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Abstract 

This paper presents an approach to learning to control 
a dynamic physical system. The approach has been imple- 
mented in a program named CART, and applied to a simple 
physical system studied previously by several researchers. 
Experiments illustrate that a control method is learned in 
a.bout 16 trials, an improvement over previous learning pro- 
grams. 

I. Introduction 
One kind of human intelligence manifests itself in the abil- 
ity to learn to control a physical system. Such systems 
include the person’s own body, vehicles, machines, plants, 
and processes. This kind of problem is commonly called 
a control problem. This paper addresses the problem of 
building a computer program that learns to control a phys- 
ical system to achieve a stated performance task. From a 
practical point of view, learning algorithms may be useful 
in automatic construction of controllers [Fu, 19711. From a 
research perspective, a control problem presents a unique 
challenge for learning methods. First, the dynamics of a 
physical system impose the constraint that successor states 
cannot be chosen arbitrarily. This means that anticipation 
and prediction of future states become critical. Second, 
training information is often delayed, making credit assign- 
ment for individual actions difficult. 

The approach taken here is to investigate a control prob- 
lem that has been studied previously by connectionists and 
control theorists. In general, one would like to either re- 
move assumptions or exchange them for simpler or cheaper 
ones. The primary goal of the work reported here is to re- 
move a certain collection of starting assumptions that have 
been adopted in previous work. This requires a different 
knowledge representation and a new action selection mech- 
anism. 

HI. The Cart-Pole 
As illustrated in figure 1, the cart-pole balancing problem 
is: given a cart that travels left or right along a straight 
bounded track, with a pole that is hinged to the top of the 
cart and that can swing left or right, keep the pole balanced. 
To keep the pole balanced means both that the pole does 
not fall beyond 12 deg from straight up and that the cart 
does not exceed an end of track boundary. There are only 
two control actions available, to push the cart left or to push 

the cart right with a constant force. The learning problem 
is: given the cart-pole system, the ability to experiment 
with the cart-pole system, access to the state variables, 
and notification when the pole has fallen or the cart has 
reached an end of the track, determine a control method 
for balancing the pole indefinitely. 

The cart-pole system is simulated to enable the CART 
program to construct experiments. Four state variables 
represent the state of the dynamic system at any time step. 

Figure 1: The Cart-Pole System 

They are: 

x the position of the cart on the track 
i the velocity of the cart 
8 the anglular position of the pole 
i the angular velocity of the pole 

For the simulator, the system is modelled by two second or- 
der differential equations that accurately approximate the 
real physical system.These equations of motion and param- 
eter values are given in [Barto et al, 19831. The values of 
the parameters, also given in [Selfridge et al, 19851, are: 

cart mass 1.0 kg 
pole mass 0.1 kg 
pole length 1 meter 
applied force f10 newtons, left or right 

Two additional parameters are the coefficients of friction 
for the cart and for the pole. The equations are solved 
numerically applying Euler’s method with a time step of 
0.02 sec. Failure occurs when 1x1 > 2.4 meters or when 
101 > 12deg. CART treats the simulator as a black box; 
it does not use any knowledge embedded in the simulator 
and it does not assume any interpretation of the cart-pole 
system’s four state variables. 

The principal challenge of the problem as a learning task 
is that the training information is very weak. Although the 
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learning system stores the history of the states encountered 
during an experiment at balancing, it is only told when the 
pole has actually fallen, i.e. the pole has swung beyond 
l2deg from straight up or when the cart has reached an 
end of the track. Due to the dynamics of the cart and pole, 
and the limits imposed by the performance task, the cart- 
pole system can be in a state from which no sequence of 
control forces will keep the pole from falling or keep the 
cart from reaching an end of the track. Such a state is 
called “doomed”. -The learning problem does not assume 
the existence of a critic that immediately identifies good 
versus bad actions. Furthermore, even if one were able to 
characterize a state as doomed or not, it is not obvious how 
to avoid doomed states using the available control actions. 

