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abstract 

Conceptual clustering is an important way to summarize 
data in an understandable manner. However, the recency of 
the conceptual clustering paradigm has allowed little exploration 
of conceptual clustering as a means of improving performance. 
This paper presents COBWEB, a conceptual clustering system 
that organizes data to maximize inference abilities. It does this 
by capturing attribute inter-correlations at classification tree 
nodes and generating inferences as a by-product of classifica- 
tion. Results from the domains of soybean and thyroid disease 
diagnosis support the success of this approach. 

lUachine learning is concerned with improving perfor- 
mance through automated knowledge acquisition and re- 
finement [Dietterich, 19821. Learning filters and incorpo- 
rates environmental observations into a knowledge base 
that is used to facilitate performance at some task. As- 
sumptions about the environnnent, knowledge base, 
and performance task all have important ramifications 
on the design of a learning algorithm. This paper is con- 
cerned with conceptual clustering, a task of machine learn- 
ing that has not been traditionally discussed in the larger 
context of intelligent processing. 

Conceptual clustering systems [Michalski and Stepp, 
1983; Fisher, 1985; Cheng and Fu, 19851 accept a num- 
ber of object descriptions (events, observations, facts), and 
produce a classification scheme over the observed objects. 
Importantly, conceptual clustering methods do not require 
the guidance of a teacher to direct the formation of the 
classification (as with learning bm examples), but use an 
evaluation function to discover classes with good concep- 
tual description. These evaluation functions generally fa- 
vor classes exhibiting many differences between objects of 
different classes, and few differences between objects of the 
same class. As with other forms of learning, the context 
surrounding the conceptual clustering task can have im- 
portant implications on the design of these systems. 

Perhaps the most important contextual factor surround- 
ing clustering is the performance task that benefits from 

conceptual clustering capabilities. While most systems do 
not explicitly address this task, exceptions do exist. In 
particular, Cheng and l?u [1985] and l?u and Buchanan 
[1985] have used clustering techniques to organize expert 
system knowledge. Generalizing on their use of conceptual 
clustering, classifications produced by conceptual cluster- 
ing systems can be a basis for effective inference of un- 
seen object properties. The generality of classification as a 
means of guiding inference is manifest in recent discussions 
of problem-solving as classification [Clancey, 19841. 

This paper describes the COBWEB system for concep- 
tual clustering. COBWEB’s design was motivated by both 
environmental and performance concerns. Bowever, this 
paper is primarily concerned with performance issues - in 
particular, with the utility of COBWEB classification trees 
to facilitate inference during classification.’ The following 
section motivates and develops an evaluation function used 
by COBWEB to guide class and concept formation. This 
measure, called category utility [Gluck and Corter, 19851, 
favors classes that maximize the amount of information 
that can be inferred from knowledge of class membership. 
Section 3 describes the COBWEB algorithm. The remain- 
der of the paper focuses on the utility of COBWEB gen- 
erated classification trees for inference, concentrating par- 
ticularly on soybean disease diagnosis. 

COBWEB uses a measure of concept quality called cat- 
egory utility [Gluck and Corter, 19851 to guide formation 
of object classes and concepts. While our primary inter- 
est in category utility is that it favors classes that maxi- 
mize inference ability, Gluck and Corter originally derived 
category utility as 8 means of predicting certain effects 
observed during human classification. These effects stem 
from a psychological construct called the b&c keel that 
occurs in hierarchical classification schemes and seems to 
be where inference abilities are maximized. 

‘COBWEB is ralso distinguished from other systems in that it is 
incremental. Issues surrounding COBWEB’s performance as an incre- 
mental system are given in [Fisher, 19871. 
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Category utility rewards information rich categories and 
is thus of generic value, but it can also be viewed (and more 
easily developed) as a tradeoff of intra-class object similar- 
ity and inter-class dissimilarity. Objects are described in 
terms of (nominal) attribute - value pairs (e.g., Color = red 
and Size = large). For an attribute value pair, Ai = Kj, 
and class, Ck, intra-class similarity is measured in terms 
of a conditio 

l-f 
probability P(A; = V&JCk); the larger this 

probability, t e greater the proportion of class members 
sharing the same value (xi), and thus the more predictable 
[Lebowitz, 19821 the value is of class members. Inter- 
class similarity is measured in terms of P(Ck IA; = Ki); 
the larger this probability, the fewer objects in contrasting 
classes that share this value, and thus the more predictive 
the value is of the class. 

