge without commitment to any implemen- 
tation, and can be readily combined, composed, extended, 
and specialized without destructive interference. A calcu- 
lus for combining theories can be found in [Goguen and 
Burstall, 19851. [Lowry, 1987b] gives an example of com- 
bining the theory of local search and the theory of GPS to 
yield selection sort. 

The pioneering work of Amarel[Amarel, 1968120 years 
ago showed the potential power of reformulation. Starting 
about 1980, a number of people began investigating meth- 
ods for searching the space of logically equivalent problem 
reformulations. Most methods involved finding problem 
reformulations targeted to a particular problem solving 
schema such as Divide and Conquer[Smith, 19851, Heuris- 
tic Search[Mostow, 19831, Depth First Backward Chain- 
ing[Subramanian, 19861, and [Riddle, 19861. The work 
presented in this paper generalizes the work cited above 
by representing problem solving schemas as parameterized 
theories. This paper also presents more general domain 
independent methods of searching for good parameter in- 
stantiations, which is the critical bottleneck for this kind 
of problem reformulation. 

The next section of this paper shows how to represent 
design knowledge as a refinement hierarchy of parameter- 
ized theories. The third section gives a brief overview of 
the simplex algorithm, and the fourth section shows how 
to design artifacts by choosing, refining, and instantiat- 
ing parameterized theories. The derivation of the simplex 
algorithm is used as an example. 

ene 
zed 

The diagram below illustrates a hierarchical representation 
space for algorithm design knowledge based upon param- 
eterized theories. The case shown is generic design knowl- 
edge for optimization problems, which will later be used 
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in deriving the simplex algorithm. Each additional level is 
a refinement of the design knowledge of the previous level. 
Each level is represented as a parameterized theory which 
is applied to a particular problem by instantiating the pa- 
rameters such that the instantiated axioms are provably 
correct. Each additional level is a specialization (more 
parameterized axioms) and possibly an extension (more 
parameters) of the previous level. Thus this hierarchical 
representation naturally supports top-down refinement of 
an evolving design without being overly committed to an 
implementation language. 

Optimization 

Domain 

Stee 
Asc 

Si 
of Set Function Convergence 

rder 
Convergence 

is optimization over a domain D. The axioms specify the 
constraints between the parameters, i.e. the Co&Relation 
is a total order upto equivalence - that is all the domain 
elements are comparable. The Value function is a map 

from a state to an element of the domain. The VuZue 
function is usually implemented as a program variable, but 
other implementations are possible. An advantage of pa- 
rameterized theories is the flexibility of having no a priori 
commitment to a particular implementation. For an op- 
timization problem, the Value in the begin state is some 
element of the domain, and the Value in the end state is an 
optimal element of the domain. Optimality is determined 
by CostRelation. 
Applicability Conclitions: 
Local Odinmums E Global Chtimums 
Neighbor : D x D 

s 

Axioms 
Vx, y E D TrunsitiveCZosure( Neighbor)(x, y) 
Vx E D (Vy Neighbor(x,y) + CostReZution(x, y)} 
H {Vy E D CostReZation(x, y)} 

An applicability condition specifies the additional 
problem structure which is exploited by a general prob- 
lem solving method. There can be many problem solving 
methods which exploit the same problem structure, for ex- 
ample both steepest ascent and simple hill climbing exploit 
the equivalence of local optimums and global optimums. 
Instantiating the applicability conditions before commit- 
ting to a particular control and data flow structure is a 
stepwise refinement reformulation strategy which is read- 
ily supported with parameterized theory representations. 

The applicability conditions in this example specify 

The parameterized theories which will be used in de- 
locality in terms of a neighbor parameter. There are two 

riving the simplex algorithm are given below. They cor- 
constraints on this neigborhood parameter. First, when 

respond to the left hand side of the diagram above, i.e. a 
the neighbor relation is viewed as a graph, all domain ele- 

generic optimization problem, the applicability conditions 
ments are connected. This ensures that an optimal value is 

of local optimums being global optimums, local search al- 
reachable from any initial value. The second constraint is 

gorithm, and finally a performance guaranteed to be no 
that if a domain element is optimal over its neighborhood, 

worse than the size of the domain if no looping occurs. 
then it is also globally optimal. 

