
Semantically Sound Inheritance

Its ::I$ Nado and Richard Fikes
IntelliCorp

197,s El Camino Real West
Mountain View, California 94040-2216

Abstract

Most frame languages either are glaringly deficient
in their treatment of default information or do not
represent it at all. This paper presents a formal
description of a frame language that provides
semantically sound facilities for representing default
information and an efficient serial algorithm for
inheriting default information down class-subclass and
class-member hierarchies constructed in that language.
We present the inheritance algorithm in two forms. In
the first form, the algorithm provides justifications to a
TMS, which then manages the inherited information. In
the second form, the algorithm performs its own, special-
purpose truth maintenance and therefore is useable in a
system that does not, include a general-purpose TMS.l

I. Introduction

The common-sense reasoning required in many knowledge system
applications relies heavily on the ability to use general information
that is subject to exceptions: what has been called prototypic or
default information. Although frame-based representation
languages have become increasingly popular for expressing the
domain-specific information on which the functionality of
knowledge systems is based [Fikes and Kehler, 19851, most such
languages either are glaringly deficient in their treatment of default
information (as argued, for example, in [Brachman, 19851
and [Touretzky, 19841) or do not represent it at all (e.g.,
KL-ONE [Brachman and Schmolze, 1985) and

KRYPTON [Brachman et al., 19831). Thus, an important step in
the advancement of knowledge system technology is the
development of a frame language that provides semantically sound
facilities for representing and efficiently processing default
information. This paper presents a formal description of such a

frame language (based on the frame language in the KEETM

system2) and an efficient serial algorithm for inheriting default
information down class-subclass and class-member hierarchies
constructed in that language. The language has been implemented
at IntelliCorp in a system called OPUS.

As observed by Touretzky [Touretzky, 1986], the “shortest-

1
Tius research was supported in part by the Defense Advanced Research Projects

Agency (DARPA) under contract No. F30602 85 C 0065. The views and

conclusions reported here are those of the authors and should not be construed as
representing the official position or policy of DARPA or the U.S. government.

2KEEworlds,
IntelliCorp.

KEE and Knowledge Engineering Environment are trademarks of

Color

Yalue: ?

Figure 1: A Problem with the “Shortest Path” Ordering

path” ordering of defaults used by most inheritance systems (e.g.,
FRL [Roberts and Goldstein, 19771 and NTL (Fahlman, 1979]),
does not, always successfully provide the desired preference of more
specific defaults over less specific defaults. Problems arise in some
cases of multiple inheritance, where nodes are allowed to have more
than one parent link. An example, adapted from Touretzky, is
depicted in Figure 1. The typical inheritance algorithm correctly
prefers White over Grey as a default color for a royal elephant,
because the default from RoyalElephants has a “shorter path” than
the default from Elephants. However, in the situation shown in the
figure, Clyde has a redundant class membership link to Elephants.
Clyde, then, inherits both the default White from RoyalElephants
and the default Grey from Elephants along paths oj equal length.
Thus, shortest-path algorithms are not sufficient to correctly

handle this situation.3 This, and other shortcomings of existing
algorithms are overcome in the OPUS algorithm presented here.

An additional motivation for this work is to enable “truth

maintenance” (or, “reason maintenance” as it is sometimes called)

capabilities to be incorporated into frame-based representation

systems. Truth maintenance algorithms provide an automatic

means of managing derived results as changes are made in a
model [Doyle, 19791. In addition, a truth maintenance system
(TMS) can be used as the basis for a context mechanism that
enables a frame system to model and compare multiple

hypothetical situations (as W&S done, for example, in the

KEEworlds TM facility [Morris and Nado, 1986]).

3
The same problem is obtained if

added along the two paths from Clyde

equal numbers

to Elephants.

Of intermediate subclasses are

Nado and Fikes 443

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

also
Inheritance mechanisms add derived results to a model. They

typically provide an efficient special-purpose form of truth

binary relationships considered to hold between each member of
class represented by the frame and other entities in the domain.

the

maintenance for those results in that they remove information they
have derived when a change occurs in the form or content of the
hierarchies on which those derivations are based. If a general-
purpose TMS has been incorporated into a frame system, then the
TMS can be used to maintain the inherited information, thereby
significantly reducing the complexity of the inheritance mechanism.
However, such a reduction can be obtained only if the derivations
performed during inheritance are expressible in the logical
formalism supported by the TMS.

