
A Strategy for Impleme 

Jane Terry Nutter 
Department of Computer Science 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 24060 

ases 

Abstract 
Assimilation is a process by which a knowledge 
base restructures itself to improve the 
organization of and access to information in 
the base. This paper presents a strategy for 
implementing assimilation in propositional 
knowledge bases which distinguish between 
the axioms of the system’s knowledge (called 
the context) and the derived consequences of 
those axioms (called the belief space). The 
strategy in question takes advantage of 
housekeeping phases in which the system 
discards accumulated clutter to discover useful 
patterns of access on the basis of which the 
context can be reorganized. Unused axioms are 
replaced by their more useful consequences; 
derivable generalizations that shorten common 
inference paths are added to the belief space. 

1. Introduction 

Systems that use propositional knowledge bases must 
choose how to organize those bases: what information 
to make explicit and what information implicit, how to 
structure the explicit information, how much 
information to store and how much to infer as needed, 
and so on. Up to now, these decisions have rested with 
system designers. Fundamental choices have been 
made before implementation, in selecting a particular 
set of propositions to begin with and in decisions such 
as whether to retain results of inferences (final 
results, intermediate, or both). Changing these 
decisions usually involves manual intervention. To 
change what is explicitly included, the designers go in 
by hand and take out some propositions, put in others, 
and so on. To change what information is 
automatically added and retained, more extensive and 
costly alterations must be made. 

How systems organize their knowledge obviously 
affects their performance. But the nature of a given 
domain does not as a rule dictate a single best 
organization of its information. On the contrary, what 
organization is best for a given system depends on the 
circumstances under which the system is to be used, 
and on the interests and desires of its users. These 
circumstances, interests, and desires vary from one 
system to another in a single domain, and even over 
time for a single system. As a consequence, getting 
the decisions right at design time requires extensive 
customizing, if indeed it is possible at ‘all. 

The alternative is to get the systems to reorganize 
their knowledge bases themselves. This course has 
several evident advantages. It minimizes the impact of 

errors in initial decisions, it lets systems adapt to the 
environments in which they are used, and it provides 
a way for systems to optimize their knowledge bases 
relative to the inferences they are actually called on 
to make. The approach reported here hypothesizes 
that this function can usefully be combined with 
automated “forgetting”: at regular intervals, the 
system examines the portions of its belief space which 
have not been accessed recently, discards some of the 
information as useless, and reorganizes the rest to 
reflect the way the information has proved useful. 
This combined process of restructuring and controlled 
forgetting is called assimilation; this paper describes a 
strategy for assimilating information automatically 
which contributes toward the above goals at the ‘same 
time that it lets systems “housekeep” to remove 
information clutter that is not proving useful. In the 
process, the system forms useful generalizations on 
the basis of the patterns of use and discovery of 
information. 

The strategy proposed here can be adapted to a variety 
of system architectures, but the discussion will be in 
terms of a knowledge base implemented in SNeBR 
[Martins, 1983a] [Martins, 1983b] [Martins and Shapiro, 
19831 [Martins and Shapiro, 19841 [IMartins and 
Shapiro, 1986a] [Martins and Shapiro, 1986b] [Martins 
and Shapiro, 1986~1, a semantic network architecture 
with a relevance-logic style belief revision system, 
implemented on SNePS [Shapiro, 19791 [Shapiro and 
Rapaport, 19861 and augmented with a monotonic logic 
for reasoning with default-style generalizations 
[Nutter, 1983a] [Nutter, 198381. This section describes 
the aspects of that architecture which contribute 
significantly to the discussion of assimilation. 

Propositions are represented as fragments of 
network, with logical relations (connectives, 
quantifiers, etc.) represented by reserved arcs. Since 
quantification is over nodes, which may represent 
individuals, properties, propositions, of any other 
objects of thought, the logic in question is higher 
order. In addition, the mapping between SNePS 
representations and propositions in standard 
higher-order predicate logic is not always one-one. 
For instance, SNePS relations can take a set (as oppgsed 
to a tuple) of arguments. I-Ience for a symmetric 
relation R, SNePS can express in a single atomic 
proposition node the same information as two first 
order atomic propositions R(a,b) and R(b,a); and the 
SNePS representation eliminates axioms of symmetry 
altogether. However, for the purposes here, the SNePS 
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representation can be treated as equivalent to a 
representation in standard logic (first or higher 
order), augmented by a capacity for representing 
default generalizations. 