. elated OSlS 

The problem was investigated in 1964 by Widrow and Smith 
[ Widrow & Smith, 19641. It has been studied by Michie and 
Chambers (Michie & Chambers, 19681, and also Anderson, 
Barto, Selfridge, and Sutton /Anderson, 1986; Barto et al, 
1983; Selfridge et al, 19851. In all of these cases, the learn- 
ing problem has been to construct a program that learns 
to keep the pole balanced. 

Michie and Chambers [Michie & Chambers, 19681 built 
a program named BOXES-that learned to balance the pole. 
They mapped each of the four state variables of the cart- 
pole into a discrete value, depending on predefined ranges 
for each variable. The 5 ranges for the cart, 3 for the cart 
velocity, 5 for the pole, and 3 for the angular velocity pro- 
duced a total of 225 distinct regions. For each action and 
region, the average time until failure was updated from the 
experience of each trial. For a given region, BOXES chooses 
the action with the higher average time until failure. The 
program required about 600 trials to learn to balance the 
pole for 72,000 time steps (each .05 set). 

Michie and Chambers point out that the choice of ranges 
for the cart variables (the size of the boxes) is critical to 
the success of the BOXES program. A poor choice of 
ranges makes the system unable to learn to balance the 
pole. Hence, choosing ranges that permit learning to bal- 
ance the pole is a necessary step for this approach. Choos- 
ing these ranges requires experimentation or analysis and 
should therefore be considered part of the learning prob- 
lem. Dividing the state space into regions is exactly the set 
of starting assumptions that were eliminated in the CART 
program. 

Barto, Sutton and Anderson[Barto et al, 19831 improved 
on the results of Michie and Chambers by designing two 
neuronlike adaptive elements, that were used to solve the 
same balancing task. They also employed a division of the 
state space into predefined distinct regions. The action with 
the higher probability of keeping the pole balanced was the 
one chosen in each region. The system was able to balance 
the pole over 60,000 time steps before completing 100 tri- 
als. On the average by the 75th trial, the pole remained 
balanced over 8000 time steps (each .02 set). 

More recently, Anderson[Anderson, 19861 devised a con- 
nectionist system to learn to balance the pole. His system 
trains two predefined two-layer networks. One learns an 

evaluation function, and the other learns an action func- 
tion over the state-space. Learning occurs by successively 
adjusting both the weights of the evaluation and action 
networks. His system has the advantage that it is not nec- 
essary to provide well-chosen boxes ahead of time. This is 
achieved at considerable cost in terms of performance; his 
system takes an average of 10,000 trials to learn to balance 
the pole for approximately 7000 steps. 

rogram 
This section presents the CART program, which learns to 
balance the cart-pole system indefinitely after about 16 tri- 
als. The program is explained in terms of a classic learning 
model [Smith et al, 19771, which consists of four compo- 
nents considered necessary for a learning system: a Prob- 
lem Generator, a Performance Element, a Critic, and a 
Learning Element. 

The Problem Generator initializes a new experiment, 
called a trial. The Performance Element applies a left or 
right control force at each time step, attempting to balance 
the pole indefinitely. The Critic labels some of the states 
from the trial as desirable (value 1) or undesirable (value 
-1). Based on input from the Critic, the Learning Element 
updates its concept of the degree of desirability of a state. 
Because the Performance Element decides which control 
action to apply, based on its estimate of whether an action 
will lead to a more desirable state, learning to estimate the 
degree of desirability of a state improves performance. 

The cart program learns and employs the concept of the 
degree of desirability of a cart-pole state. A concept that 
represents degree of desirability is fundamentally different 
from one that represents only desirable or not desirable. 
The degree of desirability of a cart-pole state is represented 
by an explicit function of the 4 state variables of the cart- 
pole system. The function is modified by the Learning El- 
ement, as described below. For each trial at balancing, the 
function remains fixed. The degree of desirability of a cart- 
pole state is computed using Shepard’s function [Barnhill, 
1977; Schumaker, 19761, which interpolates from known de- 
sirable and undesirable states that were supplied previously 
by the Critic. Shepard’s interpolation method was chosen 
because all interpolated values fall smoothly between the 
maximum and minimum observed values, making it well 
suited to the cart-pole problem. ’ 