The inheritance algorithm in the current KEE system (and in
other similar systems) is unsuitable for providing such justifications
because it depends on arbitrary LISP procedures to perform its
deductions and allows those procedures to use information whose
semantic interpretation is unclear such as the order in which
inheritance links are stored. The OPUS inheritance algorithm we
present here performs sound deductions describable to a TMS in
the form of nonmonotonic justifications whose justifiers are
propositions expressible in the frame language. OPUS, therefore, in
combination
inheritance.

with the KEEworlds system, performs context-relative

After presenting the formal description of the frame language,
we present the OPUS inheritance algorithm in two forms. In the
first form, the algorithm provides justifications to a TMS, which
then manages the inherited information. In the
algorithm performs its own truth maintenance
useable in a system that does not include a TMS.

second form, the
and therefore is

II. A Frame Language with
Defaults and Exceptions

1. Frames

A frame represents an entity in the domain of discourse.
Formally, a frame corresponds to a logical constant. A frame
includes a collection of own slots that describe binary relationships
considered to hold between the entity represented by the frame and
other entities in the domain. A frame’s collection of own slots
tecessarily includes MemberOf, which represents the standard set

(i.e., class) membership predicate from set theory.

2. Class Frames
A class frame is a frame that represents a collection (i.e.,

class) of entities in the domain of discourse. Such a class is itself
considered to be an entity in the domain of discourse. Thus, a

class frame has associated with it a collection of own slots
describing the binary relationships that the class has with other
entities. Those own slots include Subclass, SubclassOf, Member,
and MemberOf, which represent the standard subset and set
membership predicates from set theory. These slots provide the
“links” over which inheritance is done. In addition, a class frame
has associated with it a collection of prototype slots that describe

3. Own Slots
An own slot has associated with it a collection of values, each

of which represents an entity in the domain of discourse. Formally,
an own slot named S has associated with it a binary predicate,
which for convenience we will also call S. An own slot S in a frame
F having value Vcorresponds to the assertion S(F,V).

4. Prototype Slots

A prototype slot has associated with it a collection of
necessary values, each of which represents an entity in the domain
of discourse. Formally, a prototype slot S has associated with it a
binary predicate NecS. A prototype slot S in a class frame C
having necessary value V corresponds to the assertion NecS(C,V).
Predicate NecS is related to predicate S by the following

definition:4

NecS(C, V) = Vx [MemberOf(z,C) > S(x, V)]

The following theorem follows from this definition and the set
theory definition of SubclassOf in terms of MemberOf:

NecS(C, V) A SubclassOf(x, C) 1 NecS(x, V)

That is, necessary values of a prototype slot at a class frame
representing a class C are also necessary values of the prototype
slot at all class frames representing subsets of C. The OPUS
inheritance algorithm performs the deductions implied by the
definition of NecS and by the theorem by propagating necessary
values of prototype slots to all subclasses and class members.

The OPUS frame language without defaults can be
characterized as expressing statements of the form S(x,y) and
NecS(x,y) for arbitrary first order binary predicates S. The
language does not recurse in that it does not represent predicates of
the form NecNecS.

B. Adding Defaults and Exceptions

Our goal was to augment the frame language described above to
enable class frames to include prototypical descriptions of class
members. That is, we wanted to enable prototype slots to have
default values that would be inherited to class members as
assumed values for the corresponding own slots unless blocked by
exceptions.

We began by attempting to directly implement the formalism
for defaults with exceptions in inheritance networks described by
Etherington [Etherington, 19871. Etherington’s formalism is stated
entirely in terms of unary class membership predicates. That is, he
treats each class C as a unary predicate, C(x), that is true when x
is a member of C. He defines a “Membership” link between an
object u and a class C to mean a belongs to class C (i.e., C(n)).
The OPUS MemberOf own slot corresponds to the membership
link. He defines a “Strict IS-A” link between class Cl and class C.Z
to mean Cl’s are always CR’s (i.e., Vx [Cl(x) 2 n(x)]). The OPUS
SubclassOf own slot corresponds to the strict IS-A link.

Own slots are treated in Etherington’s formalism by
considering each slot-value pair (S,V) to be a unary predicate,
S%‘(x), corresponding to the class of all objects having value V for
own slot S (e.g., the class of objects having color grey). Given that
formalism for own slots, a necessary value Vof a prototype slot S
in a class frame C is a strict IS-A link between C and SV.

