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We study the problem of learning conjunctive concepts 
from examples on structural domains like the blocks world. 
This class of concepts is formally defined and it is shown 
that even for samples in which each example (positive or 
negative) is a two-object scene it is NF-complete to deter- 
mine if there is any concept in this class that is consistent 
with the sample. We demonstrate how tbis result affects the 
feasibility of Mitchell’s version space approach and how it 
shows that it is unlikely that this class of concepts is polyno- 
mially learnable from random examples in the sense of Vali- 
ant. On the other hand, we show that this class is polynomi- 
ally learnable if we allow a larger hypothesis space. This 
result holds for any fixed number of objects per scene, but 
the algorithm is not practical unless the number of objects 
per scene is very small. We also show that heuristic 
methods for learning from larger scenes are likely to give an 
accurate hypothesis if they produce a simple hypothesis con- 
sistent with a large enough random sample. 

Introduction 

Since the publication cf Winston’s results on learning blocks 
world concepts from examples (Winston, 1975), considerable effort 
has gone into improving and generalizing his learning algorithm, and 
into developing a more rigorous and general model of this and 
related AI learning problems (Vem, 1975; Hayes-Roth and McDer- 
mott, 1978; Knapman, 1978; Michalski, 1980, 1983; Dietterich and 
Michalski, 1983; Bundy et al., 1985; Sammut and Banerji, 1986; 
Kodratoff and Ganascia, 1986). Whereas much of the earlier leam- 
ing work, especially that associated with the field of Pattern Recog 
nition (see e.g. Duda and Hart, 1973), relied on an attribute-based 
domain in which each instance of a concept is characterized solely 
by a vector of values for a given set of attributes, this work uses a 
structurul domain in whiclr each instance is composed of many 
objects, and is characterized not only by the attributes of the indivi- 
dual objects it contains, but by the relationships among these objects. 
The classic example is Winston’s arch concept, defined as any scene 
that contains three blocks, two having the attributes required of posts 
and a third having the attributes required of a lintel, with each of the 
posts supporting the lintel and the posts set apart from each other. 
This concept can be formalized by inventing variables x and y for 
the posts and z for the lintel and giving an expression in the predi- 
cate calculus roughly of tbe form “them exist distinct x , y , z such 
thatfr andfz and . . . andf,“, where the fi ‘s are atomic formulae in 
the variables x, y and z that describe attributes of and relations 
between the objects represented by these variables. A concept of this 
Eyp will be called an existential conjunctive concept. The mtions 
of an instance space in a structural domain and the class of existen- 
tial conjunctive concepts over this instance space am defined for- 

tchell shows how this learning task (and related tasks) can 
be solved by maintaining only two subsets of the version space: the 
set 5 of the most specific hypotheses in the version space and the set 
G of the most general hypotheses..These sets are updated with each 
new example. There are two computational problems associated 
with this method. The first is that in order to update the sets S and 
G we must have an efficient procedure for testing whether or not one 
hypothesis is more general than another, and whether or not a 
hypothesis contains a given instance. Indeed, the latter would seem 
to be a requirement for the existence of any practical learning 
method. Unfortunately, both of these problems are NP-complete if 
we allow arbitrarily many objects in scenes and arbitrarily many 
variables in existential conjunctive hypotheses (see Hayes-Roth and 
McDermott, 1978). This problem is avoided by fixing the maximum 
number of objects in a scene (and hence variables in a consistent 
concept) to a reasonably small number. For example, Mitchell uses 
two objects per scene in the running example of (Mitchell, 1982). 

The second problem is that the size of the sets S and G can 
become unmanageably large. In (Haussler, 1986) it is shown that 
even using the hypothesis space of conjunctive concepts in an 
attribute-based domain (corresponding to existential conjunctive 
concepts on scenes with only one object), if the number of attributes 
is large then the size of G can grow exponentially in the number of 
examples. However, in this case S never contains more than one 
hypothesis (see Bundy et al., 1985), so the learning task described 
above can still be solved efficiently by computing only S (using the 
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positive examples) and then checking to see if any negative example 
is contained in S in a second pass through the sample. We show that 
it is unlikely that such an efficient strategy exists for existential con- 
junctive concepts on domains with more than one object per scene. 
Mom precisely, even if we restrict ourselves to instance spaces like 
the one in Mitchell’s paper in which 

1. each scene has exactly two objects, 
2. there are no binary relations defined between the objects and 
3. each object has only two-valued (Boolean) attributes, 

then using the hypothesis space of existential conjunctive c4MImptS 

and letting the number of attributes grow, not only can the size of 
both S and G grow exponentially in the number of examples, but it 
is unlikely that any efficient method (version space or not) exists for 
solving the learning task above, since the version space emptiness 
problem is FJP-complete, i.e. it is NP-complete to determine if there 
is any existential conjunctive concept consistent with a given sample 
(Theorem I). 

