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Abstract 

Most frame languages either are glaringly deficient 
in their treatment of default information or do not 
represent it at all. This paper presents a formal 
description of a frame language that provides 
semantically sound facilities for representing default 
information and an efficient serial algorithm for 
inheriting default information down class-subclass and 
class-member hierarchies constructed in that language. 
We present the inheritance algorithm in two forms. In 
the first form, the algorithm provides justifications to a 
TMS, which then manages the inherited information. In 
the second form, the algorithm performs its own, special- 
purpose truth maintenance and therefore is useable in a 
system that does not, include a general-purpose TMS.l 

I. Introduction 

The common-sense reasoning required in many knowledge system 
applications relies heavily on the ability to use general information 
that is subject to exceptions: what has been called prototypic or 
default information. Although frame-based representation 
languages have become increasingly popular for expressing the 
domain-specific information on which the functionality of 
knowledge systems is based [Fikes and Kehler, 19851, most such 
languages either are glaringly deficient in their treatment of default 
information (as argued, for example, in [Brachman, 19851 
and [Touretzky, 19841) or do not represent it at all (e.g., 
KL-ONE [Brachman and Schmolze, 1985) and 

KRYPTON [Brachman et al., 19831). Thus, an important step in 
the advancement of knowledge system technology is the 
development of a frame language that provides semantically sound 
facilities for representing and efficiently processing default 
information. This paper presents a formal description of such a 

frame language (based on the frame language in the KEETM 

system2) and an efficient serial algorithm for inheriting default 
information down class-subclass and class-member hierarchies 
constructed in that language. The language has been implemented 
at IntelliCorp in a system called OPUS. 

As observed by Touretzky [Touretzky, 1986], the “shortest- 

1 
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representing the official position or policy of DARPA or the U.S. government. 
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Figure 1: A Problem with the “Shortest Path” Ordering 

path” ordering of defaults used by most inheritance systems (e.g., 
FRL [Roberts and Goldstein, 19771 and NTL (Fahlman, 1979]), 
does not, always successfully provide the desired preference of more 
specific defaults over less specific defaults. Problems arise in some 
cases of multiple inheritance, where nodes are allowed to have more 
than one parent link. An example, adapted from Touretzky, is 
depicted in Figure 1. The typical inheritance algorithm correctly 
prefers White over Grey as a default color for a royal elephant, 
because the default from RoyalElephants has a “shorter path” than 
the default from Elephants. However, in the situation shown in the 
figure, Clyde has a redundant class membership link to Elephants. 
Clyde, then, inherits both the default White from RoyalElephants 
and the default Grey from Elephants along paths oj equal length. 
Thus, shortest-path algorithms are not sufficient to correctly 

handle this situation.3 This, and other shortcomings of existing 
algorithms are overcome in the OPUS algorithm presented here. 

An additional motivation for this work is to enable “truth 

maintenance” (or, “reason maintenance” as it is sometimes called) 

capabilities to be incorporated into frame-based representation 

systems. Truth maintenance algorithms provide an automatic 

means of managing derived results as changes are made in a 
model [Doyle, 19791. In addition, a truth maintenance system 
(TMS) can be used as the basis for a context mechanism that 
enables a frame system to model and compare multiple 

hypothetical situations (as W&S done, for example, in the 

KEEworlds TM facility [Morris and Nado, 1986]). 

3 
The same problem is obtained if 

added along the two paths from Clyde 

equal numbers 

to Elephants. 

Of intermediate subclasses are 
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also 
Inheritance mechanisms add derived results to a model. They 

typically provide an efficient special-purpose form of truth 

binary relationships considered to hold between each member of 
class represented by the frame and other entities in the domain. 

the 

maintenance for those results in that they remove information they 
have derived when a change occurs in the form or content of the 
hierarchies on which those derivations are based. If a general- 
purpose TMS has been incorporated into a frame system, then the 
TMS can be used to maintain the inherited information, thereby 
significantly reducing the complexity of the inheritance mechanism. 
However, such a reduction can be obtained only if the derivations 
performed during inheritance are expressible in the logical 
formalism supported by the TMS. 