The default reasoning system introduces a logical 
operator p, which takes a proposition or formula and 
marks it as uncertain (p can be read roughly as 
“presumably”). For the purposes here, the only 
significant rule about p is that p’s are “inherited” 
through inferences. That is, suppose that a 
proposition + can be inferred from a set of 
propositions w = (Wl,...,Wn), and suppose that for 1 5 i < 
n, vi’ = vi or Wi’=pWi. Then from W’ = (Wl’,...,Wn’} the 
system can infer p$. For a discussion of the default 
logic, see [Nutter, 1983a]. 

The belief revision system introduces the concepts 
of contexts and belief spaces. A context is a set of 
propositions taken as hypotheses which form the 
deductive basis of a belief space, and which may be 
thought of as the axiom set of a potential agent’s 
beliefs. The belief space associated with a given 
context contains all propositions which have been 
deduced from that context. The belief space does not 
automatically include all propositions entailed by the 
context, since agents are taken as knowing (or 
believing) only those propositions actually inferred 
(and those trivially subsumed by them). As 
propositions are deduced from hypotheses in a context 
and other members of the associated belief space, 
those propositions not trivially subsumed by 
propositions already present are added to the belief 
space, along with other propositions proved along the 
way. 

Propositions may belong to several belief spaces, 
i.e., the belief spaces of different contexts can and 
frequently will overlap. In addition to modeling the 
system’s beliefs and beliefs of other agents, contexts 
provide settings for hypothetical reasoning, and so on. 
At any given time, there is a distinguished context 
called the current context (CC), which contains the 
hypotheses of the system’s belief space. This is the 
context we will be most concerned with here. 

Propositions in a belief space have associated 
deductive histories (one for each deduction which had 
the proposition as its conclusion). Each deductive 
history includes a record of the proposition’s 
set-of-support, which is the list of hypotheses actually 
used in deriving the conclusion in that particular 
deduction (where a previously proved proposition ,A is 
used, the set-of-support includes A’s set-of-support, 
not A itself). Belief spaces can be identified using 
sets-of-support: a proposition is in the belief space of a 
context C provided that it has at least one deductive 
history whose set-of-support is a subset of C. 

The assimilation strategy proposed here, then, is 
targeted on systems whose knowledge base can be 
construed as having the structure given in figure 1. 
The effect of assimilation will be to alter both the 
contents and the structure of the CC and its associated 
belief space. 

o Assimilation and Forgetting 

The essential idea behind this approach to assimilation 
is to make use of internal housekeeping cycles for 
discarding “clutter”. The architecture described above 

Knowledge Base 

Figure 1. Structure of the Knowledge Base 

saves not only all results of deductions (answers to 
top-level user questions, for instance), but also all 
intermediate results not trivially subsumed by known 
propositions. For instance, say that the CC contains 
representations for the propositions V x(Bird(x) 3, 
Has-feathers(x)), v x(Ostrich(x) 1 Bird(x)) and 
Ostrich(Oscar), and suppose that the system is asked 
whether Oscar has feathers. Upon completing the 
deduction, the system will add a representation of 
Has-feathers(Oscar) and Bird(Oscar). For questions 
that require realistic amounts of inference, these 
intermediate results can increase the size of the 
knowledge base significantly. 

The system could simply choose not to add the 
intermediate results, but then it will have to repeat the 
same chains of reasoning, sometimes quite long ones. 
In other words, the question whether to retain these 
intermediate results represents a classic time-space 
trade-off, in this case a choice between reinventing 
the wheel and remembering everything the system 
has ever known, however trivial. The ideal answer 
would be to retain only those results which the system 
will actually want and find useful in the future. The 
key idea here is that these may be easier to identify in 
retrospect than in advance, and identifying them in 
retrospect can be worthwhile. 

Suppose that the system time-stamps every 
proposition in the knowledge base every time that the 
proposition is accessed. (“Accessed” here means 
actually used, not just involved in a set-of-support 
manipulation, for instance.) Suppose also that a 
latency time period t is chosen to reflect “recent use”. 
Then at regular intervals, the system can scan for 
propositions which have not been accessed in the 
period from now - t to now. One simple rule would be 
the following: if these propositions do not belong to 
the CC, then they constitute clutter and can be 
forgotten. 