*Here and in the rest of the paper free variables are implicitly universally

quantified.

444 Knowledge Representation

Etherington represents default information in his inheritance
networks by “Default IS-A” and “Exception” links. A default IS-A
link from class Cl to class C2 means “Normally, Cl’s are C2’s”,
and is expressed formally by the default logic inference rule:

Cl(x) : n(x)

C2(x)
The interpretation of this rule is: if Cl(x) (called the

prerequisite) is known, and C2(x) (called the justification where it
appears above the line) is consistent with what is known, then
C2(x) (called the consequent where it appears below the line) may
be concluded.

An exception link has a class at its tail and a default IS-A link
at its head. An exception link from class Cl to a default IS-A link
from C2 to CS means “C1’s are exceptions to C2’s being CSs”
(e.g., “Royal elephants are exceptions to elephants being grey”).
Etherington provides no independent semantics for an exception
link. Instead, he defines it formally as a modification to the
default rule corresponding to the link being blocked. However,
Doyle has suggested (as reported by Touretzky [Touretzky, 19861)
that if the justification of the default rule corresponding to a
default IS-A link contains an additional unary predicate unique to
that default, then an exception link blocking that default can be
defined to correspond to an assertion of the negation of that
predicate for each member of the class at the tail of the link.
Following that suggestion, a default IS-A link from class Cl to
class C2 would correspond to the default rule:

Cl(x) : n(x) A yExceptionToClC2(x)

CG)

ProExcS is defined as follows:

ProExcS(C, V, OC) =
Vx [MemberOf(x, C) 2 OwnExcS(z, V, OC)]

As was the case for predicate NecS, the definition of ProExcS
implies that prototype exceptions are inherited to subclasses. That
is:

ProExcS(C, V, OC) A SubclassOf(x, C)
3 ProExcS(x, V, OC)

An assertion of the form ProExcS(C,V,OC) corresponds in
Etherington’s formalism to an exception link from C to a default
IS-A link from OC to SV OwnExcS statements are inferred from
ProExcS statements and serve, following Doyle’s suggestion, to
block default rules at appropriate class members.

2. DefS

DefS(C,V) means that for each member x of C, if it is
consistent to assume both that V is a value of own slot S in x and
that no own exception at x blocks the inheritance of V for S from
C, then it can be inferred that Vis a value of own slot 5’ in x. For
a given binary predicate S, DefS is defined as follows:

DefS(C, v) =

MemberOf(x, C) : S(x,V) A lOwnExcS(x, V, C)

SC? v)

and an exception link from CS to the default IS-A link from C1 to
c2 would correspond to the implication:

Vx [C3(2) 1 ExceptionToClC2(x)].
To add Etherington’s default IS-A and exception links to the

Defaults asserted at a class as DefS statements are used to
infer SubDefS statements at the class and are inherited to all
subclasses as SubDefS statements.

C. Quantified Exceptions

1. ProExcS

ProExcS(C,V,OC) means there is an own exception at each
member x of C blocking the inheritance of default value V from
class OC to own slot S in x. For a given binary predicate S,

DefS(C,V) corresponds in Etherington’s formalism to a default
IS-A link from C to SV

3. SubDefS

The SubDefS predicate is an extension to Etherington’s
formalism to provide for the inheritance of defaults to prototype
slots in subclasses. That is, the frame language is designed so that
the prototype slots at any given class frame C have all the
necessary and default values to be inherited by members of C that
have been asserted at C or at any of C’s superclasses. For example,
the class frame AfricanElephants inherits from class frame
Elephants the default value grey for the color prototype slot.
Etherington has nothing in his formalism corresponding to that
functionality.

For a given binary predicate S, SubDefS statements are
inferred from DefS statements by the following axiom and default
rule:

DefS(C, V) 3 SubDefS(C, V, C)

SubDefS(C,V,OC)ASubclassOf(C,OC) : yProExcS(C,V,OC)

SubDefS(C,VOC)

Etherington’s link types and the statement forms we have
introduced thus far for OPUS allow exceptions to be stated for
specific values from specific origin classes. In practice, however,
there is a need to assert collections of exception links. For
example, one typically wants to state for a given slot in a given
class frame (say the color slot in RoyalElephants) that any default
value from any superclass is to be blocked and replaced by a given
default value. Such assertions would be second order statements in
Etherington’s formalism. We can express them in the OPUS
formalism as first order quantified statements as follows:

Vu OwnExcS(0, v, OC)
Voc OwnExcS(0, V, oc)
Vv,oc OwnExcS(0, v, oc)

Nado and Fikes 445

Vu ProExcS(C, v, OC)
Voc [SubclassOf(C, OC) 3 ProExcS(C, V, oc)]
Vu,oc [SubclassOf(C, oc) 3 ProExcS(C, 21, oc)]

The quantification of the origin class that is supported for
prototype exceptions is only to superclasses of the class to whose
members the exception applies. The restriction to superclasses is
meant to implement the intuition that defaults at subclasses
override defaults at superclasses. For example, a default color for
royal elephants overrides a default color for elephants. Thus, we

subclasses and class members unless blocked by exceptions.
In this section we describe the algorithm in two forms, one

assuming the availability of a TMS to maintain the derived results
and the other not. In both cases we describe the information
associated with each slot in the implementation and the operations
performed by the algorithm.

A. What’s In A Slot?

Each own slot in a frame has associated with it sets of vallles and
do not want a quantified prototype exception to block defaults
from sibling classes and subclasses, but only from superclasses.
(Although, note that the unquantified form of ProExcS blocks
defaults from any given class, including sibling classes and
subclasses. The
useful in that it

ability
allows

to block defaults from siblings may
one to express a precedence ordering

even though their

be
of

own exceptions. Own exceptions are ordered pa.irs of the form
(<value spec>, <origin class spec>), where <value spec> is
either a value or the reserved symbol *, and <origin class spec> is
either a class or the reserved symbol *. The * symbol matches any

or value and thereby ow 11 to quantified

defaults between classes subclass-superclass
relationship is unknown.)

As observed by Touretzky [Touretzky, 19841, the natural
partial ordering of defaults in inheritance systems defined by the
hierarchical structure of the inheritance graph resolves many
ambiguities in an intuitive way. Touretzky introduces an
“inferential distance” measure that expresses the desired natural

origin class
exceptions.

corresponds

Each prototype slot in a class frame has associated with it sets
of necessary values, default values, and prototype exceptions.
Default values are ordered pairs of the form (<value>, <origin
class>) and prototype exceptions are ordered pairs of the form
(<value spec>, <origin class spec>). The * symbol in prototype
exceptions matches any value or any origin class that is a

superclass and thereby corresponds to the desired forms of
ordering of defaults and uses that measure to filter out extensions
that violate the ordering. In OPUS, that effect is obtained by the
explicit quantification of exceptions over superclasses. In
Touretzky’s formalism, an exception always blocks a specific
default value from all superclasses. Thus, unlike in OPUS, he
cannot block all values from superclasses nor can he block values
from a given superclass.

In summary, for any first order binary predicate S, the OPUS
frame language represents statements of the following form (with
their Etherington link equivalents where applicable):

SC01 v) 0 > -Member- > SV
NecS(C, V) C> -IS.A- > SV
DefS(C, s/? C>-Def.IS.A->SV
SubDefS(C, V, OC)
OwnExcS(0, V, OC)
Vu OwnExcS(0, v, OC)
Voc OwnExcS(0, V, oc)
Vu, oc OwnExcS(0, w, oc)
ProExcS(C,V,OC) C>-Exe->(OC>-Def.IS.A->SV)
Vu ProExcS(C, v, OC)
Vv [SubclassOf(C, oc) I) ProExcS(C, V, oc)]
Vu, oc [SubclassOf(C, oc) 3 ProExcS(C, 2), oc)]

The system does not recurse in that it does not represent
NecNecS, DefNecS, etc.

Consider how this formalism would be used to express the
situation shown in Figure 1. DefColor statements would be used at
Elephants and RoyalElephants to express the two defaults, and a
quantified prototype exception statement would be used at
RoyalElephants to block the inheritance of default colors from all
superclasses, as follows:

quantified prototype exceptions.

B. Inheritance with a TMS

In order to perform inheritance using a TMS, each value or
exception that is considered for a slot has an assertion (TMS node)
associated with it. The assertion’s formula (TMS datum) is as
described in Section 2 for the different types of values and
exceptions. A value or exception is added to a slot by giving its
corresponding assertion a suitable justification, either a primitive
justification or a justification recording some deduction external to
the inheritance system. A given slot has a particular value or
exception just in case the TMS assigns a positive belief status to its
corresponding assertion. Demons are associated with each slot that
are triggered by the TMS when an assertion concerning the slot is
believed for the first time. A demon for a particular value or
exception type is responsible for determining which inheritance
justifications involving the newly believed assertion should be
added to the TMS.