Given the n points zi = (zr,;, x2,;, xs,i, . . . , x,,+) in m- 
dimensional space, with known values f(zi) = Fi for i = 
1 . . . n, Shepard’s interpolating function is: 

where 

j=l,j#i 

(x1 - X*,j)2 + (X2 - X2,j)2 + e m s + (2, - X,,j)2, 

the distance from z to a known point zj, and p > 0. p = 2 
was used at all times based on the recommendation of Schu- 
maker [Schumaker, 1976). Note that the known desirable 
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and undesirable states are retained, that their values are 
preserved by the interpolating function, and that the de- 
gree of desirability of any state is determined solely by these 
known examples (states). 

It can be seen from the function that designated desir- - 
able and undesirable states that .are near to a given cart- 
pole state have greater influence on the function’s value 
than those at a distance. This is because the weights, wi, 
associated with the near sta\es are greater. 

A. Problem Generator 
The task of the Problem Generator is to initialize the cart- 
pole system so that an experimental trial at balancing can 
be performed. The cart-pole system is initialized with the 
cart near the center of the track and with the pole nearly 
upright. These values for the cart and the pole are selected 
to vary a small random amount from exactly centered and 
exactly vertical. The initial cart velocity and pole angular 
velocity are set to 0. This initialization procedure places the 
cart-pole system in a state from which indefinite balancing 
is possible. This fact is used by the Critic. 

B. Performance Element 
The task of the Performance Element is to choose a control 
action (push left or push right) at each time step so that 
the pole balances. The decision procedure selects an ac- 
tion which is expected to lead to a more desirable successor 
state. The dynamics of the system and the limited choice 

;Z is the extended vector 

Figure 2: Continue Same Action at ss 

of control action impose the fundamental constraint that it 
is not possible to move to an arbitrary successor state. The 
action selection problem is further compounded because the 
Performance Element does not know the dynamics of the 
system or the effect of a control action. 

At every step the Performance Element decides whether 
to repeat the same action or to change to the other. If, by 
continuing with an action, it is estimated that the cart-pole 
system will move to a more desired state, then the same 
action is repeated. Otherwise, the other action is selected. 
To facilitate the decision, two vectors are computed at each 
point, the gradient and the extended vector. The direction 
of the extended vector, defined by continuing from the state 
in the same direction as the system is already travelling, is a 
useful estimate of the direction in which another application 

l A. Barto has pointed out that Shepard’s method is a 
of the method of potential functions.[Duda & Hart, 197.71 

special case 

of the same action would take the system. The gradient 
of the interpolating function, evaluating desirability, is a 4- 
dimensional vector that points in the direction of maximum 
increase of the function at a point (state). 

Ideally, the action selection mechanism would choose 
the action that would cause the system to move to the 
state that more nearly lies in the direction of the gradient. 
Without the ability to predict successor states, it is neces- 
sary to use a decision strategy that is less than ideal. At 
each successive state the angle between the gradient at the 
point and the extended vector is computed by taking the 
inner product of the two vectors. If the angle decreases 
(because direction and gradient are better aligned), then 
the decision is to repeat the same action. 

The algorithm is illustrated in figure 2. The two control 
actions are labelled L and R. Since /a3 < /a2 (the angle 
between w’~ and grad3 is less than the angle between V> and 
grud2), the system is estimated to be moving in a desirable 
direction and the choice of action at s3 will again be L. 

If /a3 > /a2 then the continuation of the last action is 
estimated to lead away from desirability; as a result, the 
choice of action at s3 will change to R. 

cc. Critic 
The Critic must supply information that makes it possible 
for the Learning Element to improve its abilility to esti- 
mate the degree of desirability of all cart-pole states. This 
is done by labeling certain states in the trial as desirable 
or undesirable. Choosing a particular cart-pole state and 
determining whether it is desirable (value 1) or undesirable 
(value -1) is done in three ways. 