The inheritance algorithm in the current KEE system (and in 
other similar systems) is unsuitable for providing such justifications 
because it depends on arbitrary LISP procedures to perform its 
deductions and allows those procedures to use information whose 
semantic interpretation is unclear such as the order in which 
inheritance links are stored. The OPUS inheritance algorithm we 
present here performs sound deductions describable to a TMS in 
the form of nonmonotonic justifications whose justifiers are 
propositions expressible in the frame language. OPUS, therefore, in 
combination 
inheritance. 

with the KEEworlds system, performs context-relative 

After presenting the formal description of the frame language, 
we present the OPUS inheritance algorithm in two forms. In the 
first form, the algorithm provides justifications to a TMS, which 
then manages the inherited information. In the 
algorithm performs its own truth maintenance 
useable in a system that does not include a TMS. 

second form, the 
and therefore is 

II. A Frame Language with 
Defaults and Exceptions 

1. Frames 

A frame represents an entity in the domain of discourse. 
Formally, a frame corresponds to a logical constant. A frame 
includes a collection of own slots that describe binary relationships 
considered to hold between the entity represented by the frame and 
other entities in the domain. A frame’s collection of own slots 
tecessarily includes MemberOf, which represents the standard set 

(i.e., class) membership predicate from set theory. 

2. Class Frames 
A class frame is a frame that represents a collection (i.e., 

class) of entities in the domain of discourse. Such a class is itself 
considered to be an entity in the domain of discourse. Thus, a 

class frame has associated with it a collection of own slots 
describing the binary relationships that the class has with other 
entities. Those own slots include Subclass, SubclassOf, Member, 
and MemberOf, which represent the standard subset and set 
membership predicates from set theory. These slots provide the 
“links” over which inheritance is done. In addition, a class frame 
has associated with it a collection of prototype slots that describe 

3. Own Slots 
An own slot has associated with it a collection of values, each 

of which represents an entity in the domain of discourse. Formally, 
an own slot named S has associated with it a binary predicate, 
which for convenience we will also call S. An own slot S in a frame 
F having value Vcorresponds to the assertion S(F,V). 

4. Prototype Slots 

A prototype slot has associated with it a collection of 
necessary values, each of which represents an entity in the domain 
of discourse. Formally, a prototype slot S has associated with it a 
binary predicate NecS. A prototype slot S in a class frame C 
having necessary value V corresponds to the assertion NecS(C,V). 
Predicate NecS is related to predicate S by the following 

definition:4 

NecS(C, V) = Vx [MemberOf(z,C) > S(x, V)] 

The following theorem follows from this definition and the set 
theory definition of SubclassOf in terms of MemberOf: 

NecS(C, V) A SubclassOf(x, C) 1 NecS(x, V) 

That is, necessary values of a prototype slot at a class frame 
representing a class C are also necessary values of the prototype 
slot at all class frames representing subsets of C. The OPUS 
inheritance algorithm performs the deductions implied by the 
definition of NecS and by the theorem by propagating necessary 
values of prototype slots to all subclasses and class members. 

The OPUS frame language without defaults can be 
characterized as expressing statements of the form S(x,y) and 
NecS(x,y) for arbitrary first order binary predicates S. The 
language does not recurse in that it does not represent predicates of 
the form NecNecS. 

B. Adding Defaults and Exceptions 

Our goal was to augment the frame language described above to 
enable class frames to include prototypical descriptions of class 
members. That is, we wanted to enable prototype slots to have 
default values that would be inherited to class members as 
assumed values for the corresponding own slots unless blocked by 
exceptions. 

We began by attempting to directly implement the formalism 
for defaults with exceptions in inheritance networks described by 
Etherington [Etherington, 19871. Etherington’s formalism is stated 
entirely in terms of unary class membership predicates. That is, he 
treats each class C as a unary predicate, C(x), that is true when x 
is a member of C. He defines a “Membership” link between an 
object u and a class C to mean a belongs to class C (i.e., C(n)). 
The OPUS MemberOf own slot corresponds to the membership 
link. He defines a “Strict IS-A” link between class Cl and class C.Z 
to mean Cl’s are always CR’s (i.e., Vx [Cl(x) 2 n(x)]). The OPUS 
SubclassOf own slot corresponds to the strict IS-A link. 