But not all clutter is useless. For example, suppose 
that an element of the CC has not been accessed in the 
latency time. It may be that instead of using that 
proposition in making deductions, the system is using 
other members of the belief space which in fact 
shorten deductive chains. Those other members of the 
belief space may have been proved using the original 
hypothesis; it cannot simply be dropped without 
curtailing the belief space and losing information that 
is actively in use. But it may be possible to replace 
that hypothesis by one or more of the propositions in 
the belief space. That is, the fact that an hypothesis 
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has not been used in a while may show that the 
current axiomatization is less efficient than an 
available alternative. This alternative provides a 
restructuring of the belief space to adapt to the 
system’s environment. 

Even unaccessed propositions in the belief space 
but outside the CC may not be simple clutter. For 
instance, suppose that the system has unaccessed 
propositions of the form f(a) for different instances of 
a. If the system does not contain Vxf(x), and if that is 
true, maybe it should add it. That is, instances of 
concrete propositions of the same form may reflect 
frequently followed paths of inference which can be 
shortened. 

So to optimize the balance of time wasted on 
repeated inferences versus space wasted on useless 
results, the system performs controlled forgetting, 
checking first that no crucial information will be lost. 
But before simply forgetting any single item, the 
system reflects on it to see whether it indicates a 
useful restructuring or other adaptation of the belief 
space. It is this reflection and consequent altering 
and restructuring which constitute assimilation. 

IV. The ~Ssimi~atiQ~ §trategy 

Select a latency time t to represent the longest period 
for which a proposition may be unused without being 
considered for assimilation or forgetting. On each 
assimilation cycle, the system scans through the 
knowledge base to form the set Q = {@ 1,. . . ,$I I for 1 I i I 
n, Q, i has not been accessed for at least t long]; 
propositions in 0 are called stale. Because the strategy 
is sensitive to the order in which the members of $ are 
considered, they are ordered with the most recently 
accessed last. That is, for i c j, time-of-last-access(@i) I 
time-of-last-access(+j). For each $i, there are three 
possibilities: @i is in the CC, Cpi is not in the CC but is in 
the system’s belief space, or Qi is in neither the CC nor 
the system’s belief space. We these up in turn. 

A. +iisintheCC 

Either @i can be proved from CC - $i or it cannot. If it 
can, then it can be dropped without loss, since any 
inferences which can be made using it can also be 
made without it, and apparently they are. Before 
dropping 9 i, howyheer, the system must find any 
propositions in belief space in whose 
set-of-support 4 i occurs and replace it in those 
sets-of-support by the set-of-support of the proof of Qi 
from CC - $i. (In SNeBR, finding these propositions is 
simply checking for a link, and does not require 
scanning the knowledge base. Implementations on 
other systems may involve a higher search cost.) The 
system can then forget $ i (i.e. delete it from the 
knowledge base). This is the provision which makes 
the order in which stale propositions are considered 
matter. Suppose that $i and Qj both belong to CC. Then 
it may be that @i can be inferred from CC - @i and that 
Cpj can be proved from CC - @j, but $i cannot be proved 
from CC - {@i,Qj} and neither can oj. In this case, only 
one can be forgotten. Since the one considered first 
will be the one forgotten, the one that has gone 
unused longer should be considered first. 

In the second and more interesting case, Qi can not 
be derived from CC - Cpi. Either Qi occurs in one or more 
sets-of-support, or it does not. If it doesn’t, then it 
seems reasonable to forget it: if the system has never 
needed this piece of information before, it is unlikely 
to do so later. (Hypotheses which are anticipated to be 
needed rarely but crucial when they are can be 
flagged to prevent deletion.) A slightly more liberal 
strategy would drop Qi provided that it occurs only in 
the sets-of-support of stale propositions; this effect 
can be obtained by ordering $ so that all members of 
the system’s belief space that are not in the CC come 
before any that are. 

If Qi can not be proved from CC - $i but does occur 
in sets-of-support, it may still be inferrable from the 
belief space. Since everything in the belief space that 
is not in CC can be inferred from it, the only beliefs 
not in CC that we have to consider are those with oi in 
their set-of-support. Let B(Qi) = {pv I w is in the 
system’s belief space, w e @, and Cp i is in the 
set-of-support of a~], and consider CC’ = CC u B(@i) - $i. 
Suppose that @i can be proved from CC’. This means 
that CC’ contains the information of Qi, in a form that * 
the system finds more useful: it is actually accessing 
the members of B(@i), but not $i itself. 