The version space paradigm of learning from examples is a 
rather demanding one in that it aims at either exact identification of 
the target concept (by nmning the algorithm until the version space 
is either empty or reduced to one concept) or an exact description of 
the set of consistent hypotheses in the case that the number of exam- 
ples is insufficient for exact identification. Another paradigm has 
recently been introduced by Valiant in which the goal of learning is 
merely to find a hypothesis that is a good approximation to the target 
concept in a probabilistic sense (Valiant, 1984; Valiant, 1985). 
Using the techniques of (Pitt and Valiant, 1986), we show (Theorem 
2) that it is also unlikely that there is an efficient learning algorithm 
for existential conjunctive concepts using random examples in the 
sense defined by Valiant, even with the same restrictions imposed 
above (i.e. 2 objects per scene, no binary relations, Boolean attri- 
butes). 

To balance these negative learning results, we also obtain some 
positive results. First, we show that for any fixed maximum number 
k of objects per scene, existential conjunctive concepts can be 
efficiently learned from random examples in the sense of Valiant if 
we use an extended hypothesis space, i.e. if we restrict the target 
concept to be existential conjunctive with at most k variables but 
allow the hypothesis to be chosen from a larger class of concepts 
(Theorem 3). Similar results am given for other types of concept 
classes in (Pitt and Valiant, 1986). The intuition behind this type of 
result is that sometimes by replacing a detailed and precise 
hypothesis space by a larger but more crudely organized one, our 
search for a consistent hypothesis may become easier. However, 
because our algorithm uses a brute force translation from a structural 
domain into an attribute-based domain (considering all possible 
bindings of objects to variables), it is not practical fork larger than 2 
or 3. 

In addition to being computationally expensive when them are 
many objects per scene, the algorithm used in Theorem 3 also 
requires more random examples to obtain a given level of confidence 
in the accuracy of the hypothesis produced than would a method that 
produced consistent existential conjunctive hypotheses. This is 
because a “shift” to a mom weakly biased hypothesis space (Utgoff, 
1986) also weakens the statistical leverage we have in establishing 
the accuracy of the hypothesis within a given confidence interval. 
We can avoid both of these problems by restricting ourselves to 
existential conjunctive hypotheses as before, but using heuristics to 
prune the search for a consistent hypothesis (Vere, 1975; Hayes-Roth 
and McDermott, 197g2; Michalski, 1980; Dietterich and Michalski, 
1983). From our NP completeness results, we do not expect that any 
efficient heuristic algorithms will always find a consistent hypothesis 
whenever them is one. However, we show that when a heuristic 
algorithm does find a simple hypothesis consistent with a large 

z Here only positive examples are used 
consistent concept meeting certain criteria. 

and the object is to find specific 

enough random sample, then this 
ity be a good approximation of 

hypothesis will with high 
the target concept in the 

probabil- 
sense of 

Valiant (Valiant, 1984), regardless of the method used to find it 
(Theorem 4). This theorem is established using the methodology of 
(Haussler, 1986), in which the bias of a hypothesis space is 
quantified by measuring its Vapnik-Chervonenkis dimension. Then, 
using a general probabilistic result (Vapnik and Chervonenkis, 1971; 
Blumer et al., 1986), this dimension is converted into the number of 
random examples required to guarantee that any consistent 
hypothesis is accurate with high probability. 