Own slots are treated in Etherington’s formalism by 
considering each slot-value pair (S,V) to be a unary predicate, 
S%‘(x), corresponding to the class of all objects having value V for 
own slot S (e.g., the class of objects having color grey). Given that 
formalism for own slots, a necessary value Vof a prototype slot S 
in a class frame C is a strict IS-A link between C and SV. 

*Here and in the rest of the paper free variables are implicitly universally 

quantified. 
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Etherington represents default information in his inheritance 
networks by “Default IS-A” and “Exception” links. A default IS-A 
link from class Cl to class C2 means “Normally, Cl’s are C2’s”, 
and is expressed formally by the default logic inference rule: 

Cl(x) : n(x) 

C2(x) 
The interpretation of this rule is: if Cl(x) (called the 

prerequisite) is known, and C2(x) (called the justification where it 
appears above the line) is consistent with what is known, then 
C2(x) (called the consequent where it appears below the line) may 
be concluded. 

An exception link has a class at its tail and a default IS-A link 
at its head. An exception link from class Cl to a default IS-A link 
from C2 to CS means “C1’s are exceptions to C2’s being CSs” 
(e.g., “Royal elephants are exceptions to elephants being grey”). 
Etherington provides no independent semantics for an exception 
link. Instead, he defines it formally as a modification to the 
default rule corresponding to the link being blocked. However, 
Doyle has suggested (as reported by Touretzky [Touretzky, 19861) 
that if the justification of the default rule corresponding to a 
default IS-A link contains an additional unary predicate unique to 
that default, then an exception link blocking that default can be 
defined to correspond to an assertion of the negation of that 
predicate for each member of the class at the tail of the link. 
Following that suggestion, a default IS-A link from class Cl to 
class C2 would correspond to the default rule: 

Cl(x) : n(x) A yExceptionToClC2(x) 

CG) 

ProExcS is defined as follows: 

ProExcS(C, V, OC) = 
Vx [MemberOf(x, C) 2 OwnExcS(z, V, OC)] 

As was the case for predicate NecS, the definition of ProExcS 
implies that prototype exceptions are inherited to subclasses. That 
is: 

ProExcS(C, V, OC) A SubclassOf(x, C) 
3 ProExcS(x, V, OC) 

An assertion of the form ProExcS(C,V,OC) corresponds in 
Etherington’s formalism to an exception link from C to a default 
IS-A link from OC to SV OwnExcS statements are inferred from 
ProExcS statements and serve, following Doyle’s suggestion, to 
block default rules at appropriate class members. 

2. DefS 

DefS(C,V) means that for each member x of C, if it is 
consistent to assume both that V is a value of own slot S in x and 
that no own exception at x blocks the inheritance of V for S from 
C, then it can be inferred that Vis a value of own slot 5’ in x. For 
a given binary predicate S, DefS is defined as follows: 

DefS(C, v) = 

MemberOf(x, C) : S(x,V) A lOwnExcS(x, V, C) 

SC? v) 

and an exception link from CS to the default IS-A link from C1 to 
c2 would correspond to the implication: 

Vx [C3(2) 1 ExceptionToClC2(x)]. 
To add Etherington’s default IS-A and exception links to the 

Defaults asserted at a class as DefS statements are used to 
infer SubDefS statements at the class and are inherited to all 
subclasses as SubDefS statements. 

C. Quantified Exceptions 

1. ProExcS 

ProExcS(C,V,OC) means there is an own exception at each 
member x of C blocking the inheritance of default value V from 
class OC to own slot S in x. For a given binary predicate S, 

DefS(C,V) corresponds in Etherington’s formalism to a default 
IS-A link from C to SV 

3. SubDefS 

The SubDefS predicate is an extension to Etherington’s 
formalism to provide for the inheritance of defaults to prototype 
slots in subclasses. That is, the frame language is designed so that 
the prototype slots at any given class frame C have all the 
necessary and default values to be inherited by members of C that 
have been asserted at C or at any of C’s superclasses. For example, 
the class frame AfricanElephants inherits from class frame 
Elephants the default value grey for the color prototype slot. 
Etherington has nothing in his formalism corresponding to that 
functionality. 