Necessary values of prototype slots are inherited to class
members as values of own slots via justifications of the following
form:

NecS(C, v) A MemberOf(Memb, C)
4 S(Memb, v)

Necessary values of prototype slots are inherited to subclasses
via justifications of the following form:

NecS(C, V) A SubclassOf(Csub, C)
- NecS(Csub, I’)

Prototype exceptions are inherited from classes to class
members via justifications of the following form:

DefColor(Elephants,Grey) ProExcS(C, V, OC) A MemberOf(Memb, C)
DefColor(RoyalElephants,White) + OwnExcS(iWemb, V, OC)
Vu, oc[SubclassOf(RoyalElephants, oc) Prototype exceptions are inherited from classes to subclasses

1 ProExcColor(RoyalElephants, v, oc)] via justifications of the following form:

. A IIPushl(Inheritance Algorithm
for Defaults and Exceptions

ProExcS(C, V, OC) A SubclassOf(Csub, C)
--f ProExcS(Csub, V, OC)

Default values of prototype slots are inherited to class
members as values of own slots via nonmonotonic justifications of
the following form:

SubDefS(C, V, CC) A MemberOf(iWemb, C) A
OUT[OwnExcS(Memb, V, OC)]

-+ S(hfemb, 5’)

The OPUS frame language has been implemented by modifying the
frame language in the KEE system. The inheritance mechanism
implements the deductions defined by the definitions, axioms, and
theorems given above by “pushing” necessary member slot values
when they are asserted to subclasses and class members, and
pushing default member slot values when they are asserted to

446 Knowledge Representation

Note that there is no OUT justifier for -S(Memb,V) in these
justifications as the formal definition of default values requires.
Such a justifier is not needed since statements of the form
-S(Memb,V) cannot be expressed in the frame language and are
therefore necessarily out.

Default values of prototype slots are inherited to subclasses via
nonmonotonic justifications of the following form:

SubDefS(C, V, OC) A SubclassOf(Csub, C) A
OUT[ProExcS(Csub, V, OC)]

-+ SubDefS(Csub, V, OC)

As before, these justifications do not need to have an OUT
justifier for -SubDefS(Csub,l/,OC) because statements of the form
-SubDefS(Csub,V,OC) cannot be expressed in the frame language
and are therefore necessarily out.

Quantified own exceptions are used to generate instantiated
own exceptions as needed to block the inheritance of default values
that match the quantified form. The instantiated exceptions are

produced via justifications of the following forms:

OwnExcS(I;: *, OC) -+ OwnExcS(F, V, OC)
OwnExcS(F, V, *) -+ OwnExcS(F, V, OC)
OwnExcS(F, *, *) --+ OwnExcS(F, 17, OC)

Quantified prototype exceptions are not inherited. Instead,
they are used to generate instantiated prototype exceptions as
needed to b!ock the inheritance of default values that match the
quantified form. The instantiated exceptions are produced via
justifications of the following forms:

ProExcS(C, *, OC) A SubclassOf(C, Csuper) A
SubDefS(Csuper, V, OC) --+ ProExcS(C, V, OC)

ProExcS(C, V, *) A SubclassOf(C, Csuper) A
SubDefS(Csuper, V, OC) -+ ProExcS(C, V, OC)

ProExcS(C, *, *) A SubclassOf(C, Csuper) A
SubDefS(Csuper, V, OC) --+ ProExcS(C, V, OC)

1. Example

Consider the statements that would be asserted and derived by
this inheritance mechanism for the example from Figure 1. The
inheritance of color Grey from Elephants to RoyalElephants would
be done via the following justification:

SubDefColor(Elephants,Grey,Elephants) A
SubclassOf(RoyalElephants,Elephants) A
OUT[ProExcColor(RoyalElephants,Grey,Elephants)]
-+ SubDefColor(RoyalElephants,Grey,Elephants)

The inheritance of color Grey from Elephants to Clyde would
be done via the following justification:

SubDefColor(Elephants,Grey,Elephants) A
MemberOf(Clyde,Elephants) A
OUT[OwnExcColor(Clyde,Grey,Elephants)]
--+ CoIor(CIyde,Grey)