Summary of Definitions 

We define a set of attributes for which each object we consider 
has particular values. For example, we might have attributes shape, 
color and size, and a particular object (a small red square) might be 
characterized as having the value square for the attribute shape ) red 
for color and 2 for size. The values an attribute can have are defined 
ia priori, as is its value structure, which may be either 
tree-structured or linear (Michalski, 1983). In a tree-structured 
attribute the values am ordered hierarchically as illustrated in Figure 
1 for the attribute shape. The lowest or leaf values of this tree are 
the only observable values, i.e. actual objects must have one of 
these values for the attribute shape, The other values am used only 
in logical formulae that represent concepts, as defined below. The 
values of a linear attribute are all directly observable and are linearly 
ordered, as in the attribute size, which may be defined, for example, 
to take only integer values between 1 and 5. 

shape: 

YYdh”\ 
convex non-convex 

triangle 5 hexagon square proper-ellipse circle crescent channel 

Figure 1. 

A scene that contains several objects is characterized not only 
by the attributes of its objects but by the relations between its 
objects. Here we will restrict ourselves to binary relations, but, for 
consistency with our treatment of attributes (henceforth viewed as 
umuy relations) we will all ow these binary relations to take on any of 
several values, with the same two types of possible value structures. 
To illustrate the flexibility of this model, we give a few examples of 
binary relations that might be used to characterize the spatial rela- 
tionship between an ordered pair of objects in a two dimensional 
scene. Hint, the relation distance-between may be defined as a 
linear binary relation in analogy with the attribute size, perhaps using 
the Euclidean distance between the centers of mass. Pn addition, the 
relative position in the z-y plane of two objects might be character- 
ized similarly using two linear binary relations delta-x and deltag, 
that give the difference in x coordinates and the difference in y coor- 
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dinates of the centers of mass. Alternatively, a more qualitative 
binary relation to describe spatial relationship is given by the tree- 
structured relation reZ_pos illustrated in Figure 2. 

relqos: 

any-relqos 

where s 2 1 and each xi, 1 li Sr, is a variable and each fi, 
1 5 i I s) is an atom over R involving either a single variable or an 
otdered pair of distinct variables as defined above. We have dropped 
the names of the variables appearing in the individual atoms to sim- 
plify the notation. The first part of this expression (up to the colon) 
may be read “them exist distinct objects x1 up to x, such that . ..‘I 
Thus a scene satisfies 4 if it contains r distinct objects 

side-by-side above/below 

4 A 

overlapping none of these 

-- 

. 
obj 1, . . . . obi, such that for every i, lsi IS, if pi =fi(%j) then 
objj satisfies fi and if f i = f i(XjJk) then tie ordered pair 
(objj ,objk) satisfies f i . l’?ote that the scene may also contain objects 
other than these r objects. 

left-of right-of on~top~of under 

inside contains proper-overlap 

attributes: size: 1,2,3,4,5 
shaded: yes, no, ? 
shape: (see Figure 1) 

(linear) 
(tree-structured) 

yes no 

binary relations: 

distance-be%veen: touching, 
relps: (see Figure 2) 

close, far 

Figure 2. 

Henceforth we will assume a fixed set R of relations consisting 
of n attributes A 1, . . . . A, and I binary relations B 1, . . . . Bt . Under this 
assumption, a scene with k objects is represented as a complete 
directed graph on k nodes (i.e. there are two directed edges between 

El aa 
1 

every pair of nodes, one going each way), with each node represent- \ \ 

ing an object in the scene and labeled by the n-tuple that gives the 
4 

\ 
\ 

observed value of each attribute for that object, and a directed edge an ifs& renresentiltipn I 

from a node representing objl to a node representing obj2 labeled (numbers represent size) \ 
@I 

I 
I 

with an I -tuple that gives the observed values of each binarv relation (a) 
on the ordered pair (objl,objz). This representation is illukated in 
Figures 3a and 3b, where the triples in the nodes of Figure 36 give 
the values of the attributes size, shaded and shape, respectively and 
the pairs on the edges the values of the relations relsos and 
distance-between, respectively. 