First, as described above, the cart-pole system is initial- 
ized to a state from which indefinite balancing is possible. 
The first state in each trial could be labelled as a desir- 
able state. As a shortcut, the CART program initializes 
the learning process by labelling the state with the pole 
straight-up, the cart centered, and 0 velocities a desirable 
point. It is the prototypical start state. 

Second, when the pole falls, an undesirable state has 
been reached. The Critic labels the state immediately pre- 
ceeding the failure as undesirable, unless the degree of de- 
sirability of the state is already less than -0.98. 

Third, when the cart-pole system has balanced longer 
than 100 time steps, it is inferred that some of the states 
were desirable. This is based on the fact that a random se- 
quence of control actions keeps the pole balanced for about 
20 time steps. When a trial has ended and has lasted longer 
than 100 steps, the Critic searches the sequence of states 
for one that it will label as desirable. The algorithm is: 
backup 50 steps from the failure point; then keep backing 
up until a point is found at which 3 or more of the cart 
variables are decreasing in magnitude; label that point as 
desirable. This algorithm is based on the assumption that a 
state which occurs 50 time steps before failure is in a good 
position if it is a state from which the system is moving 
toward the prototypical start state (the point from which 
indefinite balancing is possible). 

These numeric parameters (100, 50, 3) were determined 
empirically through experimentation with the system. An 
improvement would be for a learning system to do this ex- 
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perimentation and determine these parameters itself. Ex- 
perience suggests that these parameters may be a function 
of the system performance prior to learning (e.g. The first 
parameter could be 5 times the length of a random trial.) 

. Learning Element 

The task of the Learning Element is to improve its accu- 
racy in estimating the desirability of a cart-pole state. The 
Critic provides specific training instances to the Learning 
Element. A training instance is a 4-dimensional point in 
cart-pole state space that has been labelled as desirable (1) 
or undesirable (-1). The Learning Element needs to gener- 
alize, so that it can estimate the desirability of points that 
it has not seen as training instances. 

A function defined by Shepard’s method requires a set 
of points from which to interpolate. Learning is therefore 
quite simple; add a new point (training instance), along 
with its label (+I or -l), to a list of all observed train- 
ing instances. Because the speed of Shepard’s formula is 
a function of the number of training instances (to evaluate 
the formula at any point the distance to every training in- 
stance must be calculated), it is important that the Critic 
deliver a small number of well chosen training instances to 
the Learning Element. For the cart-pole problem, not many 
observed states are necessary for developing a good inter- 
polation function and the Critic chooses the points well. 

A version of Shepard’s method was implemented that 
updates the symbolic formula incrementally. This is more 
efficient than rederiving the formula with each new training 
instance. With each new point, .zk = (~i,k,x~,k,. . . ,~~,k), 
only one new explicit distance formula is derived, 

RUN NUMBER 

1 2 3 4 5 6 
27 25 29 12 26 13 
79 9 9 163 199 9 

T 1 
R 2 

Al 4” 
Lj 5 

6 
N 7 

u 8 
M’9 
B lo 
E 11 
R 12 

13 

j 
14 
15 
16 

*intll 

167 179 154 88 
9 9 136 55 9 11 

242 81 240 172 79 173 
171 224 24 281 323 24 

9 104 274 *11 
195 19 
6G4 229 5000 10000 252 

5000 84 *11 
139 150 
10 *11 

183 *11 
582 12 

5000 382 

Figure 3: Number of Steps per Trial 

the cart-pole system developes a pattern of behavior 
repeats itself and is indicative of indefinite balancing. 

that 

The CART program was run 14 times. In every case, it 
learned to balance the pole. Furthermore, the system be- 
havior fell into a distinct pattern every time, suggesting 
that additional runs would not turn up anything new. As 
seen from a sampling of the runs in figure 3, the CART 
system learned the control task in 16 or fewer trials, some- 
times in as few as 9 trials. Of the runs tried, 10 were halted 
at 5000 time steps and 3 runs were halted at 10000 time 
steps. The final run was halted at 70000 time steps, the 
equivalent of 25 minutes of balancing. 