For a given binary predicate S, SubDefS statements are 
inferred from DefS statements by the following axiom and default 
rule: 

DefS(C, V) 3 SubDefS(C, V, C) 

SubDefS(C,V,OC)ASubclassOf(C,OC) : yProExcS(C,V,OC) 

SubDefS(C,VOC) 

Etherington’s link types and the statement forms we have 
introduced thus far for OPUS allow exceptions to be stated for 
specific values from specific origin classes. In practice, however, 
there is a need to assert collections of exception links. For 
example, one typically wants to state for a given slot in a given 
class frame (say the color slot in RoyalElephants) that any default 
value from any superclass is to be blocked and replaced by a given 
default value. Such assertions would be second order statements in 
Etherington’s formalism. We can express them in the OPUS 
formalism as first order quantified statements as follows: 

Vu OwnExcS(0, v, OC) 
Voc OwnExcS(0, V, oc) 
Vv,oc OwnExcS(0, v, oc) 
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Vu ProExcS(C, v, OC) 
Voc [SubclassOf(C, OC) 3 ProExcS(C, V, oc)] 
Vu,oc [SubclassOf(C, oc) 3 ProExcS(C, 21, oc)] 

The quantification of the origin class that is supported for 
prototype exceptions is only to superclasses of the class to whose 
members the exception applies. The restriction to superclasses is 
meant to implement the intuition that defaults at subclasses 
override defaults at superclasses. For example, a default color for 
royal elephants overrides a default color for elephants. Thus, we 

subclasses and class members unless blocked by exceptions. 
In this section we describe the algorithm in two forms, one 

assuming the availability of a TMS to maintain the derived results 
and the other not. In both cases we describe the information 
associated with each slot in the implementation and the operations 
performed by the algorithm. 

A. What’s In A Slot? 

Each own slot in a frame has associated with it sets of vallles and 
do not want a quantified prototype exception to block defaults 
from sibling classes and subclasses, but only from superclasses. 
(Although, note that the unquantified form of ProExcS blocks 
defaults from any given class, including sibling classes and 
subclasses. The 
useful in that it 

ability 
allows 

to block defaults from siblings may 
one to express a precedence ordering 

even though their 

be 
of 

own exceptions. Own exceptions are ordered pa.irs of the form 
(<value spec>, <origin class spec>), where <value spec> is 
either a value or the reserved symbol *, and <origin class spec> is 
either a class or the reserved symbol *. The * symbol matches any 

or value and thereby ow 11 to quantified 

defaults between classes subclass-superclass 
relationship is unknown.) 

As observed by Touretzky [Touretzky, 19841, the natural 
partial ordering of defaults in inheritance systems defined by the 
hierarchical structure of the inheritance graph resolves many 
ambiguities in an intuitive way. Touretzky introduces an 
“inferential distance” measure that expresses the desired natural 

origin class 
exceptions. 

corresponds 

Each prototype slot in a class frame has associated with it sets 
of necessary values, default values, and prototype exceptions. 
Default values are ordered pairs of the form (<value>, <origin 
class>) and prototype exceptions are ordered pairs of the form 
(<value spec>, <origin class spec>). The * symbol in prototype 
exceptions matches any value or any origin class that is a 

superclass and thereby corresponds to the desired forms of 
ordering of defaults and uses that measure to filter out extensions 
that violate the ordering. In OPUS, that effect is obtained by the 
explicit quantification of exceptions over superclasses. In 
Touretzky’s formalism, an exception always blocks a specific 
default value from all superclasses. Thus, unlike in OPUS, he 
cannot block all values from superclasses nor can he block values 
from a given superclass. 