By using variables to denote unknown objects, we can define 
the set of (elementary) atomic formulae (atoms) over R as in 
(Michalslci, 1983). Atomic formulae are either unary or binary. A 
unary atom f(x), where x is a variable, has either the form 
(A (x) = v ), where A is a tree-structured attribute in R and v is a 
value of A, or the form (v 1 I A (X ) I v 2) where A is a linear attribute 
inR andvi,vZarevaluesofA suchthatvi<vZ. Intheformercase 
the atom f (n) restricts the value of A for the object x to be in the set 
of observable values in the tree for A that lie in the subtree below v , 
including v itself if v is observable. In the later case the value of A 
is restricted to be between vr and ~2, inclusive, with respect to the 
linear order on A. An object satisfies f(x) if its value for the attri- 
bute A complies with the restrictions in f(x). A binary atom 
f (n,y), where x and y are distinct variables, has either the form 
(B (x ,y ) = v ), where B is a tree-stnctumd binary relation in R and v 
isavalueofB,ortheform(vi~B((x,y)5v2)whereB isalinear 
binary relation in R and v i,v2amvaluesofB suchthatviIv2. An 
ordered pair of objects (objl,objz) in a scene satisfies the atom 
f (X ,y ) if the binary relation B between these objects complies with 
the restrictions in f (x ,y ). 

\ 1 
\ I 

I 
3 * x,y : (shape(x) = 0) and 

(I r; size(x) 5 3) and I 

(shape(y) = convex) and 
(mlqos (x,y) = inside) and 
(relqos (y,x) = contains) 

an existential coniunctive extression 
its conceut arauh 

Figure 3. Cd) 

The set of all scmes over R that satisfy 4 is called the concept 
represented by 4, and the class of all such sets (varying c$) is referred 
to as the class of existential conjunctive concepts. The expression 6$ 
defined above can also be represented as a complete directed graph 
on r nodes, similar to the way a scene is represented (see Figure 3d). 
In this case, each node represents a variable of $ and the labels of 
nodes and edges represent restrictions imposed by the atoms of 9. 
Thus to label the graph, in addition to tuples of observable values we 
will allow tuples that include abstract values for tree-structured rela- 
tions and ranges of the form v t..vz, with v 1 I ~2, for linear relations. 
(whenv*= v2 only a single value will be used.) When no atom is 
present for a given variable or pair of variables that involves a given 
relation, we use the mot value of a tree structured relation and the 
entire range of a linear relation. Such a graph is called a concept 
graph. 

AII existential conjunctive expression over R (see Figure 3c) 
is a formula Q of the form 

Ebnl,...,xr :flandf2and *-a andf,, 
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The graphical representation of existential conjunctive con- 
cepts is very useful for placing these concepts into a partial order 
from the most specific concepts to the most general concepts, as is 
used in the version space framework mentioned in the introduction. 
This partial order is just the set containment relation: a concept $1 is 
(the same as or) more general than another concept +2 if $2 E $1. 
However, since 41 and +2 are in general infinite sets, this is not a use- 
ful definition from a computational point of view. To define this rela- 
tion on concept graphs, let us first say that if It and 12 are tuples of 
restrictions labeling nodes or edges in two different graphs, then bt is 
stronger than 12 if every component of It represents a set of values 
that is contained in the set of values represented by the correspond- 
ing component of 12. If 6 t and G2 am the graphs of existential con- 
junctive concepts, then it is easily verified that Gt is more general 
than 62 if and only if them is a l-l mapping Q from the set of nodes 
of G 1 into the set of nodes of G2 such that each node in G2 in the 
range of 8 is labeled with a stronger tuple of restrictions than the 
corresponding node in G 1 and each directed edge between two nodes 
in G2 in the range of Q is labeled with a stronger tuple of restrictions 
then the corresponding edge in G 1. Furthermore, we have used the 
“single representation trick” (Cohen and Feigenbaum, 1982), 
representing both scenes and concepts with the same type of graph, 
and thus it is easily verified that we can also check if a concept is 
satisfied by a given scene by checking if the concept graph is more 
general than the graph cortesponding to the scene. The two dashed 
lines between the nodes iu Figure 3d and the corresponding nodes in 
Figure 3b illustrate a mapping that shows that the scene in Figune 3a 
is an instance of the concept in Figure 3c. 

Summry of Theorems 

Theorem 1 and Corollary 1 may be taken as evidence that 
existential conjunctive concepts are perhaps inherently difficult to 
learn, even when only a few objects am involved. Following (Pitt 
and Valiant, 1986), can formalize this tentative conclusion. 