Figure 4 illustrates the cyclic pattern behavior that de- 
veloped. As the pole falls in one direction, the cart is 
pushed in the same direction to arrest the falling pole. This 
continues until the pole has sufficient velocity that it will 
necessarily start to move in the opposite direction. When 

dk = j/(x1 - xl,k)2 + (x2 - x2,k)2 + **. + (%I. - %,k)2, 

one more term is added to the product of the existing dis- 
tances and one new product of distances is evaluated. 

It is helpful to view the desirabilty of a cart-pole state as 
the height of a surface in S-dimensional space. The first four 
dimensions of a point on the surface designate the cart-pole 
state, and the fifth, its degree of desirability. The surface 
is changed after each trial as new points are supplied to 
the Learning Element. This means that subsequent perfor- 
mance is also likely to change. As a result, in successive 
trials different regions of the cart-pole state space are ex- 
plored. New trials force the system to learn nonrepetitive 
and useful information. On the first trial the pole typically 
falls while the cart remains near the track’s center. The 
resulting surface slopes down from the center toward the 
undesirable point. In the next trial the choice of actions 
will force the cart-pole system to move away from failure 
and the pole will fall in the opposite direction. After a few 
trials the cart will move out from the center of the track 
where the values on the surface are greater. When the cart 
reaches the track boundary in one direction, the surface 
will slope down toward that boundary forcing the cart to 
move in the opposite direction during the subsequent trial. 
As the learned surface improves, balancing time increases. 

Soon the number of steps exceeds 100 and a desirable point 
other than the center is determined. After 10 to 15 trials, 

X 

Figure 4: A Typical Run in 2-Dimensions 
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this happens the cart is pushed in the opposite direction 
to stop the falling pole again. This balancing activity also 
keeps the cart from creeping toward an end of the track. 
The pattern depicted in the figure shows activity along the 
right diagonal, which corresponds to the behavior described 
above. Balancing occurs when a push decreases the velocity 
of both the cart and the pole. This will happen only when 
the cart and the pole are moving in opposite directions. An 
illustration usgng run 3 is shoyn in figure 4. 

x-axis position of the cart in meters 
e-axis position of the pole in radians 
-n an undesirable,state on nth trial 
+” a desirable state on nth trial 
+O the given central desirable point 
arrows show the repeated pattern 
points states at 50 step intervals 

Additional experiments showed that the system learns 
under different conditions. In every case described below 
balancing occurred in !ess than 18 trials. The variations 
ma-de in these experiments were the same as those made 
by Selfridge [Selfridge et al, 19851. One experiment was 
to increase the original mass of the pole by a factor of 10. 
Other experiments were to reduce the mass and length of 
the pole to two-thirds of the original values, to reduce the 
total length of the track to 2 meters from 4.8 meters, and 
to apply unequal forces left (12 newtons) and right (8 new- 
tons). 

The CART program demonstrates an algorithm for learn- 
ing a. control method to satisfy a particular performance 
task. An important objective was to build a program that 
does not depend on a predefined partition of a continuous 
state space into discrete regions. This was accomplished by 
representing the degree of desirability of a state by a con- 
tinuous interpolating function of the state variables. This 
representation necessitated a new action selection mecha- 
nism that makes use of the current state and the learned 
concept of the degree of desirability of the system state. 

More work is needed to explore the generality of the 
CART system. The system is general to the extent that it 
does not depend on an interpretation of the state variables; 
it simply learns to select control actions so that failure is 
avoided. The CART program does .take advantage of the 
fact that the system is initialized to a state from which 
indefinite balancing is possible. It also takes advantage of 
the continuity of the cart-pole system and the smooth be- 
havior of the function representing degree of desirability. 
An important characteristic of the learning problem is that 
there is no criticism at each time step. Reliable criticism 
is available only when the pole falls. It was necessary to 
construct a Critic that was able to classify cart-pole states 
as desirable or undesirable. Further work is needed to ex- 
plore the extent to which the Critic algorithm depends on 
characteristics of the cart-pole problem. 
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