In summary, for any first order binary predicate S, the OPUS 
frame language represents statements of the following form (with 
their Etherington link equivalents where applicable): 

SC01 v) 0 > -Member- > SV 
NecS( C, V) C> -IS.A- > SV 
DefS(C, s/? C>-Def.IS.A->SV 
SubDefS(C, V, OC) 
OwnExcS(0, V, OC) 
Vu OwnExcS(0, v, OC) 
Voc OwnExcS(0, V, oc) 
Vu, oc OwnExcS(0, w, oc) 
ProExcS(C,V,OC) C>-Exe->(OC>-Def.IS.A->SV) 
Vu ProExcS(C, v, OC) 
Vv [SubclassOf(C, oc) I) ProExcS(C, V, oc)] 
Vu, oc [SubclassOf(C, oc) 3 ProExcS(C, 2), oc)] 

The system does not recurse in that it does not represent 
NecNecS, DefNecS, etc. 

Consider how this formalism would be used to express the 
situation shown in Figure 1. DefColor statements would be used at 
Elephants and RoyalElephants to express the two defaults, and a 
quantified prototype exception statement would be used at 
RoyalElephants to block the inheritance of default colors from all 
superclasses, as follows: 

quantified prototype exceptions. 

B. Inheritance with a TMS 

In order to perform inheritance using a TMS, each value or 
exception that is considered for a slot has an assertion (TMS node) 
associated with it. The assertion’s formula (TMS datum) is as 
described in Section 2 for the different types of values and 
exceptions. A value or exception is added to a slot by giving its 
corresponding assertion a suitable justification, either a primitive 
justification or a justification recording some deduction external to 
the inheritance system. A given slot has a particular value or 
exception just in case the TMS assigns a positive belief status to its 
corresponding assertion. Demons are associated with each slot that 
are triggered by the TMS when an assertion concerning the slot is 
believed for the first time. A demon for a particular value or 
exception type is responsible for determining which inheritance 
justifications involving the newly believed assertion should be 
added to the TMS. 

Necessary values of prototype slots are inherited to class 
members as values of own slots via justifications of the following 
form: 

NecS(C, v) A MemberOf(Memb, C) 
4 S(Memb, v) 

Necessary values of prototype slots are inherited to subclasses 
via justifications of the following form: 

NecS(C, V) A SubclassOf(Csub, C) 
- NecS(Csub, I’) 

Prototype exceptions are inherited from classes to class 
members via justifications of the following form: 

DefColor(Elephants,Grey) ProExcS(C, V, OC) A MemberOf(Memb, C) 
DefColor(RoyalElephants,White) + OwnExcS(iWemb, V, OC) 
Vu, oc[SubclassOf(RoyalElephants, oc) Prototype exceptions are inherited from classes to subclasses 

1 ProExcColor(RoyalElephants, v, oc)] via justifications of the following form: 

. A IIPushl( Inheritance Algorithm 
for Defaults and Exceptions 

ProExcS(C, V, OC) A SubclassOf(Csub, C) 
--f ProExcS(Csub, V, OC) 

Default values of prototype slots are inherited to class 
members as values of own slots via nonmonotonic justifications of 
the following form: 

SubDefS(C, V, CC) A MemberOf(iWemb, C) A 
OUT[OwnExcS(Memb, V, OC)] 

-+ S( hfemb, 5’) 

The OPUS frame language has been implemented by modifying the 
frame language in the KEE system. The inheritance mechanism 
implements the deductions defined by the definitions, axioms, and 
theorems given above by “pushing” necessary member slot values 
when they are asserted to subclasses and class members, and 
pushing default member slot values when they are asserted to 
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Note that there is no OUT justifier for -S(Memb,V) in these 
justifications as the formal definition of default values requires. 
Such a justifier is not needed since statements of the form 
-S(Memb,V) cannot be expressed in the frame language and are 
therefore necessarily out. 

Default values of prototype slots are inherited to subclasses via 
nonmonotonic justifications of the following form: 

SubDefS(C, V, OC) A SubclassOf(Csub, C) A 
OUT[ProExcS(Csub, V, OC)] 

-+ SubDefS(Csub, V, OC) 

As before, these justifications do not need to have an OUT 
justifier for -SubDefS(Csub,l/,OC) because statements of the form 
-SubDefS(Csub,V,OC) cannot be expressed in the frame language 
and are therefore necessarily out. 