The generation of the instantiated prototype exception for
Grey at RoyalElephants would be done via the following
justification:

ProExcColor(RoyalElephants,*,*) A
SubclassOf(RoyalElephants,Elephants) A
SubDefColor(Elephants,Grey,Elephants)
-+ ProExcColor(RoyalElephants,Grey,Elephants)

The instantiated prototype exception for Grey at
RoyalElephants prevents inheritance of Grey as a default to
RoyalElephants. Thus, no justification is generated for inheriting
Grey from RoyalElephants to Clyde. Inheritance of the
instantiated prototype exception for Grey at RoyalElephants to
Clyde would be done via the following justification:

ProExcColor(RoyalElephants,Grey,Elephants) A
MemberOf(Clyde,RoyalElephants)
-+ OwnExcColor(Clyde,Grey,Elephants)

That inherited exception would block the inheritance of Grey

to Clyde.
The inheritance of color White from RoyalElephants to Clyde

would be done via the following justification:

SubDefColor(RoyalElephants,White,RoyalElephants) A
MemberOf(Clyde,RoyalElephants) A
OUT[OwnExcColor(Clyde,White,RoyalElephants)]
-+ Color(Clyde,White)

Since there is no exception at Clyde blocking the inheritance of
White from RoyalElephants, White will become the color of Clyde.

C. Inheritance Without a TMS

The above inheritance scheme relies on a TMS to remove inherited
values when the assertions on which the inheritance was based are

removed. For example, if the default color for elephants is
removed, then the TMS will also remove Clyde’s color if it was in
the model only because of the default. Inheritance without, the
services of a TMS is considerably more complex since the
inheritance machinery must, in effect, provide a truth maintenance
capability for inherited values.

It, order to provide for the removal of inherited values, the
OPUS inhrritance machinery requires each slot to have both a local
and a resultant set of values and exceptions. The local sets are
used only by th: :nheritance algorithm and contain those values or
exceptions that are either asserted or are determined by some
means other than inheritance. Resultant sets contain all the values
and exceptions, including the local ones and those derived by
inheritance. When a value or exception is to be added to (or

removed from) a slot, it is added to (or removed from) the
appropriate local set and the inheritance machinery recomputes the

affected resultant sets for that slot. When the values of the

MemberOf (or SubclassOf) own slot of a frame are modified, the
inheritance machinery recomputes the resultant sets of each own
slot (or prototype slot) of the frame. When a resultant set of a

prototype slot is modified, affected resultant sets of all its
descendants in the inheritance graph are recomputed. In the
paragraphs below, we describe how each type of resultant set is
computed. References in the descriptions to values and exceptions
are to the resultant sets unless explicitly indicated otherwise.

The set of resultant necessary values for a prototype slot S in
a class frame C is the union of the local set of necessary values for
S in C and, for each Csuper that is a value of the own slot
SubclassOf in C, the set of necessary values for prototype slot S in
Csuper.

The set of resultant default values for a prototype slot S in a
class frame C consists of the local default values for S in C and, for
each Csuper that is a value of the own slot SubclassOf in C, the
default values for prototype slot S in Csuper that do not match an
exception for S in C.

The set of resultant values for an own slot S at a frame F
consists of the local values for S at F and, for each C that is a
value of the own slot MemberOf in F, the necessary values for
prototype slot S in C and the default values for prototype slot S in
C that do not match an own exception for S in F.

The set of resultant exceptions for an own slot S in a frame F
is the union of the local set of exceptions for S in F and, for each C
that is a value of the own slot MemberOf in F, the set of exceptions
for prototype slot S in C.

The set of resultant exceptions for a prototype slot S in a class
frame C consists of the local instantiated exceptions for S in Cy for
each Csuper that, is a value of the own slot SubclassOf in C, the
exceptions for prototype slot S in Csuper, and each (V,Csuper2)
that matches a local quantified exception for S in C and is a
default value for some Csuperl that is a value of the own slot
SubclassOf in C.

Nado and Fikes 447

Note that quantified exceptions remain in the local set and are
not inherited. Quantified exceptions produce instantiated

exceptions as needed to block defaults that would otherwise be
inherited.