Each theory begins with parameters for sorts, relations, 
Algorithm Structure: Local Search 

and functions, which are followed by a set of axioms. Each 
Next : S + S 

successive layer is represented by the additional parame- 
Axioms 

ters and axioms which are added to its parent theory. 
Vx E S Neighbor(VaZue(x), VaZue(Next(x)) 

Global Input/Output Bebavior:Optimization Problems 
Vx E S CostReZution(VuZue(Next(x)), Value(x)) 

Domain D States S 
The algorithm structure for local search introduces the 

Begin, End :+ S 
Next parameter, which maps states to states. Next spec- 

Value : S + D 
ifies large-grained state transitions, usually corresponding 

CostRelation : D x D 
to the outer loop of a program. The axioms which are 

Axioms 
given here specify that the Value in the Next state is a 

better neighbor of the current Value. 
VuZue(Begin) E D PerformLLce Structure: No Looping 
Vx E S x = END c) Vy E D CostReZution(VuZue(x), y) 
Vx, y E D CostReZution(x, y) V CostReZution(y, x) 
Vx, y, z E D CostReZution(x, y) A CostReZation(y, z) + 
CostReZation(x, z) 

The global input/output behavior consists of the sort, 
relation, and function parameters which are used to specify 
the generic problem. In this example the generic problem 

Size(Domain) 2 End - Begin 
Vx, y E Sx # y 3 Value(x) # Value(y) 

The final layer of the representation of local search 
design is that of performance. The theory given here is 
a weak upper bound on the number of state transitions. 
It states that the number of high-level state transitions 
from the beginning state to the end state is bounded by 
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the cardinality of the optimization domain if there is no 

looping. 
This section has shown how to represent a gen- 

eral problem solving method as a refinement hierarchy 
of parameterized theories. Each additional layer intro- 

duces more constraints and possibly additional parame- 
ters. The significant decision points for problem reformu- 
lation are choosing refinements and instantiating param- 
eters. Choosing a refinement is a classification problem- 
that is, a choice between a small number of alternatives. 
Often, different refinements lead to equally viable algo- 
rithms. Parameter instantiation is a much more difficult 
search problem, and is the main focus of section 4. 

Linear optimization is finding the optimum value of a lin- 
ear cost function given a set of linear constraints. From the 
abstract viewpoint of Euclidean geometry, the linear con- 
straints describe a convex polyhedron (possibly unbounded 
or null), and the cost function describes a direction. The 
desired output is the point(s) on the polyhedron which is 
furthest along the direction vector. 

The insight of the simplex algorithm is that the output 
will include a vertex of this polyhedron. The skeleton of the 
simplex algorithm is local search between adjacent vertices 
until a local optimum is reached. Because of convexity, a 
local optimum is guaranteed to be a global optimum. 

The standard form of a linear optimization problem is 
to minimize c - z such that Ax = b and x; 2 0. The input 
is a row vector c, a column vector b, and an m x n matrix 
A. The output is a row vector x. In the standard form, a 
vertex is represented by m linearly independent columns 
of the matrix A, where m is the number of rows and n 
is the number of columns, n being strictly greater than 
m. Thus there are m choose n possible representations 
of vertices(a vertex might have multiple representations). 
Adjacent vertices share m - 1 columns. The co-ordinates 
of a vertex can be explicitly determined by solving the 
m x m submatrix of column vectors for b using gaussian 
elimination. A vertex has m non-zero co-ordinates. 

The significant design choices in deriving the simplex 
algorithm are first the parameterized theory refinements 
which lead to the choice of a local search algorithm and 
more importantly the parameter instantiations: 

Instantiation of the domain of optimization to be just 
the vertices, which makes the search space finite. 

Instantiation of the neighbor relation to be vertices 
which share m- 1 columns, thus minimizing the search 
at each step. 

Specifying a total order on subsets of m columns to 
avoid looping. The CostRelation only gives a partial 
order. 

Instantiating the first phase of the algorithm, which 
yields a valid starting point for the optimization. 