In analogy with the class P of problems solvable in polynomial 
time by a deterministic algorithm, the class is defined as the class 
of problems thae can be solved “probabilistically” in polynomial time 
by a deterministic algorithm that is also allowed to flip a fair coin to 
decide its next move (Gill, 1977). Here we say thae the algorithm 
solves the problem probabilistically if whenever there is no solution, 
it answers truthfully, saying that there is no solution, and whenever 
there is a solution, it finds one (or indicates that one exists) with pro- 
bability at least 1 - 6, where 6 can be made arbitrarily small. Rabin’s 
probabilistic algorithm for testing if an integer is composite (i.e. not 
prime) is a classic example of such an algorithm (Rabin, 1976). 

ass of problems solvable 
machine. I%uthermore, 
NIP it is also strongly 
ehae unless RF= NP, 

ve concepts ate not poly- 
nomially learnable from random examples in the sense first defined 
by Valiant in (Valiant, 1984) (see (Haussler, 1987) for a formal 
definition of Valiant’s learning framework from an AI peerspective). 

Theorem 2. If existential conjunctive concepts 
ally learnable from two-object random examples then 

In other words, while we cannot prove that existential conjunc- 
tive concepts am not polynomially learnable from random examples 
in the sense of (Valiant, 1984), we can show that an efficient algo- 
rithm for learning existential conjunctive concepts from random 
examples would amount to a major breakthrough in complexity 

Theorem I. The problem of determining if there is an existen- theory, similar to teesolving the P verses N 

tial conjunctive concept consistent with a sequence of p1z of examples 
results of this type, for different concept classes, are given in (Pitt 

over an instance space defined by rr attributes (where m and tl are and Valiant, 1986). 

variable) is W-complete, even when there are no binary relations In contrast to this result, using other techniques from (Pitt and 
defined, each attribute is Boolean valued, and each example contains Valiant, 1986), we can show 
exactly two objects. 0 Theorem 3. Existential conjunctive concepts are polynomially 

One sidelight of the proof of the above theorem is that it actu- learnable from k-object random examples for any fixed a if we allow 
ally shows that the problem in question is NP-complete even if, in our learning algorithm eo produce a hypothesis that is not existential 
addition eo the restrictions listed in the statement of the theorem, we conjunctive. Cl 
restrict ourselves to existential conjunctive concepts with expres- 
sions that have only one variable. This may appear contradictory ae 

The proof of this result involves transforming the problem of 

first, since such expressions are essentially equivalent to variable- 
learning existential conjunctive concepts on an instance space with k 

fn~ pure conjunctive expressions, e.g. as studied in (Haussler, 1986), 
objects per scene into the problem of learning k!-CNF concepts 

for which there are many known learning algorithms. Wowever, 
(Conjunctive Normal Form concepts with at most k! atoms per 

these algorithms work only in the attribute-based domain, where 
clause) in an attribute-based instance space. Since only a small frac- 

them is only one object in each example and hence no ambiguity 
tion of such Cl’dF concepts are needed to represent existential con- 

regarding the mapping of attributes in the example to attributes in 
junctive concepts from the original instance space, this is actually a 

the hypothesis. The above result shows that as soon as we introduce 
much larger hypothesis space. Techniques of (Valiant, 1984) or 

even the minimal amount of ambiguity, i.e. by having two objects in 
(Haussler, 1986) can be used to find k !-CNF concepts that, with high 

each example instead of just one, then the problem of finding a con- 
probability, approximate the existential conjunctive target concept to 

sistent hypothesis becomes substantially more difficult. 
any desired accuracy. The drawback is thae the time requited for 
these techniques grows exponentially in k !, and hence the algorithm 

Another interesting sidelight of the above proof is that it indi- is not really practical for k larger than 2 or 3. 
cates how to construct samples in which the size of the sets S and G 
of Mitchell’s version space algorithm are exponential. 