Suppose there is only one proof of @i from CC’. Let 
B’($i) be the subset of B($i) appearing in the set-of- 
support of that proof. Then add B’(Qi) to CC, replace $i 
by B’($i) in all sets-of-support, and forget Qi. This 
restructures the CC to adapt to the actual pattern of 
use. 

Suppose on the other hand that there are several 
proofs of Qi from CC’ and that they have different 
associated sets B’(@ i). Then the system must choose 
which propositions in its belief space to elevate to the 
cc. The system could choose the smallest set. This 
corresponds to the principle that axiom sets should be 
kept as small as possible, and so favors space over time. 
Alternatively, it could choose the set whose elements 
collectively have the largest number of recent 
references. This is the more interesting option, 
because the more adaptive: it adds the propositions 
most used and hence presumably most useful. It is also 
possible to combine these, to select a relatively small 
set with relatively high usefulness. 

. $i is in the system’s belief space but 
not in the CC 

Before forgetting stale members of the system’s belief 
space, the system checks whether they suggest useful 
generalizations. Suppose that Qi contains at least one 
individual constant. Check the belief space for other 
propositions Q i’ which differ from + i only in 
individual constants. (In the case of SNeBR, this check 
costs relatively little because the propositions in 
question share structure with Qi at $1 relational 
constants. In other specific architectures, it may be 
more costly.) If other such $ i’ exist, form the 
proposition fi* by replacing all individual constants 
that the @i’ do not hold in common by variables and 
then quantifying universally over those variables. If 
Qi* is already in the system’s belief space, do netting 
at this point. If it is not, try to deduce it, and if 
successful, add it to the belief space. If $i* can not be 
deduced, try to deduce p$i* . 

Next, check Q, for other propositions which have at 
least one individual constant in common with $i. For 
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each such $ j, consider the pair {q i,$ j } and look for 
pairs {@i’,$j’) where oi’ corresponds to $i as above, Q j’ 
corresponds to + j, and @ i’ and $ j’ share the 
corresponding constant. Let @j = Qi 3 Qj, Qji = +j 3 $i, 
$ipj = $i I> p$j, and Qjpi = $j 3 p$i, and form $ij*, $ji*, 
@i:tt and Qjpi* as before. These represent hypotheses 

“if-then” unrversal rules (and corresponding 
default generalizations) which might shorten 
inference paths. Try to deduce each of these from the 
CC; any which can be deduced should be added to the 
belief space. Finally, forget $i and any of the Qi’ 
which are also in Cp and not in the CC. 

C. Qi is in neither the CC nor the system’s 
belief space. 

In this case, $i is important to the system only if it is 
in a belief space which the systems “cares about”. For 
9i to have entered the knowledge base without 
belonging to the system’s belief space, one of several 
things must have been true. Either it was once in the 
belief space but left it because at least one of the 
hypotheses in the set-of-support for $i was dropped 
from the CC (not forgotten, but found to be false), or $i 
was deduced in the course of a deduction involving 
hypothetical reasoning, or +i was deduced in the 
course of reasoning about some other agent’s beliefs. 

If $i was involved in hypothetical reasoning, and 
if the context relative to which +i was deduced (or 
hypothesized) often matters to the system, the system 
may want to protect that context by flagging it in such 
a way that the rules for assimilating information in 
the system’s belief space also hold relative to that 
context’s belief space. This amounts to saying that 
some hypothetical situations matter enough to the 
system that it is worth maintaining information about 
them the same way that it is maintained about (what 
the system regards as) the actual situation. Likewise, 
if $i belongs to the context or belief space of another 
agent about whom the system frequently must reason, 
the context for that agent may also be protected. If $i 
is an hypothesis of an unprotected context, forgetting 
Qi involves also forgetting propositions in whose set- 
of-support $r i figures. The strategy therefore 
prohibits forgetting cpi if it occurs in every 
set-of-support for one or more propositions not in $, 
since the existence of such ‘non-stale propositions 
indicates that the context, although unprotected, is 
still active. In all other cases, if $i does not belong to 
the belief space of any protected context (including 
the CC), it can simply be forgotten. 

V. Discussion 

A. Information Loss 

Most of the strategy outlined above is straightforward 
both in implications and in implementation. 
Potentially controversial decisions surround instances 
of forgetting in which information is actually lost. 
These arise whenever something is forgotten which 
cannot be deduced from its context, that is, when 
hypotheses of active contexts are dropped. This 
happens when a stale hypothesis cannot be derived 

from the rest of the its context and has no “fresh” 
consequences. 