Algorithm 
This section discusses the use of parameterized theories in 
designing an algorithm. The full derivation can be found 
in [Lowry, 1987b], this overview focuses on the methods 
used in instantiating the parameters (step 3 of the basic 
method). Heuristics for instantiating the paTameteTs are 
themselves represented as parameterized theories and map- 
pings between parameterized theories. 
The basic design method is: 

1. Choose a parameterized theory, or refinement. 

2. Propagate constraints. 

3. Generate problem specific instantiations of free pa- 
rameters which satisfy the propagated constraints. 

4. Iterate until the Next parameter is fully constrained, 
i.e. the algorithm is complete. 

Constraints are accumulated on the sequence of state 
changes, represented by the Next parameter. These con- 
straints are then transformed to a set of state transforma- 
tion rules, which are then compiled by the REFINETM 
compiler into lisp code. The input to STRATA is the prob- 
lem definition, domain knowledge such as theorems of lin- 
ear algebra, and a library of design knowledge expressed 
as parameterized theorems. The output of STRATA is the 
set of constraints on the Next parameter. 
Input: Broblern Definition for Linear Optimization 

VaZuel(Begin) = (A, b, c) 
Value2(END) = xoUt 
Axout = b,xfut 2 0 
Vx E {x 1 Ax = b A xi 2 0) c - xoUt 5 c - x 
Partial Output: Constraints on the Next parameter 

(These constraints are derived by propagating the 
neighbor instantiation to the local search refinement, as 
explained later.) 
Vs E States s = END t+ 
{Vv E vertices Adjacent(VaZue2(s), v) 
* c - VaZue2(s) 5 c - v} 
Vs E States Adjacent(VaZue2(s), VaZue2(Next(s)) 
Vs E Statesc - VaZue2(Next(s)) 5 c - VaZue2(s) 
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The first axiom states that if the current value of xoUt instantiating the Neighbor parameter of local search yields 
is locally optimal, then the algorithm should terminate. small neighborhoods so that the local search of each neigh- 

borhood is efficient. This heuristic defines the neighbor The following two axioms state that the next value of xoUt 
should be a better neighbor of the current value of xout. 

- 
relation in terms of the parameterized theory of a distance 
metric. in particular the minimal distance such that local 
optimums are global optimums: 

Neighbor(x, y) H Dist(x, y) < K 
K H Minimize(U I Vx E D (Vy E D CostRelation(x, y)} 
@ {Vy Dist(x, y) < U + CostRelation(x, y)} 
Dist(x,x) = 0 
x#y=~Dist(x,y)>O 
Dist(x, y) = Dist(y, x) 

The first step in the derivation is to instantiate a 
generic input/output behavior to the linear optimization 
problem. The generic optimization problem is partially 
instantiated with the following representation map: 
D H {x 1 Ax = b A xi 10) ab.2 poly 
CostRelation H (X(a, b) c.a>c-b)ab. LAMBDA 
Value H Value2 
VaZue(End) H xoUt 
VaZue( Begin) UNINSTANTIATED 

The instantiated axioms for generic optimization are 
provably true in the problem domain theory of linear al- 
gebra. The uninstantiated parameter is constrained as fol- 
lows, it is the postcondition for the first phase of the sim- 
plex algorithm: 
VaZue2( Begin) E poly 

Heuristic knowledge for instantiating the parameters 
can be encoded in parametric form. This knowledge ex- 
presses additional constraints on a parameter and/or spec- 
ifies how to instantiate a parameter in terms of other pa- 
rameters. The additional constraints serve to focus the 
generation of problem specific instantiations of free param- 
eters in step 3. Specifying the instantiation of a parameter 
in terms of other parameters which are syntactically closer 
to the domain represent ation can reduce the ‘reformulation 
distance’ that needs to be spanned by equivalence preserv- 
ing transformations and general purpose theorem proving 
methods. As an example, one heuristic for instantiating 
the DOMAIN of optimization is to find a predicate which 
restricts the domain to a subset which includes at least one 
optimal solution: 
3xP(x) A Vy E D CostReZation(x, y) 
D’ H {x E D 1 P(x)} 

This heuristic can be invoked as a demon when instan- 
tiating the domain parameter of an optimization problem. 
This heuristic essentially encodes a parameterized proof 
that restricting the domain of optimization yields a valid 
algorithm. Given the representation map derived above, 
and the following theorem found in textbooks on linear 
programming, this heuristic derives an instantiation for D’ 
which restricts the domain of optimization to vertices, i.e. 
vectors with only m non-zero co-ordinates: 
Thm: 3x E poly size{i 1 xi # 0) = m 
/\{Vy E poly Lambda(x, Y)}~ 
D’ I+ {x E poly I size{i I xi # 0) = m) ‘ab. vertices. 