Quantified own exceptions are used to generate instantiated 
own exceptions as needed to block the inheritance of default values 
that match the quantified form. The instantiated exceptions are 

produced via justifications of the following forms: 

OwnExcS(I;: *, OC) -+ OwnExcS(F, V, OC) 
OwnExcS(F, V, *) -+ OwnExcS(F, V, OC) 
OwnExcS(F, *, *) --+ OwnExcS(F, 17, OC) 

Quantified prototype exceptions are not inherited. Instead, 
they are used to generate instantiated prototype exceptions as 
needed to b!ock the inheritance of default values that match the 
quantified form. The instantiated exceptions are produced via 
justifications of the following forms: 

ProExcS(C, *, OC) A SubclassOf(C, Csuper) A 
SubDefS(Csuper, V, OC) --+ ProExcS(C, V, OC) 

ProExcS(C, V, *) A SubclassOf(C, Csuper) A 
SubDefS(Csuper, V, OC) -+ ProExcS(C, V, OC) 

ProExcS(C, *, *) A SubclassOf(C, Csuper) A 
SubDefS(Csuper, V, OC) --+ ProExcS(C, V, OC) 

1. Example 

Consider the statements that would be asserted and derived by 
this inheritance mechanism for the example from Figure 1. The 
inheritance of color Grey from Elephants to RoyalElephants would 
be done via the following justification: 

SubDefColor(Elephants,Grey,Elephants) A 
SubclassOf(RoyalElephants,Elephants) A 
OUT[ProExcColor(RoyalElephants,Grey,Elephants)] 
-+ SubDefColor(RoyalElephants,Grey,Elephants) 

The inheritance of color Grey from Elephants to Clyde would 
be done via the following justification: 

SubDefColor(Elephants,Grey,Elephants) A 
MemberOf(Clyde,Elephants) A 
OUT[OwnExcColor(Clyde,Grey,Elephants)] 
--+ CoIor(CIyde,Grey) 

The generation of the instantiated prototype exception for 
Grey at RoyalElephants would be done via the following 
justification: 

ProExcColor(RoyalElephants,*,*) A 
SubclassOf(RoyalElephants,Elephants) A 
SubDefColor(Elephants,Grey,Elephants) 
-+ ProExcColor(RoyalElephants,Grey,Elephants) 

The instantiated prototype exception for Grey at 
RoyalElephants prevents inheritance of Grey as a default to 
RoyalElephants. Thus, no justification is generated for inheriting 
Grey from RoyalElephants to Clyde. Inheritance of the 
instantiated prototype exception for Grey at RoyalElephants to 
Clyde would be done via the following justification: 

ProExcColor(RoyalElephants,Grey,Elephants) A 
MemberOf(Clyde,RoyalElephants) 
-+ OwnExcColor(Clyde,Grey,Elephants) 

That inherited exception would block the inheritance of Grey 

to Clyde. 
The inheritance of color White from RoyalElephants to Clyde 

would be done via the following justification: 

SubDefColor(RoyalElephants,White,RoyalElephants) A 
MemberOf(Clyde,RoyalElephants) A 
OUT[OwnExcColor(Clyde,White,RoyalElephants)] 
-+ Color(Clyde,White) 

Since there is no exception at Clyde blocking the inheritance of 
White from RoyalElephants, White will become the color of Clyde. 

C. Inheritance Without a TMS 

The above inheritance scheme relies on a TMS to remove inherited 
values when the assertions on which the inheritance was based are 

removed. For example, if the default color for elephants is 
removed, then the TMS will also remove Clyde’s color if it was in 
the model only because of the default. Inheritance without, the 
services of a TMS is considerably more complex since the 
inheritance machinery must, in effect, provide a truth maintenance 
capability for inherited values. 