In the case of the CC, the rationale for forgetting 
the hypothesis is that if it hasn’t been needed yet, it 
probably won’t be. How good this rationale is depends 
on how long the system has been around: in the early 
phases of system use, some areas may simply not have 
been got to yet. It follows that it may be reasonable to 
have a second latency time tc which is checked 
before a stale hypothesis in the C!C is discarded. That 
is, to determine whether the hypothesis is stale, the 
same threshhold is used as for any other proposition. 
But before discarding the hypothesis, the system 
checks whether the hypothesis has been latent longer 
than tee The more conservative the system, the longer 
t should be. Alternatively, protection can be taken 
a”s” absolute for hypotheses: they can be replaced by 
other propositions so long as they remain deducible, 
but in no case can they be forgotten without being 
reconstructible. 

For hypotheses of unprotected contexts, the 
rationale for forgetting the information is that it is 
the only way to get rid of outdated contexts. Since 
hypothetical contexts arise routinely in the course of 
reasoning with certain inference rules, it is desirable 
to be able to get rid of them later: contexts and 
intermediate conclusions which existed only in order 
to work through a single proof-by-cases constitute 
true clutter, and should be forgotten. The price for 
this is that if for any reason a context which should be 
protected isn’t, information about it may be 
irretrievably lost. 

B. Extensions of the Strategy 

The strategy can be extended in several interesting 
ways. The most intriguing possibility occurs when $i 
belongs to CC, and when Qi can almost be inferred 
from CC’, but not quite. That is, most of the 
information of 9i has been captured by inferences 
already made, but there is some $i+ which is not there. 
What we would like the system to do is find 
simultaneously the weakest and the most interesting 
+ip such that CC’ + $it entails $i. The system would then 
add Qi t and the appropriate B’($i) to CC, making the 
correct alterations to sets-of-support and forgetting 0 i. 
The obvious problem here is to get the system to 
formulate @it. Other options include finding more 
sophisticated patterns in stale instances than the 
simple implications described above, and considering 
when the system should take information as 
suggesting (default) generalizations even when it 
can’t prove them. 

c. Computational Cost of the Strategy 

Despite the features of SNePS and SNeBR mentioned 
above which reduce search costs, assimilation passes 
are obviously very expensive. Worse, their cost rises 
rapidly as the number of stale propositions increases, 
since the amount of inference required grows rapidly. 
This might seem to suggest that passes should be run 
frequently (at least relative to t), to hold down the size 
of 0. Unfortunately, the usefulness of each pass also 
increases in proportion to the size of @. This suggests 
that passes should be infrequent, ideally off-line or at 
very low use times, and that t should be large. The 
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latter also follows from the desire not to discard 
potentially useful intermediate results too quickly. On 

[Martins and Shapiro, 1986~1 Jo50 P. Martins and Stuart 

the bright side, as the system adapts to its 
C. Shapiro. Belief revision in SNePS. In 

environment, the number of major changes should 
Proceedings of the Sixth Canadian Conference on 

decrease, resulting in a natural reduction in 
Artificial Intelligence, pages 230-234, Montreal, 

assimilation cost. 
Quebec, Canadian Society for Computational Studies 
of Intelligence, May 1986. 

The strategy described here provides mechanisms for 
systems to assimilate information in response to the 
actual patterns in which they have been called on to 
use that information. It allows them to eliminate 
clutter while retaining useful intermediate deductive 
results, thus avoiding repeating inferences while 
lessening the cost in space. More interesting, it also 
lets them restructure their belief spaces, promoting 
important derived principles to axiom status and 
demoting less useful axioms to belief status or 
forgetting them altogether. This lessens the need for 
system designers to anticipate the environment in 
which the system will be used (including the precise 
questions it will be asked) by letting systems adapt 
their axiom structures to their use environments, and 
within a single environment to changes in emphasis 
over time. The strategy is indifferent to the area of 
application, and while it was designed for a particular 
knowledge base architecture, it can be readily -adapted 
to other architectures so long as they retain an 
essentially axiomatic structure (that is, so long as they 
have a distinction between context and belief space). 
It is thus a very general approach to 
self-reorganization in the particular area of 
information assimilation. 
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