The next step (step 1 of the basic method) in the 
derivation is to choose the applicability conditions and in- 
stantiate the parameters with appropriate domain func- 
tions and relations. A heuristic which is activated when 

2 ab. abbreviates abbreviated 

31n this derivation 
timal solution. 

it is assumed that there exists a bounded W- 

Dist(x,z) < Dist(x, y) + Dist(y, z) 

To instantiate this heuristic, STRATA first generates 
a distance metric on D (the domain of optimization), at- 
tern&s to find a minimal K and if successful instantiates 
the i\reiqhbor parameter. After searching various possibil- 
ities, a successful instantiation is found that uses a com- 
posite distance function, i.e. Dist(x,z) H G(H(x,z)). G 
is instantiated first to the primitive function Setsize, and 
some distance metric axioms are back-propagated to con- 
straints on the function H (H has arity setof non-zero co- 

ordinates x setof non-zero co-ordinates + setof non-zero 
co-ordinates): 

Vx E verticesH(x,x) = q5 
Vx, y E vertices x # y + H(x, y) # 4 
Vx, y E verticesH(x, y) = H(y, x) 

H is instantiated to SymmetricSetDif f erence, the 
Dist parameter is instantiated, and the triangle inequality 
is verified: 
Dist(x, y) I--) SetSize(SymmetricSetDif f erence(x, y)) 

A similar derivation also works in deriving local search 

algorithms for Minimal Spanning Trees, and approxima- 
tion algorithms for the Traveling Salesman Problem [Pa- 
padimitriou and Steiglitz, 19821. This suggests that a 
fruitful line of research is to apply ExpZanation Based 
GeneraZizationlWinston et al., 19831 to derive new pa- 
rameterized theories as heuristics for instantiating pa- 
rameterized designs. For this particular example, the 

generalization would instantiate the distance metric to 
SetSize(SymmetricSetDif f erence(x, y)) when the do- 
main of optimization can be formulated as subsets of an- 
other set: 
IF D H {s I s c E} 
THEN 
Dist(x, y) I+ SetSize(SymmetricSetDifference(x, y)) 

The instantiated Dist parameter is then used to in- 
stantiate the Neighbor relation by finding the minimal K 
such that local-global optimality is satisfied: 
Neighbor(x, y) 
H SetSize(SymmetricSetDif f erence(x, y) < 2 

This instantiation states that 2 vertices are neighbors - 
if they differ by 2 non-zero co-ordinates, i.e. they share 
m - 1 column vectors. This instantiation is abbreviated 
Adjacent. When this instantiation is propagated to the 
local search parameterized theory refinement, it yields the 

Lowry 435 



constraints on the Next parameter given at the beginning 
of this section. 

The rest of the derivation uses the same techniques of 
choosing an incremental parameterized theory to refine the 
evolving design, propagating constraints, and then instan- 
tiating free parameters. The search for parameter instan- 
tiations uses the same methods described above, including 
constraint propagation and heuristics expressed as param- 
eterized theories and representation maps. 

This section has shown how design can be factored 
into a classification problem of choosing a parameterized 
theory and a reformulation problem of finding appropri- 
ate domain terms to instantiate the parameters of generic 
designs. A major contribution is the demonstration of 
how domain independent inference techniques, domain in- 
dependent heuristics, and domain knowledge expressed as 
theorems can be combined to focus the search for compos- 
ite terms to instantiate the parameters of parameterized 
theorems. 

V. Summary 

This paper has presented a representation for design 
knowledge based upon parameterized theories, which fac- 
tors the design problem into a classification problem 
(choose a generic design strategy) and a reformulation 
problem (reformulate the problem into the parameters of 
the generic design). The reformulation problem is combi- 
natorially explosive and poorly understood. Previous work 
has usually used either ad hoc domain specific techniques 
or brute force generate and test combined with theorem 
proving for verification. In contrast, parameterized theo- 
ries naturally support techniques such as constraint prop- 
agation, solving for an unknown parameter in terms of 
known parameters and mutual constraints, and other in- 
ference methods. They also provide a convenient matrix 
for expressing heuristic knowledge for choosing good in- 
stantiations of a parameter. 

Parameterized theories offer significant advantages 
over skeletal plans and program schemas. These advan- 
tages are due to being able to combine parameterized the- 
ories with a flexible and semantically well defined calculus 
[Burstall and Goguen, 19771. In my research, this flexi- 
bility is used to express design knowledge as a refinement 
hierarchy of parameterized theories ranging from a generic 
problem, applicability conditions, algorithm structure, and 
finally performance calculations. Each additional layer is 
a specialization (additional axioms) and/or an extension 
(additional parameters) of the previous parameterized the- 
ory. 
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