Attribute value predictability and predictiveness are 
combined into a measure of partition quality. Specifically, 

,E;Z=l Ci Cj P(& = Kj)P(Ck(Ai = &)-?‘(A = Vij(Ck), 

is a tradeoff of predictability and predictiveness that is 
summed for all classes’(k), attributes (i), and values (j). 
The probability P(Ai = V&) weights the importance of in- 
dividual values, in essence saying that it is more important 
to increase the class conditioned predictability and predic- 
tiveness of frequently occurring values than infrequently 
occurring values. 

This function can also be regarded as rewarding the in- 
ference potential of object class partitions. More precisely, 
note that for any i, j, and I%, P(Ai = V&)P(CklAi = I$) = 
p( Ck)P(Ai = KjlG) (B a Y es rule), so by substitution the 
above function equals 

Ci Cj P(A = vijlck) 2 is the expected number of attribute 
values that can be correctly guessed for an arbitrary mem- 
ber of class Ck. a 

Finally, Gluck and Carter define category utility to 
be the increase in the expected number of attribute val- 
ues that can be correctly guessed (P(Ck) C; Cj P(Ai = 
V<jlCk)‘) given knowledge of a partition {Cl, . ..> Cn3, over 
the expected number of correct guesses with no such knowl- 
edge (C<Cj P(& = Kj)2). Formally, CV({Cr, Cz, . . . . C,,)) 
= 

[CL P(CAG) Ci Cj P(A = KjlCk)2] - Ci Cj P(& = qj)’ 

. 
n 

The denominator, n, is the number of categories in a par- 
tition, and averaging over categories allows comparison of 
different size partitions. 

2This assumes a probabditty matching guessing strategy, meaning 
that an attribute value is inessed with a probability equal to its prob- 
abiity of occuaring, as opposed to a probability maximizing strat- 
egy which assumes that the most frequently occurring value is always 
guessed (see [Fisher, 19871). 

Category utility can be computed given P(Ck) is known 
for each category 0f a partition, as is P( A; = V;j ICk) for all 
attribute values. Such a category representation is termed 
a probabilistic concept [Smith and Medin, 19811. Infor- 
mation on attribute value distributions distinguish prob- 
abilistic concepts from the logical (generally conjunctive) 
representations typically used in AI systems. Probabilistic 
represent ations subsume these types of logical represent a- 
tions, as there exists a simple mapping from probabilistic 
to logical representations. This increased generality comes 
at the cost of storing the probabilities, each of which can 
be computed from two integer counts, thus only increasing 
the proportionality constant of storage requirements. 

COBWEB incrementally incorporates objects into a 
classification hierarchy. Given an initially empty hierarchy, 
over an incrementally presented series of objects, a hierar- 
chical classification is formed, where each node is a proba- 
bilistic concept representing an object class (e.g., Birds - 
BodyCover = feathers (1.0) and Transport = fly (0.88) and 
. ..). The incorporation of an object is basically a process of 
classifying the object by descending the tree along an ap- 
propriate path, updating distributional information along 
the way, and performing one of several possible operators 
at each level. 

A. Placing an Object in an Existing Class 

Perhaps the most natural way of updating a partition 
of objects is to simply place a new object in an existing 
class. That is, after updating the distribution of attribute 
values at the root, the object may be incorporated into 
one of the root’s children. To determine which child ‘best’ 
hosts a new object, the object is tentatively placed in each 
child. The partition that results from adding the object to 
a given node is evaluated using category utility. The node 
to which adding the object results in the best partition is 
the best existing host for the new object. 

33. Creating a New Class 

In addition to placing objects in existing classes, there 
is a way to create new classes. Specifically, the quality 
of the partition resulting from placing the object in the 
best existing host is compared to the partition resulting 
from creating a new singleton class containing the object. 
Class creation is performed if it yields a better partition (by 
category utility). This operator allows COBWEB to adjust 
the number of classes at a partition to fit the regularities 
of the environment; the number of classes is not bounded 
by a system parameter (e.g., as in CLUSTER/2). 