It, order to provide for the removal of inherited values, the 
OPUS inhrritance machinery requires each slot to have both a local 
and a resultant set of values and exceptions. The local sets are 
used only by th: :nheritance algorithm and contain those values or 
exceptions that are either asserted or are determined by some 
means other than inheritance. Resultant sets contain all the values 
and exceptions, including the local ones and those derived by 
inheritance. When a value or exception is to be added to (or 

removed from) a slot, it is added to (or removed from) the 
appropriate local set and the inheritance machinery recomputes the 

affected resultant sets for that slot. When the values of the 

MemberOf (or SubclassOf) own slot of a frame are modified, the 
inheritance machinery recomputes the resultant sets of each own 
slot (or prototype slot) of the frame. When a resultant set of a 

prototype slot is modified, affected resultant sets of all its 
descendants in the inheritance graph are recomputed. In the 
paragraphs below, we describe how each type of resultant set is 
computed. References in the descriptions to values and exceptions 
are to the resultant sets unless explicitly indicated otherwise. 

The set of resultant necessary values for a prototype slot S in 
a class frame C is the union of the local set of necessary values for 
S in C and, for each Csuper that is a value of the own slot 
SubclassOf in C, the set of necessary values for prototype slot S in 
Csuper. 

The set of resultant default values for a prototype slot S in a 
class frame C consists of the local default values for S in C and, for 
each Csuper that is a value of the own slot SubclassOf in C, the 
default values for prototype slot S in Csuper that do not match an 
exception for S in C. 

The set of resultant values for an own slot S at a frame F 
consists of the local values for S at F and, for each C that is a 
value of the own slot MemberOf in F, the necessary values for 
prototype slot S in C and the default values for prototype slot S in 
C that do not match an own exception for S in F. 

The set of resultant exceptions for an own slot S in a frame F 
is the union of the local set of exceptions for S in F and, for each C 
that is a value of the own slot MemberOf in F, the set of exceptions 
for prototype slot S in C. 

The set of resultant exceptions for a prototype slot S in a class 
frame C consists of the local instantiated exceptions for S in Cy for 
each Csuper that, is a value of the own slot SubclassOf in C, the 
exceptions for prototype slot S in Csuper, and each (V,Csuper2) 
that matches a local quantified exception for S in C and is a 
default value for some Csuperl that is a value of the own slot 
SubclassOf in C. 
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Note that quantified exceptions remain in the local set and are 
not inherited. Quantified exceptions produce instantiated 

exceptions as needed to block defaults that would otherwise be 
inherited. 

1. Example 

Figure 2 shows the local and resultant values and exceptions 
produced by the inheritance algorithm for our elephants example. 
The default (Grey,Elephants) at Elephants and the quantified 
exception (*,*) at RoyalElephants would cause an instantiated 

exception (Grey,Elephants) to be generated at RoyalElephants. 
That instantiated exception would be inherited to Clyde. The 
exception at Clyde would block inheritance of the (Grey,Elephants) 
default from Elephants. The default (White,RoyalElephants) at 
RoyalElephants would be inherited to Clyde as Clyde’s color. 

IV. Conclusion 

We have presented a formal description of a frame language that 
makes a clear distinction between necessary and default values of 
prototype slots. The formalization is baaed on previous work by 
Etherington, but extends his formalism to more closely match the 
structure of frame languages and to allow more convenient 
overriding of defaults at superclasses by defaults at subclasses. 

We have presented two distinct methods for implementing the 
inferences warranted by the formal description of the frame 
language. The first makes use of nonmonotonic justifications in a 
TMS to record inferences corresponding to default inheritance. 
This method is suitable for situations in which a TMS is needed in 
order to maintain conclusions derived from non-inheritance 
inferences or to implement context-relative inheritance. The second 
method, in effect, implements a more efficient, special purpose 
truth maintenance algorithm in order to maintain the validity of 
inherited values. It is appropriate for situations in which a general 
purpose TMS is not needed. 

A topic of current investigation is how to combine the two 
methods into a single system in which the special-purpose 
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Figure 2: Inheritance without a TMS 

algorithm is used whenever possible. In many applications, general 
knowledge about the relationships among classes of objects in the 
domain and default values of prototype slots is entered directly by 
the domain expert and does not vary during the course of problem 
solving. The membership of individuals in classes and the values of 
own slots are more likely to be inferred during problem solving and 
to vary with hypothetical context. These considerations suggest 
that the special purpose algorithm can be used for maintaining 
inherited values in the upper regions of a taxonomy, with the TMS 
method being used as appropriate in the lower, more problem- 
dependent regions. 
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