1. Example

Figure 2 shows the local and resultant values and exceptions
produced by the inheritance algorithm for our elephants example.
The default (Grey,Elephants) at Elephants and the quantified
exception (*,*) at RoyalElephants would cause an instantiated

exception (Grey,Elephants) to be generated at RoyalElephants.
That instantiated exception would be inherited to Clyde. The
exception at Clyde would block inheritance of the (Grey,Elephants)
default from Elephants. The default (White,RoyalElephants) at
RoyalElephants would be inherited to Clyde as Clyde’s color.

IV. Conclusion

We have presented a formal description of a frame language that
makes a clear distinction between necessary and default values of
prototype slots. The formalization is baaed on previous work by
Etherington, but extends his formalism to more closely match the
structure of frame languages and to allow more convenient
overriding of defaults at superclasses by defaults at subclasses.

We have presented two distinct methods for implementing the
inferences warranted by the formal description of the frame
language. The first makes use of nonmonotonic justifications in a
TMS to record inferences corresponding to default inheritance.
This method is suitable for situations in which a TMS is needed in
order to maintain conclusions derived from non-inheritance
inferences or to implement context-relative inheritance. The second
method, in effect, implements a more efficient, special purpose
truth maintenance algorithm in order to maintain the validity of
inherited values. It is appropriate for situations in which a general
purpose TMS is not needed.

A topic of current investigation is how to combine the two
methods into a single system in which the special-purpose

Color

El ephants
Local Defaults:

(f;rey, Elephants)
Resultant Defaults:

(%;rey, Elephants)

c Color

c Lacal Exceptions:(*, *)
I Resultant Exceptions:
1 (;6rey, Elephants)

1 Ellepharnts Local lIefaults:

I ! bite, RoyalE-kphants)

t
ll Resultant Defaults:
I (White, RoyalElephants)

‘i 8

1 : Color

si : Resultant Exceptions:

Cl&
IGmy, Elephants)

Resultant Values:

Figure 2: Inheritance without a TMS

algorithm is used whenever possible. In many applications, general
knowledge about the relationships among classes of objects in the
domain and default values of prototype slots is entered directly by
the domain expert and does not vary during the course of problem
solving. The membership of individuals in classes and the values of
own slots are more likely to be inferred during problem solving and
to vary with hypothetical context. These considerations suggest
that the special purpose algorithm can be used for maintaining
inherited values in the upper regions of a taxonomy, with the TMS
method being used as appropriate in the lower, more problem-
dependent regions.

References

[Brachman, 19851 Brachman, R.J.
“I Lied about the Trees” Or, Defaults and Definitions in
Knowledge Representation.

AI Magazine 6(3):80-93, 1985.

[Brachman et al., 19831 Brachman, R.J., Fikes, R.E., and H. J.
Levesque.

KRYPTON: A Functional Approach to Knowledge
Representation.

Computer 16(10):67-74, 1983.

[Brachman and Schmolze, 19851 Brachman, R.J., and J.G.
Schmolze.

An Overview of the KC-ONE Knowledge Representation
System.

Cognitive Science 9(2):171-21G, 1985.

[Doyle, 19791 Doyle, J.
A Truth Maintenance System.

Artificial Intelligence 12(3), 1979.

[Etherington, 19871 Etherington, D.W.
Formalizing Nonmonotonic Reasoning Systems.

Arti jicial Intelligence 31:41-85, 1987.

MIT Press, Cambridge, Massachusetts, 1979.

[Fahlman, 19791 Fahlman, S.E.
NETL: A System for Representing and Using Real-World
Knowledge.

]Fikes and Kehler, 19851 Fikes, R. and T. Kehler.
The Role of Frame-Based Representation in Reasoning.

Communications of the ACM 28(9):904-920, 1985.
[Morris and Nado, 19861 Morris P.H., and R.A. Nado,

Representing Actions with an Assumption-Based Truth
Maintenance System.

In Proceedings AAAI-86. Philadelphia, 1986.

[Roberts and Goldstein, 19771 Roberts, R.B. and I.P. Goldstein.
The FRL Manual.

MIT AI Memo 409, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, September, 1977.

[Touretzky, 19841 Touretzky, D.W.
Implicit Ordering of Defaults in Inheritance Systems.

In Proceedings AAAI-84, pages 322-325. Austin, Texas,
1984.

[Touretzky, 19861 Touretzky, D.W.
The Mathematics of Inheritance Systems.

Morgan Kaufmann, Los Altos, California, 1986.

448 Knowledge Representation