For larger R, the best available general learning algorithms are 
still the ones that use the hypothesis space of all existential conjunc- 

Corollary 1. The size of the sets S and G maintained in tive concepts, but employ heuristics to prune the search for a con- 
Mitchell’s version space algorithm for existential conjunctive con- sistent hypothesis in this space, as mentioned in the introduction. As 
cepts can, in the worst case, be exponential in the number m of in the Valiant framework, let us assume that our sample is produced 
examples and the number n of attributes defined on objects in these by drawing random examples of an unknown existential conjunctive 
examples, even when there are no binary relations defined, each aetri- target concept. The error of a hypothesis is defied as the probabil- 
bute is Boolean valued, and each example contains exactly two ity that it will misclassify a randomly drawn example. 
objects. 0 



Theorem 4. Consider k -object examples on an instance spaces (Cohen and Peigenbaum, 1982) P. Cohen and E. Feigenbaurn. Handbook 
defined by n relations (unary or binary). There is a sample size m of Artificial Intelligence Vol. III. William Kaufmann, 1982. 
that is (Dietterich and Michalski, 1983) T.G. Dietterich and R.S. Michalski. A 

0 

[ 

slog$&+r) log SlO~~~fr) , 1 comparative review of selected methods for learning from examples. In 
Machine learning: an artificial intelligence approach, Tioga Press, Palo 
Alto, CA, pages 41-$1,1983. 

such that for any target concept c, given m independent random (Duda and Hart, 1973) R. Duda and P. Hart. Pattern Clussification and 
examples of c, the probability that all consistent existential Scene Analysis. Wiley, 1973. 
conjunctive hypotheses with at most s atoms have error less than E is 
at least 1 - 6. Moteover, this holds independent of the choice of the 

(Gill, 1977) J. Gill. Probabilistic Turing machines. SIAeM J. Comput., 6 
(4): 675-695, 1977. 

probability distribution on the instance space governing the genera- 
tion of examples. q  

Since s is a measure of simplicity for existential conjunctive 
hypotheses, this result essentially says that if the sample size is large 
enough, then all simple hypotheses that are poor approximations to 
the target concept will be explicitly contradicted by an example. 
Thus the remaining (i.e. consistent) simple hypotheses (if any) will 
all be good approximations to the target concept. Hence the simpli- 
city of the hypothesis produced by a heuristic learning algorithm can 
have a significant effect on the confidence we have in its accuracy, a 
form of Occam’s Razor (see also Pearl, 1978; Blumer et al., 1986). 

In (Haussler, 1986) similar results were obtained for pure con- 
junctive concepts in an attribute-based domain, with sample size of 

0 

[ 

slo?) log “lo;$rfz’ 1 

(Haussler, 1986) D. Waussler. Quantifying the inductive bias in concept 
learning. In Proc. AAAI ‘86, pages 485489, Philadelphia, PA, 1986. 
(HaussPer, 1987) D. Haussler. Bias, Version Spaces and Valiant’s Learn- 
ing Framework. In Proc. 4th Int. Workshop on Machine Learning, Irvine, 
CA, June 1987, to appear. 
(Hayes-Roth and McDermott, 1978) F. Hayes-Roth and J. McDermott. 
An interference matching technique for inducing abstractions. ln Comm. 
ACM, 21(5): 401-410,1978. 
(Kodratoff and Ganascia, 1986) Y. Kodratoff and J. Ganascia. Improv- 
ing the generalization step in learning. In Machine Learning II,, pages 215- 
244, R. Michalski, J. Carbonell and T. Mitchell, eds., Morgan Kaufmann, 
Los Altos, CA, 1986. 
(Knapman, 1978) J. Knapman. A critical review of Winston’s learning 
structural descriptions from examples. AISB Quarterly, 31: 319-320,1978. 
(Michalski, 1980) R.S. Michalski. Pattern Recognition as rule-guided 
inductive inference. IEEE PAMI, 2 (4): 349-361,198O. 

In fact these results are a special case of Theorem 4 with k = 1, 
corresponding to the case when each scene contains exactly one 
object, and hence the structural domain is reduced to an attribute- 
based domain. What is significant is that in structural domains, the 
sample size required grows only logarithmically as the number k of 
objects per scene is increased. 

The key problem that remains is finding the best heuristic. 
Theorem 2 sbows that it is unlikely that we will find a heuristic that 
is guaranteed to work on random examples. However, it still might 
be the case that by the addition of queries of the type discussed in 
(Angluin, 1986), a polynomial learning algorithm for existential con- 
junctive concepts could be found that always produces simple, con- 
sistent existential conjunctive hypotheses, and whose performance 
does not degrade badly with increasing k like the algorithm of 
Theorem 3 above. The work in (Sammut and Banerji, 1986) is a step 
in this direction, but as yet mere has been no careful performance 
analysis of the teclmiques used them. 
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