6. Merging and Splitting 

While operators 1 and 2 are effective in many cases, by 
themselves they are very sensitive to initial input order- 
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Table P: COBWEB control structure 

FUNCTION COBWEB (Object, Root ( of tree )) 
1) Update counts of the Root 
2) IF Root is a leaf 

THEN Return expanded leaf to accommodate 
the new object 

ELSE Find that child of Root that best hosts 
Object and perform one of the following 
2a) Create a new class if appropriate 
2b) Merge nodes if appropriate and call 

COBWEB (Object, Merged node) 
2c) Split a node if appropriate and call 

COBWEB (Object, Root) 
2d) IF none of the above (2a,b, or c) then call 

COBWEB (Object, 

ing. To guard against the effects of initially skewed data, 
COBWEB also includes two operators for node merging 
and splitting. The function of merging is to take two nodes 
of a level (of n nodes) and ‘combine’ them in hopes that 
the resultant partition (of n-l nodes) is of better quality. 
The merging of two nodes simply involves creating a new 
node and combining attribute distributions of the nodes 
being merged. The two original nodes are made children 
of the newly created node. Although merging could be 
attempted on all possible node pairs every time an object 
is observed, such a strategy would be unnecessarily redun- 
dant and costly. Instead, when an object is incorporated, 
only merging the two best hosts (as indicated by category 
utility) is evaluated. 

Besides node merging, node splitting may also serve 
to increase partition quality. A node of a partition (of n 
nodes) may be deleted and its children promoted, resulting 
in a partition of n+m-1 nodes, where the deleted node had 
m children. Splitting is considered only for the children of 
the best host among the existing categories. 

COBWEB’s control structure is summarized in Table 1. 
As an object is incorporated, at most one operator is ap- 
plied at each tree level. Compositions of these primitive 
operators can be viewed as transforming a single classifica- 
tion tree. Fisher [1987] adopts the view that COBWEB is 
hill-climbing (without backtracking) through the space of 
possible class&a&ion trees. In order to maintain robust- 
ness, operators are not restricted to building the tree in a 
strictly top-down or bottom-up fashion, but the inverse op- 
erators of merging and splitting allow COBWEB to move 
bidirectionally in this space, thus allowing an approxima- 
tion .of backtracking through operator application. This 
strategy keeps update cost small (B”ZogBn where B is the 
average branching factor of the tree and n is the number 
of previously classified objects), while maintaining learn- 
ing robustness. Fisher [1987] addresses the strengths and 
weaknesses of this approach in more detail. 

COBWEB forms classifications that tend to maximize 
the amount of information that can be inferred from cate- 
gory membership. This is a domain independent heuristic 
whose efficacy depends on the assumption that important 
properties are dependent on regularities or ‘hidden causes’ 
[Pearl, 1985; Cheng and Fu, 19851 in the environment, and 
that these regularities can be extracted and organized by 
a conceptual clustering system. The utility of classifica- 
tion trees for inference was tested in the several domains, 
including a set of 47 soybean disease cases [Stepp, 19841. 
Each case (object) was described along 35 attributes. Four 
soybean diseases were represented in the data - Diaporthe 
stem rot, Charcoal Rot, Rhizoctonia Root Rot, Phytoph- 
thora roe. These disease designations were also included 
in each object description, making a total of 36 attributes 
(e.g., Precipitation = low, Root-condition = rotted, . ..) 
Diagnostic-condition = Charcoal Rot).3 

An experiment was conducted in which soybean disease 
cases were incrementally presented to COBWEB in order 
to see whether bhe resultant classification could be used 
for effective disease diagnosis. After incorporating every 
5th instance, the remaining unseen cases were classified 
(but not incorporated) with respect to the classification 
tree conseruceed up until that point. Test instances being 
classified contained no information regarding 3iagnosCc 
condiCon’, but the value of this attribute was inferred as a 
byproduct of classification. Specifically, classification eer- 
minated when the test object was matched against a leaf 
of the classification tree. This leaf represented that previ- 
ously observed object that best matched the test object. 
The diagnostic condition of the test object was guessed to 
be the corresponding condition of the leaf. The experiment 
was terminated after’one half of the domain (of 47 cases) 
had been incorporated. 

The graph of Figure I gives the results of the exper- 
iment. The graph shows that after 5 randomly selected 
instances, the classification could be used to correctly di- 
agnose disease (over the remaining 42 unseen cases) 88% 
of the time. After 10 instances, 100% correct diagnosis 
was achieved and maintained. While these results seem 
impressive, they follow from the regularity of this domain. 
In fact, when COBWEB was run on the data with no in- 
formation of Diagnostic condition at all, the four classes 
were ‘rediscovered’ as nodes in the resultant tree. This in- 
dicates that Diagnostic condition participates in a network 
of attribute correlations. In organizing classes around the 
correlated network of attributes, classes corresponding to 
the various Diagnostic conditions are generated (Figure 2). 

3While Diagnostic condition was included in each object descrip 
tion, it was simply treated as another attribute. Diagnostic condition 
was not treated as a teacher imposed class designation as in learning 
from examples. 
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Figure 1: Success at inferring ‘Diagnostic condition’ 

Figure 2: A partial tree over soybean cases 

The success at inferring Diagnostic condition implies a - 
relationship between an attribute’s dependence on other 
attributes and the utility of COBWEB classification trees 
for induction over that attribute. To further characterize 
this relationship, the induction test conducted for Diag- 
nostic condition was repeated for each of the remaining 35 
attributes. The results (including Diagnostic condition) 
were averaged over all attributes and are presented in Fig- 
ure 3. On average, correct induction of attribute values 
for unseen objects levels off at 88% using the COBWEB 
generated classification tree. 

To put these results into perspective, Figure 3 also 
graphs the averaged results of a simpler, but reasonable 
inferencing strategy. This ‘frequency-based’ method dic- 
tates that one always guess the most frequently occurring 
value of the unknown attribute. Averaged results using 
this strategy level off at 72% correct prediction, placing it 
at 16% under the more complicated classification strategy. 
While averaged results are informative, the primary inter- 
est is determining a relationship between attribute inter- 
dependencies and the ability to correctly predict an at- 
tribute’s value. 

Dependence of an attribute, AM, on other attributes, 
Ai, is a given as a function of 

C~M[P(AM = VSkjx(Ai = J&i)’ - P(AM = VMjM)2], 

% of Correct Predictions 
1001 

90. 

80. 
70. 
60. 
50. 
40. 
30. 
20. 
10. 

cobweb 

-’ #5of Cl$lerve$5Cbj?$s 2’ 
Figure 3: Prediction over all attributes 

that is averaged over all attributes, A;, not equal to AM. 
This measures the average increase in the ability to guess 
a value of AM given one knows the value of a second at- 
tribute. If AM is independent of all other attributes, A;, 
then dependence is 0 since P(AM = VMj,lAi = xji) = 
P(AM = VMjM) for all Ai, and thus P(AM = VMjMIAi = 
Vrji)" - P(AM = Vnaj,)” = 0. 

In Figure 4 the advantage afforded by the COBWEB 
classification tree over the frequency-based method is shown 
as a function of attribute dependence. Each point repre- 
sents one of the 36 attributes used to describe soybean 
cases. The graph indicates a significant positive correla- 
tion between an attribute’s dependence on other attributes 
and the degree that COBWEB trees facilitate correct in- 
ference. For example, Diagnostic condition participates in 
dependencies with many other attributes and is also the 
most predictable attribute. 
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Figure 4: Prediction as function of attribute dependence 
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V. Concluding Remarks 

To summarize, the soybean data strongly suggests that 
CQBWEB captures the important inter-correlations be- 
tween attributes, and summarizes these correlations at clas- 
sification tree nodes. In doing so, COBWEB promotes in- 
ference of attributes in proportion to their participation 
in attribute inter-correlations. Similar results have been 
obtained using thyroid disease data [Fisher, 19871. 

Experimentation above assumed classification proceeded 
all the way to leaves before predicting a missing attribute 
value. Further studies have indicated however, that for 
the inductive task of predicting properties of previously 
unseen objects, classification need only proceed to about 
one eighth the depth of the tree to obtain comparable in- 
ference results. This behavior emerges as a result of us- 
ing intermediate node default values to determine when 
attribute value prediction is cost effective (cheap, but rea- 
sonably accurate). In COBWEB, default values occur at 
a level where the attribute approximates conditional inde- 
pendence from other attributes - in this case, knowing the 
value of other attributes will not aid in further classifica- 
tion, and prediction might as well occur at this level. In 
this light, COBWEB can be viewed as an incremental and 
satisficing version of a system by Pearl [1985]. 

Finally, this work casts conceptual clustering as a use- 
ful tool for problem-solving, by assigning it the generic, 
but well-defined performance task of inferring unknown 
attribute values. The future should find that as concep- 
tual clustering methods utilize more complex representa- 
tion languages [Stepp, 19841, so too can their behavior 
be interpreted as improving more sophisticated problem- 
solving tasks. 
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